首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract K-Ar ages have been obtained for mineral separates: plagioclases from two dolerites and biotites from one granite and four granodiorites in the Oban-Obudu massif of southeastern Nigeria. Dolerites in the Oban area give K-Ar plagioclase ages of 204.0 ± 9.9 Ma and 219.9 ± 4.7 Ma. The granite of the Obudu area yields a K-Ar biotite age of 507.6 ± 10.1 Ma whilst the granodiorites in the Oban area yield K-Ar biotite ages ranging from 474.6 ± 9.4 Ma to 511.8 ± 10.0 Ma. The dolerites are related to the tholeiitic basaltic magmatism at the early opening of the central Atlantic, and are compatible in age with the formation of the Ring Complexes and the rifting of the Benue Trough of Nigeria. The granites and granodiorites belong to the syntectonic Older Granite series in the Pan-African orogeny. The emplacement timing deduced from the reported Pb-Pb zircon age of 617 ± 2 Ma and the newly obtained biotite ages suggest that these older granites in southeastern Nigeria had a prolonged cooling history of ∼110 Ma.  相似文献   

2.
Baogutu copper deposit in Western Junggar area is a mesoscopic porphyry deposit found in recent years. Study on its geochronology will help further understand ore genesis and regional ore-forming pattern. A series of small quartz-diorite and granodiorite stocks outcrop at Baogutu area, numbered I―X according to their size. A detailed exploration on Number V stock confirmed it as a mesoscopic scale copper deposit, and various exploration work has been carried out on other stocks with ore-forming evidence. Th...  相似文献   

3.
The Morokweng impact structure in South Africa was formed 145 Ma ago, at the time of the minor mass extinction that marks the Jurassic-Cretaceous boundary. Previous size estimates for the Morokweng impact structure ranged between 70 and 340 km, and those workers favoring a very large size speculated on the role that the Morokweng impact might have played in relation to this mass extinction. Consequently, the actual size of this impact structure has wide-ranging implications. Petrographic and geochemical analyses, combined with SHRIMP U-Pb single zircon chronology, of a >3400 m long drillcore from about 40 km west of the center of the Morokweng impact structure show that this borehole is most likely located outside the impact structure, limiting the maximum crater diameter to <80 km. While the formation of a <80 km impact structure in continental terrane probably did not engender global biological consequences, it is possible that a series of impact events at J/K boundary time could have caused environmental stress on a worldwide scale. The terrestrial impact crater record does list several smaller structures of similar ages to that of the Morokweng structure. The results of this study are also significant for South African Archean geology. Late Archean (2.6-2.8 Ga) granitoids in the crust of the Kaapvaal Craton are much more widespread than previously thought. The overprint of the Namaquan-Kibaran orogenesis at 1.2-0.9 Ga along the western and southern margin of the craton is significant even in the far North West Province of South Africa.  相似文献   

4.
The Late Permian to Early Triassic transition represents one of the most important Phanerozoic mass extinction episodes. The cause of this event is still in debate between catastrophic and gradual mechanisms. This study uses the U-Pb method on zircons from the uppermost Permian/lowermost Triassic clay deposits at Chahe (Guizhou Province, SW China) to examine time constraints for this event. The results of both this and previous studies show that the ages of Bed 68a and 68c (the upper clay bed of the terrestrial Permian-Triassic boundary (PTB)) respectively are 252.6±2.8 and 247.5±2.8 Ma. This age (within the margin of error) almost accords with the upper clay bed (Bed 28) age of Meishan and the eruption age of Tunguss Basalt, and is so far the most accurate age obtained from terrestrial PTB. The claystone of Bed 68 was formed in the earliest Triassic. The biotic crisis occurred at nearly the same time in terrestrial and marine environments during Permian-Triassic interval; however the extinction patterns and processes are different. The extinction pattern of the terrestrial plants shows a major decline at the PTB after long-term evolution, followed by a retarded extinction of the relicts in the earliest Triassic.  相似文献   

5.
New40Ar/39Ar plateau ages from rocks of Changle-Nanao ductile shear zone are 107.9 Ma(Mus), 108.2 Ma(Bi), 107.1 Ma(Bi), 109.2 Ma(Hb) and 117.9 Ma(Bi) respectively, which are concordant with their isochron ages and record the formation age of the ductile shear zone. The similarity and apparent overlap of the cooling ages with respective closure temperatures of 5 minerals document initial rapid uplift during 107–118 Ma following the collision between the Min-Tai microcontinent and the Min-Zhe Mesozoic volcanic arc. The40Ar/39 Ar plateau ages, K-Ar date of K-feldspar and other geochronologic information suggest that the exhumation rate of the ductile shear zone is about 0.18–1.12 mm/a in the range of 107–70 Ma, which is mainly influenced by tectonic extension.  相似文献   

6.
K-Ar ages were measured on Quaternary polygenetic and monogenetic volcanoes in the Higashi-Izu region, Izu peninsula, central Japan, using the unspiked sensitivity method with mass-fractionation correction procedure to investigate when eruptive style changed, whether a hiatus existed between the two types of eruptive activity, and the effect of tectonics on the change in eruptive style. The K-Ar ages range from 0.3-0.08 Ma for monogenetic volcanoes and from 1.8-0.2 Ma for polygenetic volcanoes; thus, no volcanic hiatus was found between the two types of eruptive styles. The transition from polygenetic to monogenetic volcanism occurred during a time of overlap between 0.3 and 0.2 Ma, after collision of the Izu block (the future Izu peninsula) with central Japan, estimated as 1.0-0.8 Ma by previous researchers. Based on the review of several tectonic models of the area, the measured age of transition in eruptive style is interpreted to correspond to the change in the stress field of the Higashi-Izu region.  相似文献   

7.
Palaeomagnetic data are presented from the southern Volodarsk-Volynsky Massif (VVM) of the Korosten Pluton, the Ukrainian Shield. Laboratory experiments (AF and thermal demagnetization, IRM acquisition, thermal separation), field tests (consistency and secular variation methods) and optical observations indicate that single domain and nearly single domain magnetite is the dominant carrier of a primary TRM in the anorthosites. Palaeomagnetic poles from the three sampling sites (Golovino and Turchinka quarries) are indistinguishable at the 95% confidence level and have been combined to yield a mean pole at Plat = 30 °N, Plon = 178 °E, a95 = 3.4 °.In the large slow cooling Korosten Pluton the U-Pb zircon/baddeleyite (Uzb) technique gives an age for the anorthosites, which are not equivalent to the time of magnetic blocking. Based on integrated analysis of geochronologic information and blocking-temperature data for magnetic minerals proposed by Briden et al. (1993), a first attempt has been undertaken to estimate the palaeomagnetic pole age from the Mesoproterozoic anorthosites. The Korosten Pluton has cooled from 850 °C (the closure temperature of U-Pb systematics in zircon/baddeleyite) to 350 °C (the closure temperature of K-Ar systematics in biotite) during 150 Ma after the emplacement of the anorthosites. Assuming a uniform cooling of the intrusion yields a rate of 3.3 °C/Ma. The cooling rate for the granites is 3.1 °C/Ma. The mafic and acid rocks have an average rate of 3.2 °C/Ma. Using the cooling gradient for the VVM (3.2 °C/Ma) and the mean natural blocking temperature of magnetite (520 °C) can be determined a remanence age. The estimate for TRM acquisition is 1656 ± 10.0 Ma.The magnetic pole for the VVM is in good agreement with the mean pole from the Baltic quartz porphyry dykes with an age of 1630 – 1648 Ma. The VVM pole is best dated and requires a revision of the latest paleogeographic reconstructions for the Fennoscandian and Ukrainian Shields at 1770 and 1650 Ma. (Pesonen et al., 2003).  相似文献   

8.
Gettysburg Bank forms the western end of the Gorringe Seamount which is situated in the North Atlantic 110 km west of the tip of the Iberian Peninsula, on the eastern end of the Azores/Gibraltar fracture zone.Gabbros dredged from the Gettysburg Bank record a complex history of events. K-Ar ages of separated mineral phases fall into three concordant groups (plus some discordant ages). The oldest ages are from three brown kaersutitic hornblendes and their mean age of135 ± 3Ma is taken to be that of their formation. Six plagioclase feldspars yielded concordant ages of105 ± 3Ma which is possibly a consequence of a thermal event occurring at that time. Ages from three deformed plagioclases are concordant with a mean of82 ± 3Ma which is believed to relate to a phase of shearing, perhaps occurring during transform motion at the plate boundary.  相似文献   

9.
The cosmic ray exposure ages of 16 iron meteorites were determined by the41K/40K-4He/21Ne method. The ages measured in the present and in previous experiments are summarized and presented in form of various histograms characterizing the age distributions of the different chemical groups separately. Age clustering at 650 Ma (mega years) is typical for the group IIIAB. Age clustering at 400 Ma is observed for the IVA irons. Quasi-continuous age distributions are found for the groups IA, IIA, IIB, IVB and for the anomalous irons. The following interpretation is offered. The IIIA and IIIB irons have initially been core material of the same parent asteroid and were ejected in consequence of a single impact event about 650 Ma ago. The IVA irons represent core material of another asteroid which was hit and partially disrupted in consequence of an impact event about 400 Ma ago. The group IA exhibits meteorites with ages between 200 and 1200 Ma. The quasi-continuous character of this age distribution and cosmochemical evidence indicate for these irons a raisin-bread-like character of their initial distribution within the silicate mantle of their parent asteroid. In consequence of several or, perhaps, of many crater-forming impact events the mantle material was gradually destructed and ejected. In the age distribution of the IIA hexahedrites, ages <300 Ma predominate and ages >600 Ma seem to be missing. In attempting to understand this, the possibility must be taken into consideration that the mean life-time of hexahedrites in the interplanetary space might be shorter than that of other irons. The cause might be that the hexahedrite single crystals are perhaps easier cleavable in the space environment. A similar kind of selective mass wastage appears also to be the cause for the absence of stone meteorites with high exposure ages.  相似文献   

10.
本文报道了利用K-Ar法、TL法和FT法,分别测定断层泥中1Md伊利石(<1μ粒级组份)、石英(2-10μ粒级组份)和磷灰石单矿物的年龄结果;给出了沂沭断裂带三次强烈活动的年龄区间及强度逐渐减弱的变化趋势。首先提出了利用这三种测年手段,测定断层泥中三种不同物质的年龄,进而研究断层活动(强度和时间)的新方法  相似文献   

11.
李大明  陈文寄 《地震地质》1992,14(4):361-367
探讨了玄武岩、辉绿岩和断层泥中粘土矿物3种全岩样品在40Ar-39Ar分析中的某些问题。利用快中子照射过程中不同矿物发生不均匀Ar丟失的模式解释了玄武岩40Ar-39Ar全熔年龄与K-Ar年龄间的差异。对辉绿岩样品的40Ar-39Ar分析确定了辉绿岩脉的侵入时代,并说明该地区其它辉绿岩样品K-Ar年龄的离散是受后期变质作用的影响。对于断层泥中粘土矿物,快中子照射中39Ar的反冲丢失导致<1μm粒级部分的40Ar-39Ar全熔年龄偏高。<1μm和2~10μm粒级样品的40Ar-39Ar年龄谱中,低温区较低的阶段年龄可能是断层后期较强烈活动的结果。  相似文献   

12.
The Jemez Mountains volcanic field (JMVF), located in north-central New Mexico, has been a site of basaltic to rhyolitic volcanism since the mid-Miocene with major caldera forming eruptions occurring in the Pleistocene. Eruption of the upper Bandelier Tuff (UBT) is associated with collapse of the Valles Caldera, whereas eruption of the lower Bandelier Tuff (LBT) resulted in formation of the Toledo Caldera. These events were previously dated by K-Ar at 1.12 ± 0.03 Ma and 1.45 ± 0.06 Ma, respectively. Pre-Bandelier explosive eruptions produced the San Diego Canyon (SDC) ignimbrites. SDC ignimbrite “B” has been dated at 2.84 ± 0.07 Ma, whereas SDC ignimbrite “A”, which underlies “B”, has been dated at 3.64 ± 1.64 Ma. Both of these dates are based on single K-Ar analyses.40Ar/39Ar dating of single sanidine crystals from these units indicates revision of the previously reported dates. Isochron analysis of 26 crystals from the UBT gives a common trapped 40Ar/36Ar component of 304.5, indicating the presence of excess 40Ar in this unit, and defines an age of 1.14 ± 0.02 Ma. Isochron analysis of 26 crystals from the LBT indicates an atmospheric trapped component and an age of 1.51 ± 0.03 Ma. An age of 1.78 ± 0.04 Ma, based on the weighted mean of 5 individual analyses, is indicated for SDC ignimbrite “B”, whereas 3 analyses from SDC ignimbrite “A” give a weighted mean age of 1.78 ± 0.07 Ma. Evidence for xenocrystic contamination in the SDC ignimbrites comes from analyses of a correlative air-fall pumice unit in the Puye Formation alluvial fan giving ages of 1.75 ± 0.08 and 3.50 ± 0.09 Ma. The presence of xenocrysts in bulk separates used for the original K-Ar analyses could account for the significantly older ages reported.Geochemical data indicate that SDC ignimbrites are early eruptions from the magma chamber which evolved to produce the LBT, as compositions of SDC ignimbrite “B” are virtually identical to least evolved LBT samples. Differentiation during the 270-ka interval between eruption of SDC ignimbrite “B” and the LBT produced an array of high-silica rhyolite compositions which were erupted to form the LBT. Mixed pumices associated with eruption of the LBT indicated an influx of more mafic magma into the system which produced shifts in some incompatible trace-element ratios. Lavas and tephras of the Cerro Toledo Rhyolite record the geochemical evolution of the Bandelier magma system during the 370-ka interval between eruption of the LBT and the UBT.The combined geochronologic and geochemical data place the establishment and evolution of the Bandelier silicic magma system within a precise temporal framework, beginning with eruption of the SDC ignimbrites at 1.78 Ma, and define a periodicity of 270–370 ka to ash-flow eruptions in the JMVF. These intervals are comparable to those in other multicyclic caldera complexes and are a measure of the timescales over which substantial fractionation of large silicic magma bodies occur.  相似文献   

13.
Twenty-four K-Ar radiometric ages are presented for late Cenozoic continental volcanic rocks of the Cordillera Occidental of southernmost Perú (lat. 16° 57′–17° 36′S). Rhyodacitic ignimbrite eruptions began in this transect during the Late Oligocene and continued episodically through the Miocene. The development of andesitic-dacitic strato volcanoes was initiated in the Pliocene and continues to the present.The earliest ignimbrite flows (25.3–22.7 Ma) are intercalated in the upper, coarsely-elastic member of the Moquegua Formation and demonstrate that this sedimentary unit accumulated in a trough, parallel to Andean tectonic trends, largely in the Oligocene. More voluminous ash-flow eruptions prevailed in the Early Miocene (22.8–17.6 Ma) and formed the extensively preserved Huaylillas Formation. This episode was coeval with a major phase of Andean uplift, and the pyroclastics overlie an erosional surface of regional extent incised into a Paleogene volcano-plutonic arc terrain. An age span of 14.2–8.9 Ma (mid-Late Miocene) is indicated for the younger Chuntacala Formation, which again comprises felsic ignimbrite flows, largely restricted to valleys incised into the pre-Huaylillas Formation lithologies, and, at lower altitudes, an extensive aggradational elastic facies. The youngest areally extensive ignimbrites, constituting the Sencca Formation, were extruded during the Late Miocene.In the earliest Pliocene, the ignimbrites were succeeded by more voluminous calcalkaline, intermediate flows which generated numerous large and small stratovolcanoes; these range in age from 5.3 to 1.6 Ma. Present-day, or Holocene, volcanism is restricted to several large stratovolcanoes which had begun their development during the Pleistocene (by 0.7 Ma).The late Oligocene/Early Miocene (ca. 22–23 Ma) reactivation of the volcanic arc coincided with a comparable increase in magmatic activity throughout much of the Cordilleras Occidental and Oriental of the Central Andes.  相似文献   

14.
Forty new K-Ar and 40Ar/39Ar isotopic ages from the northern Main Ethiopian Rift (MER)–southern Afar transition zone provide insights into the volcano-tectonic evolution of this portion of the East African Rift system. The earliest evidence of volcanic activity in this region is manifest as 24–23 Ma pre-rift flood basalts. Transition zone flood basalt activity renewed at approximately 10 Ma, and preceded the initiation of modern rift margin development. Bimodal basalt–rhyolite volcanism in the southern Afar rift floor began at approximately 7 Ma and continued into Recent times. In contrast, post-subsidence volcanic activity in the northern MER is dominated by Mio-Pliocene silicic products from centers now covered by Quaternary volcanic and sedimentary lithologies. Unlike other parts of the MER, Mio-Pliocene silicic volcanism in the MER–Afar transition zone is closely associated with fissural basaltic products. The presence of Pliocene age ignimbrites on the plateaus bounding the northern MER, whose sources are found in the present rift, indicates that subsidence of this region was gradual, and that it attained its present physiography with steep escarpments only in the Plio-Pleistocene. Large 7–5 Ma silicic centers along the southern Afar and northeastern MER margins apparently formed along an E–W-oriented regional structural feature parallel to the already established southern escarpment of the Afar. The Addis Ababa rift embayment and the growth of 4.5–3 Ma silicic centers in the Addis Ababa area are attributed to the formation of a major cross-rift structure and its intersection with the same regional E–W structural trend. This study illustrates the episodic nature of rift development and volcanic activity in the MER–Afar transition zone, and the link between this activity and regional structural and tectonic features.  相似文献   

15.
Seventeen K/Ar dates were obtained on illitic clays within Valles caldera (1.13 Ma) to investigate the impact of hydrothermal alteration on Quaternary to Precambrian intracaldera and pre-caldera rocks in a large, long-lived hydrothermal system ( 1.0 Ma to present). Clay samples came from scientific core hole VC-2B (295°C at 1762 m) which was spudded in the Sulphur Springs thermal area and drilled into the boundary between the central resurgent dome and the western ring-fracture zone. Six illitic clays within Quaternary caldera-fill debris flow, tuffaceous sediment, and ash-flow tuff (48 to 587 m depth) yield ages from 0.35 to 1.09 Ma. Illite from Miocene pre-caldera sandstone (765 m) gives an age of 6.74 Ma. Two dates on illite from sandstones in Permian red beds (1008 and 1187 m) are 4.33 and 4.07 Ma, respectively. Surprisingly, three dates on illites from altered andesite pebbles within the red beds (1010–1014 m) are 0.95 to 1.06 Ma. Four illite dates on variably altered Precambrian quartz monzonite (1615–1762 m) range from 2.90 to 276 Ma.Post-Valles age illite is not correlated with alteration style (argillic to propylitic). Rather, post-Valles ages are uniformly obtained from illites in highly fractured, intensely altered, caldera-fill rocks and the Permian volcanic clasts. Generally, finer clay fractions from identical samples yield younger ages. Plots of 40Ar/36Ar versus 40K/36Ar and 40Ar* versus 40K for the illites in caldera-fill rocks lie close to a 1-Ma isochron. Most illite dates older than Valles caldera are difficult to interpret because they correspond to the ages of pre-Valles volcanic and hydrothermal episodes in the Jemez volcanic field ( 13 Ma). In addition, older dates may be caused by co-mingling of different illites during sample preparation, or by inherited argon or lost argon in illites from rocks with potentially complex hydrothermal histories. However, the range of ages obtained from illites in Permian sands and pebbles and from Precambrian crystalline rocks indicates that Valles hydrothermal activity is overwhelming illite produced by earlier geologic events.  相似文献   

16.
The Pliocene-Holocene Newer Volcanic Province (NVP) of southeastern Australia is an extensive, relatively well-preserved, intra-plate basaltic lava field containing more than 400 eruptive centres. This study reports new, high-precision 40Ar/39Ar ages for six young (300–600 ka) basalt flows from the NVP and is part of a broader initiative to constrain the extent, duration, episodicity and causation of NVP volcanism. Six fresh, holocrystalline alkali basalt flows were selected from the Warrnambool-Port Fairy area in the Western Plains sub-province for 40Ar/39Ar dating. These flows were chosen on the basis of pre-existing K-Ar age constraints, which, although variable, indicated eruption during a period of apparent relative volcanic quiescence (0.8–0.06 Ma).40Ar/39Ar ages were measured on multiple aliquots of whole rock basalt samples. Three separate flows from the Mount Rouse volcanic field yielded concordant 40Ar/39Ar age results, with a mean eruption age of 303 ± 13 ka (95% CI). An older weighted mean age of 382 ± 24 ka (2σ) was obtained for one sample from the central Rouse-Port Fairy Flow, suggesting extraneous argon contamination. Two basalt flows from the Mount Warrnambool volcano also yielded analogous results, with an average 40Ar/39Ar age of 542 ± 17 ka (95% CI). The results confirm volcanic activity during the interval of relative quiescence. Most previous K-Ar ages for these flows are generally older than the weighted mean 40Ar/39Ar ages, suggesting the presence of extraneous 40Ar. This study demonstrates the suitability of the 40Ar/39Ar incremental-heating method to obtain precise eruption ages for young, holocrystalline alkali basalt samples in the NVP.  相似文献   

17.
Lava flows of the Ninole Basalt, the oldest rocks exposed on the south side of the island of Hawaii, provide age and compositional constraints on the evolution of Mauna Loa volcano and the southeastward age progression of Hawaiian volcanism. Although the tholeiitic Ninole Basalt differs from historic lavas of Mauna Loa volcano in most major-element contents (e.g., variably lower K, Na, Si; higher Al, Fe, Ti, Ca), REE and other relatively immobile minor elements are similar to historic and prehistoric Mauna Loa lavas, and the present major-element differences are mainly due to incipient weathering in the tropical environment. New K-Ar whole-rock ages, from relatively fresh roadcut samples, suggest that the age of the Ninole Basalt is approximately 0.1–0.2 Ma, although resolution is poor because of low contents of K and radiogenic Ar. Originally considered the remnants of a separate volcano, the Ninole Hills are here interpreted as faulted remnants of the old south flank of Mauna Loa. Deep canyons in the Ninole Hills, eroded after massive landslide failure of flanks of the southwest rift zone, have been preserved from burial by younger lava due to westward migration of the rift zone. Landslide-induced depressurization of the southwest rift zone may also have induced phreatomagmatic eruptions that could have deposited widespread Basaltic ash that overlies the Ninole Basalt. Subaerial presence of the Ninole Basalt documents that the southern part of Hawaii Island had grown to much of its present size above sea level by 0.1–0.2 Ma, and places significant limits on subsequent enlargement of the south flank of Mauna Loa.  相似文献   

18.
The Wrangell volcanic field covers more than 10 000 km2 in southern Alaska and extends uninterrupted into northwest. Yukon Territory. Lavas in the field exhibit medium-K, calc-alkaline affinities, typical of continental volcanic arcs along convergent plate margins. Eleven major eruptive centers are recognized in the Alaskan part of the field. More than 90 K-Ar age determinations in the field show a northwesterly progression of eruptive activity from 26 Ma, near the Alaska-Yukon border, to about 0.2 Ma at the northwest end of the field. A few age determinations in the southeast extension of the field in Yukon Territory, Canada, range from 11 to 25 Ma. The ages indicate that the progression of volcanism in the Alaska part of the field increased from about 0.8 km/Ma, at 25 Ma, to more than 20 km/MA during the past 2 Ma. The progression of volcanic activity and its increased rate of migration with time is attributed to changes in the rate and angle of Pacific plate convergence and the progressive decoupling of the Yakutat terrane from North America. Subduction of Yakutat terrane-Pacific plate and Wrangell volcanic activity ceased about 200 000 years age when Pacific plate motion was taken up by strike-slip faulting and thrusting.  相似文献   

19.
The Wrangell volcanic field covers more than 10 000 km2 in southern Alaska and extends uninterrupted into northwest. Yukon Territory. Lavas in the field exhibit medium-K, calc-alkaline affinities, typical of continental volcanic arcs along convergent plate margins. Eleven major eruptive centers are recognized in the Alaskan part of the field. More than 90 K-Ar age determinations in the field show a northwesterly progression of eruptive activity from 26 Ma, near the Alaska-Yukon border, to about 0.2 Ma at the northwest end of the field. A few age determinations in the southeast extension of the field in Yukon Territory, Canada, range from 11 to 25 Ma. The ages indicate that the progression of volcanism in the Alaska part of the field increased from about 0.8 km/Ma, at 25 Ma, to more than 20 km/MA during the past 2 Ma. The progression of volcanic activity and its increased rate of migration with time is attributed to changes in the rate and angle of Pacific plate convergence and the progressive decoupling of the Yakutat terrane from North America. Subduction of Yakutat terrane-Pacific plate and Wrangell volcanic activity ceased about 200 000 years age when Pacific plate motion was taken up by strike-slip faulting and thrusting.  相似文献   

20.
40Ar/39Ar age spectra have been obtained from 85 sanidine separates from 36 ignimbrites and one rhyolitic lava in the latest Eocene-Oligocene Mogollon-Datil volcanic field of southwestern New Mexico. Of the 97 measured age spectra, 94 yield weighted-mean plateau ages each giving single-spectrum 1 precision of±0.25%–0.4% (±0.07–0.14 Ma). Replicate plateau age determinations for eight different samples show within-sample 1 precisions averaging ±0.25%. Plateau ages from multiple (n=3–8) samples of individual ignimbrites show 1 within-unit precision of ±0.1%–0.4% (±0.04–0.13 Ma). This within-unit precision represents a several-fold improvement over published K-Ar data for the same ignimbrites, and is similar to the range of precisions reported from single-crystal laser fusion studies. A further indication of the high precision of unit-mean 40Ar/30Ar ages is their close agreement with independently established stratigraphic order. Two samples failed to meet plateau criteria, apparently due to geologic contamination by older feldspars. Effects of minor contamination are shown by six other samples, which yielded slightly anomalous plateau ages. 40Ar/39Ar plateau ages permit resolution of units differing in age by 0.5% (0.15 Ma) or less. This high resolution, combined with paleomagnetic studies, has helped to correlate ignimbrites among isolated ranges and has allowed development of an integrated timestratigraphic framework for the volcanic field. Mogollon-Datil ignimbrites range in age from 36.2 to 24.3 Ma. Ignimbrite activity was strongly episodic, being confined to four brief (<2.6 m.y.) eruptive episodes separated by 1–3 m.y. gaps. Ignimbrite activity generally tended to migrate from the southeast toward the north and west.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号