首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study employs a method for analysis of the sulfur isotopic composition of trace sulfate extracted from carbonates collected in Namibia in order to document secular variations in the sulfur isotopic composition of Neoproterozoic oceanic sulfate and to assess variations in the sulfur cycle that may have accompanied profound climatic events that have been described as the snowball Earth hypothesis. The carbonates in the Otavi Group of Northwest Namibia contain 3-295 ppm sulfate. Positive excursions, to a high of 40‰ (CDT), occur above the lower (Chuos Formation) and upper (Ghaub Formation) glacial intervals in the Rasthof and Maieberg cap carbonates, respectively. Positive excursions at the top of the Rasthof Formation (reaching 51‰) and within the overlying Gruis Formation (34‰) do not appear to correspond to glaciation. The δ34Ssulfate values within the Ombaatjie Formation exhibit shifts over relatively short stratigraphic intervals (tens of meters), varying between ∼15 and 25‰. Cap carbonates from Australia exhibit positive δ34Spyrite trends with amplitudes similar to those of Namibian δ34Ssulfate, although, more data are necessary to firmly establish these δ34S trends as global in nature. δ34Ssulfate excursions found in Namibian cap carbonates are consistent with the snowball Earth hypothesis in that they appear to reflect nearly complete reduction of sulfate in an isolated, anoxic global ocean, although, there are other mechanisms that may have facilitated these large shifts in δ34Ssulfate. Regardless, the low sulfate concentrations in Otavi carbonates, the high amplitude variability of the δ34Ssulfate curve, and the apparently full reduction of sulfate (as implied from δ34Spyrite data), even in strata low in Corg, suggest that Neoproterozoic oceanic sulfate concentrations were much lower than modern values. Additionally, the buildup of ferrous iron and banded-iron formations during the Sturtian glacial event would indicate that Fe supply exceeded sulfide availability during the glacials and/or that all sulfide was fixed and buried. This could be construed as further evidence in support of low oceanic sulfate (and sulfide) at this time.  相似文献   

2.
Authigenic carbonates were sampled in methane-enriched piston core sediments collected from gas venting sites on the western continental slope of the Ulleung Basin, East Sea of Korea. Multidisciplinary investigations on these carbonates, including the scanning electronic microscope (SEM) observations and mineralogical-geochemical compositions, were carried out to identify the carbon and oxygen sources and the forming mechanism of these carbonates. The authigenic carbonates from the study area correspond to semi-consolidated, compact concretions or nodules ranging from 2 to 9 cm in size. X-ray diffraction and electron microprobe analyses showed that most of the sampled carbonate concretions were composed of almost purely authigenic high-Mg calcite (10.7–14.3 mol% MgCO3). Characteristically, microbial structures such as filaments and rods, which were probably associated with the authigenic minerals, were abundantly observed within the carbonate matrix. The carbonates were strongly depleted in δ13C (−33.85‰ to −39.53‰ Peedee Belemnite (PDB)) and were enriched in δ18O (5.16–5.60‰ PDB), indicating that the primary source of carbon is mainly derived from the anaerobic oxidation of methane. Such methane probably originated from the destabilization of the underlying gas hydrates as strongly supporting from the enriched 18O levels. Furthermore, the strongly depleted δ13C values (−60.7‰ to −61.6‰ PDB) of the sediment void gases demonstrate that the majority of the gas venting at the Ulleung Basin is microbial methane by CO2 reduction. This study provides another example for the formation mechanism of methane-derived authigenic carbonates associated with gas-hydrate decomposition in gas-seeping pockmark environments.  相似文献   

3.
The δ18O values of eighteen marine evaporites of Precambrian to Recent ages were found to vary from +8 to 25‰ relative to SMOW, while the δ34S values previously measured by Thode and Monster [2] vary from +10 to +38‰ relative to meteoritic sulfur. The results strongly suggest that the δ18O value of ocean sulfate varied with geologic age with a minimum at the Permian age.  相似文献   

4.
We present a time series of carbon and oxygen stable isotope records of the last 30?000 14C years throughout the last glacial-postglacial cycle from western Qinghai-Xizhang (Tibet) Plateau. A 20-m core drilled in the south basin of Zabuye Salt Lake was analyzed for inorganic and organic carbon and total sulfur contents, δ13C and δ18O values of carbonates. Our results indicate that climatic changes have led to a drastic negative shift of stable isotope ratios at the transition between the Last Full Glacial and the postglacial phase during Later Pleistocene times (∼16.2 kyr BP), and a rapid positive shift at the transition from Pleistocene to Holocene (∼10.6 kyr BP). The first shift is marked by the drop of δ18Ocarb values of about 10‰ (from +2 to −8‰) and δ13Ccarb values of about 3‰ (from 5 to 2‰). The second shift which occurred at the transition from Pleistocene to Holocene was of similar magnitude but in the opposite direction. Isotope data, combined with total organic and inorganic carbon contents and the lithological composition of the core, suggest this lake was an alluvial pre-lake environment prior to ca. 28 14C kyr BP. During ca. 28-16.2 14C kyr BP, Zabuye Lake was likely a moderately deep lake with limited outflow. The cool and arid glacial climate led the lake level to drop drastically. Extended residence time overwhelmed the lower temperature and caused a steady increase of δ13Ccarb and δ18Ocarb values and total inorganic carbon content in the sediments. During ca. 16.2-10.6 14C kyr BP, this lake probably overflowed and received abundant recharge from melting glaciers when the deglaciation was in its full speed. A spike of markedly enhanced δ13Ccarb and δ18Ocarb is seen at ∼11.5 kyr BP, probably due to the isotopic effects left behind by the short but severe Younger Dryas (YD) event. After ca. 10.6 14C kyr BP, Zabuye Lake probably closed its surface outflow, due to strong desiccation and drastic climate warming. The Early and Middle Holocene were characterized by unstable climatic conditions with alternating warmer/cooler episodes as indicated by the severe fluctuations of total organic carbon, δ13C and δ18O values. A hypersaline salt lake environment was finally formed at Zabuye after ∼5 14C kyr BP when the mirabilite and halite concentrations steadily increased and became the dominant minerals in the sediments. Severe imbalance of inflow/outflow resulted in the drastic increase of total sulfur, δ13Ccarb and δ18Ocarb values and dominance of halite in the lake since ca. 3.8 kyr BP to present.  相似文献   

5.
To clarify the sources and transformation of NO3 on the Pacific coast of Japan, observations over the continental shelf were conducted during the summer in 2005 and 2006 when the Kuroshio flowed close to and away from the coastal area, respectively. Below the halocline, there are two prominent salinity peaks that originated in two different waters. In the subsurface layer, the salinity maximum (Smax) was indicative of the Kuroshio Water (KW), while the salinity minimum (Smin) in the middle layer at ∼400 m depth was indicative of the North Pacific Intermediate Water (NPIW). δ15NNO3 ranged from 4.1‰ to 5.1‰ with a mean of 4.8±0.4‰ in the deeper water around Smin. Below 50 m depth over the shelf break, δ15NNO3 values (3.1±0.8‰ in 2005 and 4.6±0.3‰ in 2006) clearly increased as contribution of NPIW increased in 2006. On the contrary, subsurface δ15N of NO3 values (−1.1±0.1‰) remained unchanged in both years, although the contribution of the KW to the subsurface water changed significantly. This suggests that the source of NO3 has little effect on the δ15N of NO3 in this layer. The negative δ15N values also coincided with the base of the chlorophyll maximum layer suggesting that these isotopic signals must be evidence of active nitrification in the upper layer.  相似文献   

6.
Nitrogen isotope values (δ15N) of surface sediments in the German Bight of the North Sea exhibit a significant gradient from values of 5–6‰ of the open shelf sea to values above 11‰ in the German Bight. This signal has been attributed to high reactive N (Nr) loading enriched in 15N from rivers and the atmosphere. To better understand the processes that determine the intensity and spatial distribution of δ15N anomalies in surface sediments, and to explore their usefulness for reconstructions of pristine N-input from rivers, we modeled the cycling of the stable isotopes 14N and 15N in reactive nitrogen through the ecosystem of the central and southern North Sea (50.9–57.3°N, 3.4°W−9.2°E) for the year 1995. The 3D-ecosystem model ECOHAM amended with an isotope-tracking module was validated by δ15N data of surface sediments within the model domain. A typical marine value (δ15Nnitrate=5‰) was prescribed for nitrate advected into the model domain at the seaside boundaries, whereas δ15Nnitrate of river inputs were those measured bi-monthly over 1 year; δ15N values of atmospheric deposition were set to 6‰ and 7‰ for NOx and NHy, respectively. The simulated δ15N values of different nitrogen compounds in the German Bight strongly depend on the mass transfers in the ecosystem. These fluxes, summarized in a nitrogen budget for 1995, give an estimate of the impacts of hydrodynamical and hydrological boundary conditions, and internal biogeochemical transformations on the nitrogen budget of the bight.  相似文献   

7.
Stable isotope ratios of S, O and Sr have been measured for active vent materials which were first found and sampled in April 1987 from the Mariana backarc spreading axis at 18°N. Chimneys consisted mostly of barite with a lesser proportion of sulfide minerals such as sphalerite, galena, chalcopyrite and pyrite. Theδ34S values of sphalerite and galena taken from several chimneys and various parts of a chimney showed a narrow range from 2.1 to 3.1‰, suggesting uniform conditions of fluid chemistry during chimney growth. The sulfur isotopic results imply a contribution of hydrogen sulfide reduced from seawater sulfate in the deep hydrothermal reaction zone, considering that fresh glasses of the Mariana Trough basalts haveδ34S= −0.6 ± 0.3‰. Sulfur isotopic compositions of hydrogen sulfide in the high temperature vent fluids (δ34S= 3.6–4.8‰) which are higher than those of the sulfide minerals suggest the secondary addition of hydrogen sulfide partially reduced from entrained seawater SO42− at a basal part of the chimneys. This interpretation is consistent with theδ34S values of barite (21–22‰) that are higher than those of seawater sulfate. The residence time of the entrained SO42− was an order of an hour on a basis of oxygen isotopic disequilibrium of barite. Strontium isotopic variations of barite and vent waters indicated that Sr in barite was mostly derived from the Mariana Trough basalts with a slight contribution from Sr in circulating sea-water, and that 10–20% mixing of seawater with ascending hydrothermal fluids induced precipitation of barite at the sea-floor.  相似文献   

8.
We studied for the first time the intertidal and subtidal gas seepage system in Mocha Island off Central Chile. Four main seepage sites were investigated (of which one site included about 150 bubbling points) that release from 150 to 240 tonnes CH4 into the atmosphere per year. The total amount of methane emitted into the atmosphere is estimated in the order of 800 tonnes per year. The gases emanated from the seeps contain 70% methane, and the stable carbon isotopic composition of methane, δ13C-CH4 averaged −44.4±1.4‰ which indicates a major contribution of thermogenic gas. Adjacent to one of the subtidal seeps, rocky substrates support a diverse community of microbial filaments, macroalgae, and benthic organisms. While stable carbon isotopic compositions of marine benthic organisms indicate a dominant photosynthesis-based food web, those of some hard-substrate invertebrates were in the range −48.8‰ to −36.8‰, suggesting assimilation of methane-derived carbon by some selected taxa. This work highlights the potential subsidy of the trophic web by CH4-C, and that its emission to the atmosphere justifies the need of evaluating the use of methane to support the energy requirements of the local community.  相似文献   

9.
The biogeochemistry of methane in the sediments of Lake Caviahue was examined by geochemical analysis, microbial activity assays and isotopic analysis. The pH in the water column was 2.6 and increased up to a pH of 6 in the deeper sediment pore waters. The carbon isotope composition of CH4 was between − 65 and − 70‰ which is indicative for the biological origin of the methane. The enrichment factor ε increased from − 46‰ in the upper sediment column to more than − 80 in the deeper sediment section suggesting a transition from acetoclastic methanogenesis to CO2 reduction with depth. In the most acidic surface layer of the sediment (pH < 4) methanogenesis is inhibited as suggested by a linear CH4 concentration profile, activity assays and MPN analysis. The CH4 activity assays and the CH4 profile indicate that methanogenesis in the sediment of Lake Caviahue was active below 40 cm depth. At that depth the pH was above 4 and sulfate reduction was sulfate limited. Methane was diffusing with a flux of 0.9 mmol m− 2 d− 1 to the sediment surface where it was probably oxidized. Methanogenesis contributed little to the sediments carbon budget and had no significant impact on lake water quality. The high biomass content of the sediment, which was probably caused by the last eruption of Copahue Volcano, supported high rates of sulfate reduction which probably raised the pH and created favorable conditions for methanogens in deeper sediment layers.  相似文献   

10.
Calculated univariant equilibria and oxygen isotope compositions of silicates and carbonates support the proposal that the “Mottled Zone Event” is a low-pressure (1–25 atm), high-temperature (200° < T < 1300°C) metamorphism of calcareous siliceous sediments in which the thermal energy is provided by combustion of organic matter. δ18O of silicates decreases systematically with increasing metamorphic grade from averages of 18.1‰ in protolith shales, to 16.6‰ in grossular-diopside-zeolite rocks, 15.6‰ in wollastonite and anorthite-diopside-gehlenite-grossular fels, 14.1‰ in spurrite-brownmillerite marbles and 11.7‰ in the highest-grade larnite-gehlenite-brownmillerite assemblages. Decarbonation is the principal mechanism influencing the oxygen isotope compositions. The progressive decrease of δ18O in silicates can be modelled as a Rayleigh distillation of CO2 approximately 16‰ enriched in 18O relative to whole rock assemblages i.e., of initial isotopic composition 8.5‰ heavier than the parent carbonates. The mineral assemblage of one sample with an unusual granoblastic texture is in apparent isotopic equilibrium at a temperature of 540°C.  相似文献   

11.
An 8-m continuous sediment core, approximately 250-ky-old at the bottom, from Academician Ridge in Lake Baikal, has been analyzed for the stable isotopes of carbon, nitrogen and sulfur, in order to study the paleoclimatic and paleobiological changes that occurred in the Eurasian continental interior. These isotopic changes are closely related to changes in vertical lake-water circulation between glacial and interglacial periods. Sedimentary organic carbon in cool periods is more enriched in 13C (−23.8‰ on average) than that in warm periods (−27.0‰ on average). The 13C-enrichment of organic carbon suggests a decrease of land-derived organic matter influx to the lake, less precipitation, and loss of terrestrial vegetation around Lake Baikal in cool periods. Pyrite in high total sulfur/total organic carbon (TS/TOC) layers shows strong depletion in 34S (−20.8‰ to −32.4‰) during climate transitions from glacial to interglacial periods at the beginning of oxygen isotope stages (OIS) 1, 5 and 7. The 34S-depleted pyrite indicates augmentation of dissimilatory sulfate reduction by sulfate reducing bacteria (SRB) at the sediment-water interface. Enhancement of aqueous sulfate concentrations and limitation of oxygen circulation to the surface sediments might also occur in the climate transition periods. The δ15N values of total nitrogen increase abruptly by ∼2‰ just after the δ34S negative peaks, which may result from low nutrient concentrations in the euphotic zone associated with water circulation changes in Lake Baikal.  相似文献   

12.
Nanophase Fe metal grains (np-Fe°) are a product of space weathering, formed by processes related to meteorite impacts, and solar-wind sputtering on airless planetary bodies, such as the Moon. Iron isotopes of lunar soils are fractionated during these processes, and the np-Fe° in the finest (<10 μm), mature, size fractions of the soil become enriched in heavier isotopes by ∼0.3‰ in 56Fe/54Fe in comparison to the bulk rocks (0.03±0.05‰), from which the soil was formed. A positive correlation of δ56Fe values with the soil maturity index, IS/FeO, suggests that the high δ56Fe values reflect production of nanophase Fe metal that is produced by space weathering that occurs on airless planetary bodies. Furthermore, the enrichment of δ56Fe in the smallest size fraction of lunar soils supports a model for creation of np-Fe° through vapor deposition induced by micrometeorites, as well as that by solar-wind sputtering.  相似文献   

13.
Immediately before the extinction of the end‐Guadalupian (Middle Permian; ca 260 Ma), a significant change to the global carbon cycle occurred in the superocean Panthalassa, as indicated by a prominent positive δ13C excursion called the Kamura event. However, the causes of this event and its connection to the major extinction of marine invertebrates remain unclear. To understand the mutual relationships between these changes, we analyzed the sulfur isotope ratio of the carbonate‐associated sulfate (CAS) and HCl‐insoluble residue, as well as the carbon isotope ratio of bulk organic matter, for the Middle‐Upper Permian carbonates of an accreted mid‐oceanic paleo‐atoll complex from Japan, where the Kamura event was first documented. We detected the following unique aspects of the stable carbon and sulfur isotope records. First, the extremely high δ13C values of carbonate (δ13Ccarb) over +5 ‰ during the Capitanian (late Guadalupian) were associated with large isotopic differences between carbonate and organic matter (Δ13C = δ13Ccarb ? δ13Corg). We infer that the Capitanian Kamura event reflected an unusually large amount of dissolved organic matter in the expanded oxygen minimum zone at mid‐depth. Second, the δ34S values of CAS (δ34SCAS) were inversely correlated with the δ13Ccarb values during the Capitanian to early Wuchiapingian (early Late Permian) interval. The Capitanian trend may have appeared under increased oceanic sulfate conditions, which were accelerated by intense volcanic outgassing. Bacterial sulfate reduction with increased sulfate concentrations in seawater may have stimulated the production of pyrite that may have incorporated iron in pre‐existing iron hydroxide/oxide. This stimulated phosphorus release, which enhanced organic matter production and resulted in high δ13Ccarb. Low δ34SCAS values under high sulfate concentrations were maintained and the continuous supply of sulfate cannot by explained only by the volcanic eruption of the Emeishan Trap, which has been proposed as a cause of the extinction. The Wuchiapingian δ34SCAS–δ13Ccarb correlation, likely related to low sulfate concentration, may have been caused by the removal of oceanic sulfate through the massive evaporite deposition.  相似文献   

14.
A new oxygen isotope record is reported from a stalagmite collected in the Argentarola Cave located on the Tyrrhenian coast of Italy. As shown from observations and numerical modeling of δ18O in modern precipitation, the recorded δ18O variability for this zone is dominated by the amount of precipitation (so-called ‘amount effect’). The δ18O profile measured in the stalagmite is characterized by a prominent negative excursion (ca. 2-3‰) between 180 and 170 kyr BP. This paleoclimatic feature is interpreted as being due to a relatively wet period which occurred during the penultimate glacial period, more precisely, during Marine Isotope Stage 6.5. This pluvial phase is shown to correspond chronologically to the deposition of the sapropel event 6 (S6). Although this particular sapropel event occurred during a cold phase, the δ18O excursion is similar to those corresponding to other sapropels (S4, S3 and S2). The evidence for humid conditions during S6 in the western Mediterranean basin agrees with previous studies based on deep-sea sediment cores. Taken collectively, the data suggest that during sapropel events dilution of ocean surface waters was not restricted to the output of the river Nile but was rather widespread over the entire Mediterranean Sea due to increased rainfall.  相似文献   

15.
Despite the great potential of peat bogs as climatic archives, to date only few studies have focused on the climatic controls on cellulose isotopic composition in modern bog plants. This study attempts to calibrate plant-climate relationships by sampling a set of modern plant species (both vascular plants and mosses) and bog surface waters along an altitude transect in Switzerland. Isotopic analyses of water samples show that the δ18O-values of surface bog waters follow the trend of precipitation despite significant scatter in the data set. Detailed sampling of surface waters within one bog shows that δ18O-values vary widely and are closely related to the micro-topography of the bog surface. More enriched 18O/16O ratios in water samples collected from small raised hummocks than the ones collected from hollows are documented in both horizontal and vertical profiles. A δ18O-δD plot indicates that the process leading to the isotopic enrichment of the uppermost surface waters is evaporation, greater above Sphagnum covered hummocks than above open pools. To investigate the implications of such high variability of source water for plant α-cellulose δ18O-values, a detailed study of both surface water and α-cellulose δ18O-values within one site is conducted. The large δ18O variability observed in surface waters is found to be considerably smoothed in α-cellulose (by a factor of 5-10 depending on the plant species). This indicates that the water used by plant photosynthetic processes reflects the isotopic composition of the average annual precipitation. This points to a source water level for plants of a few decimeters where the variations are smaller than at the air-water interface. The response of the α-cellulose δ18O to the environmental gradient along the altitude transect varies considerably from species to species. For most of the species studied, the δ18O-values decrease with altitude, following the trends of δ18O-values in precipitation and in surface water samples. Some species, the cotton sedge Eriophorum vaginatum and the moss Sphagnum capillifolium, show statistically significant δ18O relationships to an altitude of −1.8‰/km and −2.9‰/km respectively. However, some other plant species, Calluna vulgaris, Vaccinium uliginosum, Andromeda poliflora, Carex pauciflora, Sphagnum cuspidatum and Sphagnum magellanicum, do not, or only partially, reflect changes in climatic parameters associated with an altitude increase. Furthermore, changes in relative humidity, which are not correlated with altitude, are found to explain a large part of the variability in δ18O-values for the sedge Carex pauciflora and the moss Sphagnum cuspidatum. Therefore, this study confirms the importance of species-specific studies when interpreting 18O/16O ratios of macrofossils along a fossil peat sequence as a record of past climate changes. Our study allows to extend the mechanistic model that isotopically links source water and cellulose to the physiological specificities of sedges and mosses. A comparison of the modeled and calculated net biological fractionation factors for Eriophorum vaginatum and Sphagnum capillifolium reveals that these two species appear to have a more homogeneous leaf reservoir than trees.  相似文献   

16.
Macroalgae blooms of Gracilaria vermiculophylla, Hypnea spinella and Spyridia filamentosa have been found in coastal lagoons in the SE Gulf of California. Agriculture, livestock, shrimp and poultry farms and sewage contribute anthropogenic nitrogen to the systems. The δ15N of these sources, water column and macroalgae were studied in order to identify the N supply for macroalgae blooms. δ15N of three species of macroalgae (4.3-13.6‰) were enriched compared to the water column ( 3.7-6.8‰), probably because of fractioning from the macroalgae. δ15N of POM (1.4-10.3‰) was similar to the water column but the relationship was unclear. Depending on the site, macroalgae showed different δ15N values since some sites receive more or less influence from one given source of the associated watershed, which is reflected in the different δ15N values of the macroalgae of the same system and in the relative contributions of the sources.  相似文献   

17.
To improve our knowledge about the geochemical and environmental aftermath of Neoproterozoic global glaciations, we analyzed stable isotopes (δ13C, δ18O, δ34S) and elemental concentrations (Ca, Mg, S, Sr, Fe, and Mn) of the ~ 10-m-thick Zhamoketi cap dolostone atop the Tereeken diamictite in the Quruqtagh area, eastern Chinese Tianshan. Available chemostratigraphic data suggest that the Tereeken diamictite is probably equivalent to the Marinoan glaciation. Our new data indicate that organic and carbonate carbon isotopes of the Zhamoketi cap dolostone show little stratigraphic variations, averaging ? 28.2‰ and ? 4.6‰, respectively. In contrast, sulfur isotopes show significant stratigraphic variations. Carbonate associated sulfate (CAS) abundance decreases rapidly in the basal cap dolostone and δ34SCAS composition varies between + 9‰ and + 15‰ in the lower 2.5 m. In the overlying interval, CAS abundance remains low while δ34SCAS rises ~ 5‰ and varies more widely between + 10‰ and + 21‰. The range of δ34Spy of the cap dolostone overlaps with that of δ34SCAS, but direct comparison shows that δ34Spy is typically greater than δ34SCAS measured from the same samples. Hypotheses to explain the observations must account for both the remarkable sulfur isotope enrichment of pyrites and the inverse fractionation. We propose that CAS and pyrite were derived from two isotopically distinct reservoirs in a chemically stratified basin or a basin with a sulfate minimum zone. In this model, CAS was derived from shallow, oxic surface waters with moderate sulfate concentration and depleted in 34S due to the post-glacial influx of sulfur from continental weathering. In contrast, pyrite was derived from anoxic bottom waters (or a sulfate minimum zone) with low sulfate concentration and 34S enrichment due to long-term syn-glacial sulfate reduction. The rapid shift in CAS abundance and sulfur isotope composition within the cap dolostone is interpreted to reflect the mixing of the two reservoirs after initial deglaciation. Comparison with other post-Marinoan cap carbonates shows significant spatial heterogeneity in δ34SCAS, which together with strong temporal variation in δ34SCAS, points to generally low sulfate concentrations in post-Marinoan oceans.  相似文献   

18.
Green macroalgae bioassays were used to determine if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in a small harbor. Opportunistic green macroalgae (Ulva spp.) were collected, cultured under nutrient depleted conditions and characterized with regard to N content and δ15N. Samples of algae were used in controlled incubations to evaluate the direction of isotope shift from exposure to CSWWE. Algae samples exposed to CSWWE exhibited an increase of 1-2.5‰ in δ15N values indicating that the CSWWE had an enriched isotope signature. In contrast, algae samples exposed to field conditions exhibited a significant decrease in the observed δ15N indicating that a light N source was used. Isotopically light, riverine nitrogen derived from N2-fixing trees in the watershed may be a N source utilized by algae. These experiments indicate that the δ15N CSWWE signature was not detectable under the CSWWE loading conditions of this experiment.  相似文献   

19.
The stable isotope ratios of groundwater sulfate (34S/32S, 18O/16O) are often used as tracers to help determine the origin of groundwater or groundwater contaminants. In agricultural watersheds, little is known about how the increased use of sulfur as a soil amendment to optimize crop production is affecting the isotopic composition of groundwater sulfate, especially in shallow aquifers. We investigated the isotopic composition of synthetic agricultural fertilizers and groundwater sulfate in an area of intensive agricultural activity, in Ontario, Canada. Groundwater samples from an unconfined surficial sand aquifer (Lake Algonquin Sand Aquifer) were analyzed from multi-level monitoring wells, riverbank seeps, and private domestic wells. Fertilizers used in the area were analyzed for sulfur/sulfate content and stable isotopic composition (δ18O and/or δ34S). Fertilizers were isotopically distinct from geological sources of groundwater sulfate in the watershed and groundwater sulfate exhibited a wide range of δ34S (−6.9 to +20.0‰) and δ18O (−5.0 to +13.7‰) values. Quantitative apportionment of sulfate sources based on stable isotope data alone was not possible, largely because two of the potential fertilizer sulfate sources had an isotopic composition on the mixing line between two natural geological sources of sulfate in the aquifer. This study demonstrates that, when sulfate isotope analysis is being used as a tracer or co-tracer of the origin of groundwater or of contaminants in groundwater, sulfate derived from synthetic fertilizer needs to be considered as a potential source, especially when other parameters such as nitrate independently indicate fertilizer impacts to groundwater quality.  相似文献   

20.
The German Bight/SE North Sea is considered a hot-spot of river-induced eutrophication, but the scarce observational data of river nitrate loads prior to the 1970s complicate the assessment of target conditions for environmental management and legislation. Stable nitrogen isotope ratios (δ15N) in sediment records can be used to decipher historical river nitrate contributions. To better constrain pre-1970s conditions, we determined δ15N in archive sediment samples (1950–1969) and dated cores from the Helgoland depositional area. We also modeled the δ15N in past situations (1960 and 1860) using an N-isotope-tracking ecosystem model. The modeled spatial distribution of δ15N in sediments for 1960 conditions and the observed spatial pattern of δ15N in archive sediment samples (1950–1969) represent a period of moderate eutrophication. The modeled spatial distribution of δ15N in sediments for 1860 conditions (pre-industrial) showed a moderate δ15N gradient from the Elbe river mouth (δ15N<4‰) to the open sea (δ15N∼5‰). This pattern contrasts with the δ15N pattern in modern surface sediments, which exhibits a steep and inverted δ15N gradient from the Elbe river mouth (δ15N>9‰) to the open sea (δ15N<7‰). Modeled δ15N for 1860 conditions are consistent with δ15N values observed in dated sediment cores that span the last 900 years. Value of δ15N in sediment cores increased from approximately 1860 to 2000 by 2.5‰. The increasing trend reflects changes in the abundance and isotopic composition of riverine nitrate loads caused by anthropogenic activities. Sensitivity tests suggest that loads and isotopic ratios of nitrogen forms other than nitrate (ammonium and organic nitrogen) have minor impact on the modeled surface sediments, despite their higher abundance in the riverborne loads in the past. Our results suggest that eutrophication of the German Bight predates the 1960 period of documented rapidly increasing river loads. Pre-industrial levels of δ15N modeled with 28% of the modern annual (1990–1999) atmospheric loads and 10% of the modern annual river loads agree best with levels of δ15N (∼6‰) observed in sediments of the cores dated to 1860.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号