首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Investigation of the rheology of magmas at high crystal concentrations by experimental means has proved problematic. An alternative approach is to study textures of igneous rocks that not only preserve evidence of the kinematics of magma flow, such as flow direction, but can also preserve evidence of rheology. Flow textures in multiply intruded trachyte dykes on Fraser Island, eastern Australia record evidence of dilatant flow during solidification. This conclusion is reached by interpretation of microscopic ductile shear zones that disrupt the groundmass of aligned feldspar laths. Detailed three-dimensional investigation demonstrates that the dihedral angle between conjugate micro-shear zones is approximately 65°. This conjugate angle is equivalent to that observed in dilatant granular materials such as sand. Dilatant behaviour is synonymous with shear thickening rheology indicating that the magma flow is time-dependent and resists high flow rates. Some of the dykes contain autobrecciation fragments that may represent localities where the ductile flow rate threshold was exceeded. Newtonian or pseudoplastic (shear thinning) rheology of crystal-poor magmas must progressively give way to shear thickening rheology during cooling and increasing crystal concentration.  相似文献   

2.
The 1973 eruption of Eldfell volcano, Iceland, appears to have been a short, simple event, but textural and geochemical evidence suggest that it may have had three different magmatic components. The first-erupted fissure magmas were chemically evolved, rich in plagioclase (∼ 18%) and had shallow, straight crystal size distribution (CSD) curves. The early lavas were less evolved chemically, had lower plagioclase contents (∼ 13%) and steeper, slightly concave up CSDs. The late lavas were chemically similar to the early lavas, but even richer in plagioclase than the initial magmas (∼ 24%) and had the steepest CSDs. There was no chemical evidence for plagioclase fractionation, but compositional diversity could be produced by clinopyroxene fractionation which must have occurred at depth. We propose that the eruption started with old, coarsened (Ostwald ripened) magma left over from a previous eruption, possibly that which produced Surtsey Island ten years earlier. The early flows may be mixtures of small amounts of this old magma with a new, low crystallinity, uncoarsened magma or a completely new magma. The late flows are another new magma from depth, chemically similar to the early flows, but which has grown plagioclase under increasing saturation (undercooling) perhaps during its ascent. All three magmatic components may have originated from the same parent, but had varying degrees of clinopyroxene fractionation, plagioclase nucleation and growth, and coarsening.  相似文献   

3.
Garnet grains in Sanbagawa quartz eclogites from the Besshi region, central Shikoku commonly show a zoning pattern consisting of core and mantle/rim that formed during two prograde stages of eclogite and subsequent epidote–amphibolite facies metamorphism, respectively. Garnet grains in the quartz eclogites are grouped into four types (I, II, III, and IV) according to the compositional trends of their cores. Type I garnet is most common and sometimes coexists with other types of garnet in a thin section. Type I core formed with epidote and kyanite during the prograde eclogite facies stage. The inner cores of types II and III crystallized within different whole‐rock compositions of epidote‐free and kyanite‐bearing eclogite and epidote‐ and kyanite‐free eclogite at the earlier prograde stage, respectively. The inner core of type IV probably formed during the pre‐eclogite facies stage. The inner cores of types II, III, and IV, which formed under different P–T conditions of prograde metamorphism and/or whole‐rock compositions, were juxtaposed with the core of type I, probably due to tectonic mixing of rocks at various points during the prograde eclogite facies stage. After these processes, they have shared the following same growth history: (i) successive crystal growth during the later stage of prograde eclogite facies metamorphism that formed the margin of the type I core and the outer cores of types II, III, and IV; (ii) partial resorption of the core during exhumation and hydration stage; and (iii) subsequent formation of mantle zones during prograde metamorphism of the epidote–amphibolite facies. The prograde metamorphic reactions may not have progressed under an isochemical condition in some Sanbagawa metamorphic rocks, at least at the hand specimen scale. This interpretation suggests that, in some cases, material interaction promoted by mechanical mixing and fluid‐assisted diffusive mass transfer probably influences mineral reactions and paragenesis of high‐pressure metamorphic rocks.  相似文献   

4.
The Monte Guardia rhyolitic eruption (~22 ka, Lipari, Aeolian Islands, Italy) produced a sequence of pyroclastic deposits followed by the emplacement of lava domes. The total volume of dense magma erupted was nearly 0.5 km3. The juvenile clasts in the pyroclastic deposits display a variety of magma mixing evidence (mafic magmatic enclaves, streaky pumices, mineral disequilibria and heterogeneous glass composition). Petrographic, mineralogical and geochemical investigations and melt inclusion studies were carried out on the juvenile clasts in order to reconstruct the mixing process and to assess the pre-eruptive chemico-physical magmatic conditions. The results suggest that the different mingling and mixing textures were generated during a single mixing event between a latitic and a rhyolitic end member. A denser, mixed magma was first erupted, followed by a larger volume of an unmixed, lighter rhyolitic one. This compositional sequence is the reverse of what would be expected from the tapping of a zoned magma chamber. The Monte Guardia rhyolitic magma, stored below 200 MPa, was volatile-rich and fluid-saturated, or very close to this, despite its relatively low explosivity. In contrast to previous interpretations, there exists the possibility that the rhyolite could rise and erupt without the trigger of a mafic input. The entire data collected are compatible with two possible mechanisms that would generate a reversely zoned sequence: (1) the occurrence of thermal instabilities in a density stratified, salic to mafic magma chamber and (2) the intrusion of rising rhyolite into a shallower mafic sill/dike.  相似文献   

5.
The Pollara tuff-ring resulted from two explosive eruptions whose deposits are separated by a paleosol 13 Ka old. The oldest deposits (LPP, about 0.2 km3) consist of three main fall units (A, B, C) deposited from a subplinian column whose height (7–14 km) increased with time from A to C, as a consequence of the increased magma discharge rate during the eruption (1–8x106 kg/s). A highly variable juvenile population characterizes the eruption. Black, dense, highly porphyritic, mafic ejecta (SiO2=50–55%) almost exclusively form A deposits, whereas grey, mildly vesiculated, mildly porphyritic pumice (SiO2=56–67%) and white, highly vesiculated, nearly aphyric pumice (SiO2=66–71%) predominate in B and C respectively. Mafic cumulates are abundant in A, while crystalline lithic ejecta first appear in B and increase upward. The LPP result from the emptying of an unusual and unstable, compositionally zoned, shallow magma chamber in which high density mafic melts capped low density salic ones. Evidence of the existence of a short crystal fractionation series is found in the mafic rocks; the andesitic pumice results from complete blending between rhyolitic and variously fractionated mafic melts (salic component up to 60 wt%), whereas bulk dacitic compositions mainly result from the presence of mafic xenocrysts within rhyolitic glasses. Viscosity and composition-mixing diagrams show that blended liquids formed when the visosities of the two end members had close values. The following model is suggested: 1. A rhyolitic magma rising through the metamorphic basement enterrd a mafic magma chamber whose souter portions were occupied by a highly viscous, mafic crystal mush. 2. Under the pressure of the rhyolitic body the nearly rigid mush was pushed upwards and mafic melts were squeezed against the walls of the chamber, beginning roof fracturing and mingling with silicic melts. 3. When the equilibrium temperature was reached between mafic and silicic melts, blended liquids rapidly formed. 4. When fractures reached the surface, the eruption began by the ejection of the mafic melts and crystal mush (A), followed by the emission of variously mingled and blended magmas (B) and ended by the ejection of nearly unmixed rhyolitic magma (C).  相似文献   

6.
A core drilled within the northern part of the city of Napoli has offered the unique opportunity to observe in one single sequence the superposition of the four pyroclastic flow units emplaced during the Campanian Ignimbrite (CI) eruption. Such a stratigraphic succession has never been encountered before in natural or in man made exposures. Therefore the CI sequence was reconstructed only on the basis of stratigraphic correlations and compositional data (in literature). The occurrence of four superposed CI flows, together with all the data available (in literature) allowed us to better constrain the chemical stratigraphy of the deposit and the compositional structure of the CI magma chamber. The CI magma chamber includes two cogenetic magma layers, separated by a compositional gap. The upper magma layer was contaminated by interaction with radiogenic fluids. The two magma layers were extruded either individually or simultaneously during the course of the eruption. In the latter case they produced a hybrid magma. But no evidence of input of new geochemically and isotopically distinct magma batches just prior or during the eruption has been found. Comparison with the exposed CI deposits has permitted reconstruction of variable eruption phases and related magma withdrawal and caldera collapse episodes. The eruption was likely to have began with phreatomagmatic explosions followed by the formation of a sustained plinian eruption column fed by the simultaneous extraction from both magma layers. Towards the end of this phase the upward migration of the fragmentation surface and the decrease in magma eruption rate and/or activation of fractures formed an unstable pulsating column that was fed only by the most-evolved magma layer. This plinian phase was followed by the collapse of the eruption column and the beginning of caldera formation. At this stage expanded pyroclastic flows fed by the upper magma layer in the chamber generated. During the following major caldera collapse episode, the maximum mass discharge rate was reached and both magma layers were tapped, generating expanded pyroclastic flows. Towards the end of the eruption, only the deeper and less differentiated magma layer was tapped producing more concentrated pyroclastic flows that traveled short distances.  相似文献   

7.
An integrated approach for addressing the problem of synthesizing artificial seismic accelerograms compatible with a given displacement design/target spectrum is presented in conjunction with aseismic design applications. Initially, a stochastic dynamics solution is used to obtain a family of simulated non-stationary earthquake records whose response spectrum is on the average in good agreement with the target spectrum. The degree of the agreement depends significantly on the adoption of an appropriate parametric evolutionary power spectral form, which is related to the target spectrum in an approximate manner. The performance of two commonly used spectral forms along with a newly proposed one is assessed with respect to the elastic displacement design spectrum defined by the European code regulations (EC8). Subsequently, the computational versatility of the family of harmonic wavelets is employed to modify iteratively the simulated records to satisfy the compatibility criteria for artificial accelerograms prescribed by EC8. In the process, baseline correction steps, ordinarily taken to ensure that the obtained accelerograms are characterized by physically meaningful velocity and displacement traces, are elucidated. Obviously, the presented approach can be used not only in the case of the EC8, for which extensive numerical results/examples are included, but also for any code provisions mandated by regulatory agencies. In any case, the presented numerical results can be quite useful in any aseismic design process dominated by the EC8 specifications.  相似文献   

8.
The August 1991 eruptions of Hudson volcano produced ~2.7 km3 (dense rock equivalent, DRE) of basaltic to trachyandesitic pyroclastic deposits, making it one of the largest historical eruptions in South America. Phase 1 of the eruption (P1, April 8) involved both lava flows and a phreatomagmatic eruption from a fissure located in the NW corner of the caldera. The paroxysmal phase (P2) began several days later (April 12) with a Plinian-style eruption from a different vent 4 km to the south-southeast. Tephra from the 1991 eruption ranges in composition from basalt (phase 1) to trachyandesite (phase 2), with a distinct gap between the two erupted phases from 54–60 wt% SiO2. A trend of decreasing SiO2 is evident from the earliest part of the phase 2 eruption (unit A, 63–65 wt% SiO2) to the end (unit D, 60–63 wt% SiO2). Melt inclusion data and textures suggest that mixing occurred in magmas from both eruptive phases. The basaltic and trachyandesitic magmas can be genetically related through both magma mixing and fractional crystallization processes. A combination of observed phase assemblages, inferred water content, crystallinity, and geothermometry estimates suggest pre-eruptive storage of the phase 2 trachyandesite at pressures between ~50–100 megapascal (MPa) at 972 ± 26°C under water-saturated conditions (log fO2 –10.33 (±0.2)). It is proposed that rising P1 basaltic magma intersected the lower part of the P2 magma storage region between 2 and 3 km depth. Subsequent mixing between the two magmas preferentially hybridized the lower part of the chamber. Basaltic magma continued advancing towards the surface as a dyke to eventually be erupted in the northwestern part of the Hudson caldera. The presence of tachylite in the P1 products suggests that some of the magma was stalled close to the surface (<0.5 km) prior to eruption. Seismicity related to magma movement and the P1 eruption, combined with chamber overpressure associated with basalt injection, may have created a pathway to the surface for the trachyandesite magma and subsequent P2 eruption at a different vent 4 km to the south-southeast. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
We report the zircon Hf-O isotopic data for mafic enclaves from the Taihang Yanshanian intermediate to felsic plutons, and use them, along with the petrological, whole-rock chemical and Nd-Sr isotopic data, to reveal the petrogenesis of mafic enclaves. Mafic enclaves show magmatic textures and are finer-grained than host rocks. In places they are highly elongated due to stretching within the partially crystallized, convective felsic magma, but show no solid-state deformation. These data suggest that mafic e...  相似文献   

10.
 New and detailed petrographic observations, mineral compositional data, and whole-rock vs glass compositional trends document magma mixing in lavas erupted from Kilauea's lower east rift zone in 1960. Evidence includes the occurrence of heterogeneous phenocryst assemblages, including resorbed and reversely zoned minerals in the lavas inferred to be hybrids. Calculations suggest that this mixing, which is shown to have taken place within magma reservoirs recharged at the end of the 1955 eruption, involved introduction of four different magmas. These magmas originated beneath Kilauea's summit and moved into the rift reservoirs beginning 10 days after the eruption began. We used microprobe analyses of glass to calculate temperatures of liquids erupted in 1955 and 1960. We then used the calculated proportions of stored and recharge components to estimate the temperature of the recharge components, and found those temperatures to be consistent with the temperature of the same magmas as they appeared at Kilauea's summit. Our studies reinforce conclusions reached in previous studies of Kilauea's magmatic plumbing. We infer that magma enters shallow storage beneath Kilauea's summit and also moves laterally into the fluid core of the East rift zone. During this process, if magmas of distinctive chemistry are present, they retain their chemical identity and the amount of cooling is comparable for magma transported either upward or laterally to eruption sites. Intrusions within a few kilometers of the surface cool and crystallize to produce fractionated magma. Magma mixing occurs both within bodies of previously fractionated magma and when new magma intersects a preexisting reservoir. Magma is otherwise prevented from mixing, either by wall-rock septa or by differing thermal and density characteristics of the successive magma batches. Received: July 10, 1995 / Accepted: October 10, 1995  相似文献   

11.
Geochemical modeling of magma mixing allows for evaluation of volumes of magma storage reservoirs and magma plumbing configurations. A new analytical expression is derived for a simple two-component box-mixing model describing the proportions of mixing components in erupted lavas as a function of time. Four versions of this model are applied to a mixing trend spanning episodes 3–31 of Kilauea Volcano’s Puu Oo eruption, each testing different constraints on magma reservoir input and output fluxes. Unknown parameters (e.g., magma reservoir influx rate, initial reservoir volume) are optimized for each model using a non-linear least squares technique to fit model trends to geochemical time-series data. The modeled mixing trend closely reproduces the observed compositional trend. The two models that match measured lava effusion rates have constant magma input and output fluxes and suggest a large pre-mixing magma reservoir (46±2 and 49±1 million m3), with little or no volume change over time. This volume is much larger than a previous estimate for the shallow, dike-shaped magma reservoir under the Puu Oo vent, which grew from ∼3 to ∼10–12 million m3. These volumetric differences are interpreted as indicating that mixing occurred first in a larger, deeper reservoir before the magma was injected into the overlying smaller reservoir. Electronic Supplementary Material Supplementary material is available at and is accessible for authorized users.  相似文献   

12.
Increasing amount of crystals tends to reduce the mobility of magmas and modifies its elastic characteristics (e.g. [Caricchi, L. et al., 2007. Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth and Planetary Science Letters, 264: 402–419.; Bagdassarov, N., Dingwell, D.B. and Webb, S.L., 1994. Viscoelasticity of crystal- and bubble-bearing rhyolite melts. Physics of the Earth and Planetary Interior, 83: 83–99.]). To quantify the effect of crystals on the elastic properties of magmas the propagation speed of shear and compressional waves have been measured at pressure and temperatures relevant for natural magmatic reservoirs. The measurements have been performed in aggregates at variable particle fractions (? = 0–0.7). The measurements were carried out at 200 MPa confining pressure and temperatures between 300 K and 1273 K (i.e. across the glass transition temperature (Tg) from glass to melt). The specimens were mixtures of a haplogranitic melt containing 5.25 wt.% H2O and variable amounts of sub-spherical alumina particles. Additional experiments were carried out on a sample containing both, crystals and air bubbles. The temperature derivatives of the shear (dVs/dT) and compressional wave (dVp/dT) velocities for pure glass and samples with a crystal fraction of 0.5 are different below and above the glass transition temperature. For a crystal fraction 0.7, only dVp/dT changed above the Tg. In the presence of gas bubbles, Vp and Vs decrease constantly with increasing temperature. The bubble-bearing material yields a lower bulk modulus relative to its shear modulus. The propagation velocities of compressional and shear waves increase non-linearly with increasing crystal fraction with a prominent raise in the range 0.5 < ? < 0.7. The speed variations are only marginally related to the density increase due to the presence of crystals, but are dominantly related to the achievement of a continuous crystal framework. The experimental data set presented here can be utilized to estimate the relative proportions of crystals and melt present in a magmatic reservoir, which, in turn, is one of the fundamental parameters determining the mobility of magma and, consequently, exerting a prime control on the likelihood of an eruption from a sub-surficial magma reservoir.  相似文献   

13.
Intrusive degassing and recycling of degassed and dense magma at depth have been proposed for a long time at Stromboli. The brief explosive event that occurred at the summit craters on 9 January 2005 threw out bombs and lapilli that could be good candidates to illustrate recycling of shallow degassed magma at depth. We present an extensive data set on both the textures and the mineral, bulk rock and glassy matrix chemistry of the “9 Jan” products. The latter have the common shoshonitic–basaltic bulk composition of lavas and scoriae issued from typical strombolian activity. In contrast they differ by the heterogeneous chemistry of their matrix glasses and their crystal textures that testify to crystal dissolution event(s) just prior magma crystallization upon ascent and eruption. Comparison between mineral paragenesis of the natural products and experimental phase equilibria suggest water-induced magma re-equilibration. We propose that mineral dissolution is related to water enrichment of the recycled degassed magma, via differential gas bubble transfer and to some extents its physical mixing with volatile-rich magma blobs. However, all these features illustrate transient processes. Even though evidence of mineral dissolution is ubiquitous at Stromboli, its effect on the bulk magma chemistry is minor because of the subtle interplay between mineral dissolution and crystallization in magmas having comparable bulk chemistry.  相似文献   

14.
 Ruapehu volcano erupted intermittently between September and November 1995, and June and July 1996, producing juvenile andesitic scoria and bombs. The volcanic activity was characterized by small, sequential phreatomagmatic and strombolian eruptions. The petrography and geochemistry of dated samples from 1995 (initial magmatic eruption of 18 September 1995, and two larger events on 23 September and 11 October), and from 1996 (initial and larger eruptions on 17–18 June) suggest that episodes of magma mixing occurred in separate magma pockets within the upper part of the magma plumbing system, producing juvenile andesitic magma by mixing between relatively high (1000–1200  °C)- and low (∼1000  °C)- temperature (T) end members. Oscillatory zoning in pyroxene phenocrysts suggests that repeated mixing events occurred prior to and during the 1995 and 1996 eruptions. Although the 1995 and 1996 andesitic magmas are products of similar mixing processes, they display chronological variations in phenocryst clinopyroxene, matrix glass, and whole-rock compositions. A comparison of the chemistry of magnesian clinopyroxene in the four tephras indicates that, from 18 September through June 1996, the tephras were derived from at least two discrete high-temperature (high-T) batches of magma. Crystals of magnesian clinopyroxene in the 23 September and 11 October tephras appear to be derived from different high-T magma batches. Whole-rock and matrix-glass compositions of all tephras are consistent with their derivation from distinct mixed melts. We propose that, prior to 1995 there was a shallow low-temperature (low-T) magma storage system comprising crystal-rich mush and remnant magma from preceding eruptive episodes. Crystal clots and gabbroic inclusions in the tephras attest to the existence of relict crystal mush. At least two discrete high-T magmas were then repeatedly injected into the mush zone, forming discrete and mixed magma pockets within the shallow system. The intermittent 1995 and 1996 eruptions sequentially tapped these magma pockets. Received: 1 April 1998 / Accepted: 22 December 1998  相似文献   

15.
Vertical mixing in Überlingersee is studied by releasing sulfur hexafluoride (SF6) as a tracer at a central hypolimnic depth of 60 m and measuring its subsequent vertical dispersion over a period of three months. The experiment started with a streaky tracer injection of 1 liter gaseous SF6 (STP) in August 1990. At that time the lake showed a typical strong summer stratification which in a weakened form lasts until November. From the SF6 profiles of fifteen surveys at three sampling sites vertical diffusivitiesK z are calculated compensating internal seiche displacement and horizontal tracer loss. Except of the bottom region no sampling site or time period is marked by significant differences in the hypolimnicK z profile. So vertical mixing in the whole Überlingersee is described by mean diffusivities decreasing from 1.7 cm2/s at 120 m depth to 0.4 cm2/s in 30 m. The minimal value of 0.3 cm2/s in the thermocline region at 20 m depth is only based on observations in autumn. For a strong summer stratification it is certainly lower. The gradient-flux-method for heat was applied to compute a meanK z (T) profile from continuously measured temperature profiles. Significant differences resulting from the two tracers showed, that theK z (T) values are underestimated by up to a factor of 5 if cooling by lateral exchange is neglected. Particularly, internal seiche pumping of colder water from the adjacent Lake Obersee over the separating sill of Mainau into the deep Überlingersee basin is observed in 1990 from August onward, obviously controlling the heat budget below the sill level.  相似文献   

16.
Observations of several hundredexotic seismic phases (herein defined) recorded in and near Long Valley caldera, California, have been cataloged. I discuss here four classes of such seismograms: (1) seismograms with missing S-waves, (2) seismograms with an unusual pre-S phase seen at the single station SLK northwest of the caldera, (3) seismograms with a strong pre-S phase as seen at a number of stations south of the caldera, and (4) a very large, very slow (<2 km/sec) post-S phase seen at the single station Benton. For each of these phenomena, it is not yet possible to pin down an unambiguous and unique theoretical explanation. However, for each, I have presented an explanation, summarizing current thinking, which involves nonplanar reflections/refractions within shallow-crustal anomalous zones which can reasonably be supposed to be magma bodies. If these explanations are even partially pertinent, then the investigation of exotic phases near complex regions like Mammoth Lakes and other volcanic areas is potentially a way to bring precise resolving power on the nature and geometry of local crustal anomalies.  相似文献   

17.
Tauhara dacites have petrographic, geochemical and isotopic characteristics which indicate an origin by magma mixing between andesite and rhyolite. Phenocrysts typically exhibit strong zoning near their rims, are resorbed or display fusion textures. Assemblages are not in equilibrium with host lavas and compositions are bimodal: plagioclase An23–43 and An66–91; orthopyroxene En44–51 and En69–79. Chemical and isotopic trends pass through the bulk compositions of high-alumina andresite and rhyolite which crop out in the vicinity of the dacite domes. Least squares mixing models indicate 40–75% of a rhyolite endmember mixed with andesite can generate the full range of dacite compositions. Subtle geochemical differences between domes suggest that magma mixing may have proceeded as three or more general episodes, each punctuated by several events. These episodes may have catalyzed some of the larger pyroclastic flow eruptions of Taupo Volcanic Zone in the past 50,000 years.  相似文献   

18.
The crystal structure of (Fe_4Cr_4Ni)_9C_4   总被引:1,自引:0,他引:1  
The Luobusha podiform chromite deposit occursin the Luobusha ophiolite exposed at the In-dus-Yarlung Zangbo suture[1]. The wall rocks of chro-mitites are harzburgites. Many mantle minerals werefound in chromitites and harzburgites. Among of them,there are 120 grains of diamond[2], many elementalmetals (mainly Au, Cu, Fe, Ni, Cr, Al, W, Zn, Pb, Sn,Os, Ir, Ru, C, etc.) and their intermetallic compounds.Besides diamond and graphite, the element C isalso combined with Fe, Cr, Ni, Ti and …  相似文献   

19.
Both the 34 value and the total S content of products from Vulture Volcano, Italy are mainly controlled by the separation of S gases, predominantly SO2, from high f O2magmas containing S predominantly as SO 2- 4 . The addition of evaporites to such magmas appears to be a relatively uncommon and limited phenomenon. The total S content of the most primitive product of Vulture Volcano (5600 mg/kg) is very high. The high 34S value of 4 indicates an origin through the partial melting of a mantle containing high S, enriched in 34S of unknown origin.  相似文献   

20.
Inorganic ions and nutrients were measured at different depths of the Xiangxi and Daninghe Rivers to explore the mixing processes of representative bays in the Three Gorges Reservoir (TGR). HCO3 and Ca2+ are the dominant ions. Carbonate weathering is the most important mechanism controlling the ion water chemistry; however, important differences exist between the main channel and its tributaries. Major ion levels in the TGR bays depend on hydrological mixing. Results show that the major ions of Ca2+, Mg2+, Na+, K+, Sr2+, SO42− and Cl show chemically conservative behaviour during transit through the bays of the TGR. This means the ions can be used as tracers in the same way that salinity is used in estuaries to explore behaviour of other non‐conservative elements and to indicate specific source waters. In contrast, nutrients are not conserved in the mixing zone. The mixing of the main channel and tributaries and biological utilization in backwater reaches were the key factor controlling nutrient distributions in Xiangxi and Daninghe Bays. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号