首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Andaman–Sumatra margin displays a unique set‐up of extensional subduction–accretion complexes, which are the Java Trench, a tectonic (outer arc) prism, a sliver plate, a forearc, oceanic rises, inner‐arc volcanoes, and an extensional back‐arc with active spreading. Existing knowledge is reviewed in this paper, and some new data on the surface and subsurface signatures for operative geotectonics of this margin is analyzed. Subduction‐related deformation along the trench has been operating either continuously or intermittently since the Cretaceous. The oblique subduction has initiated strike–slip motion in the northern Sumatra–Andaman sector, and has formed a sliver plate between the subduction zone and a complex, right‐lateral fault system. The sliver fault, initiated in the Eocene, extended through the outer‐arc ridge offshore from Sumatra, and continued through the Andaman Sea connecting the Sagaing Fault in the north. Dominance of regional plate dynamics over simple subduction‐related accretionary processes led to the development and evolution of sedimentary basins of widely varied tectonic character along this margin. A number of north–south‐trending dismembered ophiolite slices of Cretaceous age, occurring at different structural levels with Eocene trench‐slope sediments, were uplifted and emplaced by a series of east‐dipping thrusts to shape the outer‐arc prism. North–south and east–west strike–slip faults controlled the subsidence, resulting in the development of a forearc basins and record Oligocene to Miocene–Pliocene sedimentation within mixed siliciclastic–carbonate systems. The opening of the Andaman Sea back‐arc occurred in two phases: an early (~11 Ma) stretching and rifting, followed by spreading since 4–5 Ma. The history of inner‐arc volcanic activity in the Andaman region extends to the early Miocene, and since the Miocene arc volcanism has been associated with an evolution from felsic to basaltic composition.  相似文献   

2.
2010年智利大地震及历史地震活动与地质构造背景   总被引:2,自引:0,他引:2  
2010年2月27日(当地时间)智利发生了8.8级地震,造成了严重的破坏和损失。该地震是典型的逆冲型地震,处于环太平洋地震带,是Nazca板块以每年8cm的汇聚速率俯冲于南美洲板块之下,使得该板块下部的应力积累到一定程度引发破裂的结果。历史地震分析表明,目前该地区可能开始一个新的大震活跃期,未来3~4年内可能还会发生一次8级以上的地震。  相似文献   

3.
Detailed petrological work was carried out on serpentinized peridotite dredged and sampled by submersible from the southern part of the Mariana Trench to reveal the nature of the mantle wedge in the southern Mariana forearc. The southern part of the Mariana Trench is important in that we should expect to find a transect of a typical island arc structure; that is, from east to west, the Mariana forearc, the Mariana arc proper, the Mariana Trough (active back-arc spreading center), and the West Mariana Ridge (remnant arc). The most striking feature of peridotites from the southern part of the trench is that primary hornblende is a major constituent mineral in many specimens. Thus, the peridotite samples are divided into anhydrous (A-type), hydrous (H-type) and intermediate (I-type) groups. Petrological data suggest that each type of peridotite is a residue of extensive partial melting in the upper mantle. It is argued here that the I- and H-type peridotites were modified from `proto-A-type peridotite' by fluid infiltration. The fluid was enriched in Al, Ti, Fe, and alkalis, and may have caused changes in mineral and bulk chemical compositions of the peridotites. A-type peridotite derives from the `proto-A-type peridotite' directly, without any fluid contamination. After the formation of the `proto-A-, I-, and H-type peridotites', lower-temperature fluids, probably of seawater origin, produced retrograde metamorphism and alteration including serpentinization. The mantle wedge in the southern Mariana forearc was heterogeneous in fluid supply.  相似文献   

4.
We describe the deep structure of the south Colombian–northern Ecuador convergent margin using travel time inversion of wide-angle seismic data recently collected offshore. The margin appears segmented into three contrasting zones. In the North Zone, affected by four great subduction earthquakes during the 20th century, normal oceanic crust subducts beneath the oceanic Cretaceous substratum of the margin underlined by seismic velocities as high as 6.0–6.5 km/s. In the Central Zone the subducting oceanic crust is over-thickened beneath the Carnegie Ridge. A steeper slope and a well-developed, high velocity, Cretaceous oceanic basement characterizes the margin wedge. This area coincides with a gap in significant subduction earthquake activity. In the South Zone, the subducting oceanic crust is normal. The fore-arc is characterized by large sedimentary basins suggesting significant subsidence. Velocities in the margin wedge are significantly lower and denote a different nature or a higher degree of fracturing.

Even if the distance between the three profiles exceeds 150 km, the structural segmentation obtained along the Ecuadorian margin correlates well with the distribution of seismic activity and the neotectonic zonation.  相似文献   


5.
During late Mesozoic subduction of paleo‐Pacific lithospheric plates, numerous gold vein deposits formed in the Dabie–Sulu Belt of east‐central China plus its east‐Asian extensions, and in the Klamath Mountains plus Sierran Foothills of northern California. In eastern Asia, earlier transpression and continental collision at about 305–210 Ma generated a high pressure–ultrahigh pressure orogen, but failed to produce widespread intermediate to felsic magmatism or abundant hydrothermal gold deposits. Similarly in northern California, strike‐slip ± minor transtension–transpression over the interval of about 380–160 Ma resulted in the episodic stranding of oceanic terranes, but generated few granitoid magmas or Au ore bodies. However, for both continental margin realms, nearly head‐on Cretaceous destruction of oceanic lithosphere involved sustained underflow; reaching magmagenic depths of about 100 km, the descending mafic‐ultramafic plates dewatered, producing voluminous calc‐alkaline arc magmas. Ascent of these plutons into the middle and upper crust released CO2 ± S‐bearing aqueous fluids and/or devolatilized the contact‐metamorphosed wall rocks. Such hydrothermal fluids transported gold along fractures and fault zones, precipitating it locally in response to cooling, fluid mixing, and/or reactions with wall rocks of contrasting compositions (e.g. serpentinite, marble). In contrast, where sialic crust was subducted to depths of about 100 km, only minor production of granitoid melts occurred, and few major coeval Au vein deposits formed. The mobilization of precious metal‐bearing fluids in continental margin and island arc environments apparently requires long‐continued, nearly orthogonal descent of oceanic, not continental, lithosphere.  相似文献   

6.
We report a comprehensive morphological, gravity and magnetic survey of the oblique- and slow-spreading Reykjanes Ridge near the Iceland mantle plume. The survey extends from 57.9°N to 62.1°N and from the spreading axis to between 30 km (3 Ma) and 100 km (10 Ma) off-axis; it includes 100 km of one arm of a diachronous ‘V-shaped' or ‘chevron' ridge. Observed isochrons are extremely linear and 28° oblique to the spreading normal with no significant offsets. Along-axis there are ubiquitous, en-echelon axial volcanic ridges (AVRs), sub-normal to the spreading direction, with average spacing of 14 km and overlap of about one third of their lengths. Relict AVRs occur off-axis, but are most obvious where there has been least axial faulting, suggesting that elsewhere they are rapidly eroded tectonically. AVRs maintain similar plan views but have reduced heights nearer Iceland. They are flanked by normal faults sub-parallel to the ridge axis, the innermost of which occur slightly closer to the axis towards Iceland, suggesting a gradual reduction of the effective lithospheric thickness there. Generally, the amplitude of faulting decreases towards Iceland. We interpret this pattern of AVRs and faults as the response of the lithosphere to oblique spreading, as suggested by theory and physical modelling. An axial, 10–15 km wide zone of high acoustic backscatter marks the most recent volcanic activity. The zone's width is independent of the presence of a median valley, so axial volcanism is not primarily delimited by median valley walls, but is probably controlled by the lateral distance that the oblique AVRs can propagate into off-axis lithosphere. The mantle Bouguer anomaly (MBA) exhibits little mid- to short-wavelength variation above a few milliGals, and along-axis variations are small compared with other parts of the Mid-Atlantic Ridge. Nevertheless, there are small axial deeps and MBA highs spaced some 130 km along-axis that may represent subdued third-order segment boundaries. They lack coherent off-axis traces and cannot be linked to Oligocene fracture zones on the ridge flanks. The surveyed chevron ridge is morphologically discontinuous, comprising several parallel bands of closely spaced, elevated blocks. These reflect the surrounding tectonic fabric but have higher fault scarps. There is no evidence for off-axis volcanism or greater abundance of seamounts on the chevron. Free-air gravity over it is greater than expected from the observed bathymetry, suggesting compensation via regional rather than pointwise isostasy. Most of the observed variation along the ridge can be ascribed to varying distance from the mantle plume, reflecting changes in mantle temperature and consequently in crustal thickness and lithospheric strength. However, a second-order variation is superimposed. In particular, between 59°30′N and 61°30′N there is a minimum of large-scale faulting and crustal magnetisation, maximum density of seamounts, and maximum axial free-air gravity high. To the north the scale of faulting increases slightly, seamounts are less common, and there is a relative axial free-air low. We interpret the 59°30′N to 61°30′N region as where the latest chevron ridge intersects the Reykjanes Ridge axis, and suggest that the morphological changes that culminate there reflect a local temperature high associated with a transient pulse of high plume output at its apex.  相似文献   

7.
P. FRYER    H. SUJIMOTO    M. SEKINE    L. E. JOHNSON    J. KASAHARA    H. MASUDA    T. GAMO    T. ISHII    M. ARIYOSHI  & K. FUJIOKA 《Island Arc》1998,7(3):596-607
Until recently it was thought that the volcanoes of the Mariana island arc of the western Pacific terminated at Tracey Seamount at ∼ 14°N immediately west of Guam. Sea floor mapping in 1995 shows a series of large volcanic seamounts stretching westward for nearly 300 km beyond that point. The morphology, spacing, and composition of those sampled are consistent with their having formed as a consequence of eruption of suprasubduction zone arc magmas. The relationships of the volcanoes to the tectonic processes of subduction of the Pacific plate beneath the southern portion of the Mariana convergent plate margin are becoming increasingly clear as new bathymetry and geochemical data are amassed. The volcanoes along this trend that lie closest to Guam are forming where the center of active extension in the back-arc basin intersects the line of arc volcanoes. They develop well-defined rifts that are parallel to rift structures along the extension center, whereas volcanoes of the spreading axis to the north are smaller than the frontal arc volcanoes and tend to form along lineaments. Compositions of lavas from these intersection volcanoes bear some similarities to back-arc basin basalt, but are on the whole well within the range of compositions for Mariana island arc lavas. The Pacific plate subducts nearly orthogonal to the strike of the trench along the southern part of the Mariana system and the distance to the arc line from the trench axis is only ∼ 150 km. Several deep fault-controlled canyons on the inner slope of the southern Mariana trench indicate an enhanced tectonic extension of this plate margin. The presence of these active arc volcanoes and the existence of the orthogonal normal faulting along the southern Mariana forearc supports a model of radial extension for formation of the Mariana Trough, a model previously dismissed because of the lack of evidence of these two major geological features.  相似文献   

8.
The origin of El Chichón volcano is poorly understood, and we attempt in this study to demonstrate that the Tehuantepec Ridge (TR), a major tectonic discontinuity on the Cocos plate, plays a key role in determining the location of the volcano by enhancing the slab dehydration budget beneath it. Using marine magnetic anomalies we show that the upper mantle beneath TR undergoes strong serpentinization, carrying significant amounts of water into subduction. Another key aspect of the magnetic anomaly over southern Mexico is a long-wavelength (∼ 150 km) high amplitude (∼ 500 nT) magnetic anomaly located between the trench and the coast. Using a 2D joint magnetic-gravity forward model, constrained by the subduction PT structure, slab geometry and seismicity, we find a highly magnetic and low-density source located at 40–80 km depth that we interpret as a partially serpentinized mantle wedge formed by fluids expelled from the subducting Cocos plate. Using phase diagrams for sediments, basalt and peridotite, and the thermal structure of the subduction zone beneath El Chichón we find that ∼ 40% of sediments and basalt dehydrate at depths corresponding with the location of the serpentinized mantle wedge, whereas the serpentinized root beneath TR strongly dehydrates (∼90%) at depths of 180-200 km comparable with the slab depths beneath El Chichón (200-220 km). We conclude that this strong deserpentinization pulse of mantle lithosphere beneath TR at great depths is responsible for the unusual location, singularity and, probably, the geochemically distinct signature (adakitic-like) of El Chichón volcano.  相似文献   

9.
The southernmost Mariana forearc stretched to accommodate opening of the Mariana Trough backarc basin in late Neogene time, erupting basalts at 3.7–2.7 Ma that are now exposed in the Southeast Mariana Forearc Rift (SEMFR). Today, SEMFR is a broad zone of extension that formed on hydrated, forearc lithosphere and overlies the shallow subducting slab (slab depth ≤ 30–50 km). It comprises NW–SE trending subparallel deeps, 3–16 km wide, that can be traced ≥ ∼30 km from the trench almost to the backarc spreading center, the Malaguana‐Gadao Ridge (MGR). While forearcs are usually underlain by serpentinized harzburgites too cold to melt, SEMFR crust is mostly composed of Pliocene, low‐K basaltic to basaltic andesite lavas that are compositionally similar to arc lavas and backarc basin (BAB) lavas, and thus defines a forearc region that recently witnessed abundant igneous activity in the form of seafloor spreading. SEMFR igneous rocks have low Na8, Ti8, and Fe8, consistent with extensive melting, at ∼23 ± 6.6 km depth and 1239 ± 40°C, by adiabatic decompression of depleted asthenospheric mantle metasomatized by slab‐derived fluids. Stretching of pre‐existing forearc lithosphere allowed BAB‐like mantle to flow along the SEMFR and melt, forming new oceanic crust. Melts interacted with pre‐existing forearc lithosphere during ascent. The SEMFR is no longer magmatically active and post‐magmatic tectonic activity dominates the rift.  相似文献   

10.
New analyses of He, Ne, Ar and CO2 trapped in basaltic glasses from the Southeast Indian Ridge (Amsterdam-St. Paul (ASP) region) show that ridge magmas degas by a Rayleigh distillation process. As a result, the absolute and relative noble gas abundances are highly fractionated with 4He/40Ar* ratios as high as 620 compared to a production ratio of ∼3 (where 40Ar* is 40Ar corrected for atmospheric contamination). There is a good correlation between 4He/40Ar* and the MgO content of the basalt, suggesting that the amount of gas lost from a particular magma is related to the degree of crystallization. Fractional crystallization forces oversaturation of CO2 because CO2 is an incompatible element. Therefore, crystallization will increase the fraction of gas lost from the magma. The He-Ar-CO2-MgO-TiO2 compositions of the ASP basalts are modeled as a combined fractional crystallization-fractional degassing process using experimentally determined noble gas and CO2 solubilities and partition coefficients at reasonable magmatic pressures (2-4 kbar). The combined fractional crystallization-degassing model reproduces the basalt compositions well, although it is not possible to rule out depth of eruption as a potential additional control on the extent of degassing. The extent of degassing determines the relative noble gas abundances (4He/40Ar*) and the 40Ar*/CO2 ratio but it cannot account for large (>factor 50) variations in He/CO2, due to the similar solubilities of He and CO2 in basaltic magmas. Instead, variations in CO2/3He (≡C/3He) trapped in the vesicles must reflect similar variations in the primary magma. The controls on C/3He in mid-ocean ridge basalts (MORBs) are not known. There are no obvious correlated variations between C/3He and tracers of mantle heterogeneity (3He/4He, K/Ti etc.), implying that the variations in C/3He are not likely to be a feature of the mantle source to these basalts. Mixing between MORB-like sources and more enriched, high 3He/4He sources occurs on and near the ASP plateau, resulting in variable 3He/4He and K/Ti compositions (and many other tracers). Using 4He/40Ar* to track degassing, we demonstrate that mixing systematics involving He isotopes are determined in large part by the extent of degassing. Relatively undegassed lavas (with low 4He/40Ar*) are characterized by steep 3He/4He-K/Ti mixing curves, with high He/Ti ratios in the enriched magma (relative to He/Ti in the MORB magma). Degassed samples (high 4He/40Ar*) on the other hand have roughly equal He/Ti ratios in both end-members, resulting in linear mixing trajectories involving He isotopes. Some degassing of ASP magmas must occur at depth, prior to magma mixing. As a result of degassing prior to mixing, mixing systematics of oceanic basalts that involve noble gas-lithophile pairs (e.g. 3He/4He vs. 87Sr/86Sr or 40Ar/36Ar vs. 206Pb/204Pb) are unlikely to reflect the noble gas composition of the mantle source to the basalts. Instead, the mixing curve will reflect the extent of gas loss from the magmas, which is in turn buffered by the pressure of combined crystallization-degassing and the initial CO2 content.  相似文献   

11.
The relationship between El Niño Southern Oscillation (ENSO) and precipitation along the Peruvian Pacific coast is investigated over 1964–2011 on the basis of a variety of indices accounting for the different types of El Niño events and atmospheric and oceanographic manifestations of the interannual variability in the tropical Pacific. We show the existence of fluctuations in the ENSO/precipitation relationship at decadal timescales that are associated with the ENSO property changes over the recent decades. Several indices are considered in order to discriminate the influence of the two types of El Niño, namely, the eastern Pacific El Niño and the central Pacific El Niño, as well as the influence of large‐scale atmospheric variability associated to the Madden and Julian Oscillation, and of regional oceanic conditions. Three main periods are identified that correspond to the interleave periods between the main climatic transitions over 1964–2011, i.e. the shifts of the 1970s and the 2000s, over which ENSO experiences significant changes in its characteristics. We show that the relationship between ENSO and precipitation along the western coast of Peru has experienced significant decadal change. Whereas El Niño events before 2000 lead to increased precipitation, in the 2000s, ENSO is associated to drier conditions. This is due to the change in the main ENSO pattern after 2000 that is associated to cooler oceanic conditions off Peru during warm events (i.e. central Pacific El Niño). Our analysis also indicates that the two extreme El Niño events of 1982/1983 and 1997/1998 have overshadowed actual trends in the relationship between interannual variability in the tropical Pacific and precipitation along the coast of Peru. Overall, our study stresses on the complexity of the hydrological cycle on the western side of the Andes with regard to its relationship with the interannual to decadal variability in the tropical Pacific. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Soichi  Osozawa 《Island Arc》1993,2(3):142-151
Abstract Normal faults parallel to the trend of an active ridge are formed in the accretionary prism at trench-trench-ridge triple junction, due to continuous spreading of the subducted ridge. Normal faults are observed in the Nabae and Mugi sub-belts, accretionary zones formed by ridge subduction in the Shimanto Belt. Igneous and sedimentary dykes intrude through the previous normal faults. Using these fault and dyke data, intermediate principal axis of stress relating to the normal faulting is determined, and is fitted to the trend of the subducted ridge. Normal faults formed by ridge subduction are useful for plate reconstruction.  相似文献   

13.
14.
The Dalrymple Trough marks part of the transform plate boundary between India and Arabia in the northern Arabian Sea. Oblique extension is presently active across this portion of the boundary at a rate of a few millimetres per year, and seismic reflection profiles across the trough confirm that it is an extensional structure. We present new swath bathymetric and wide-angle seismic data from the trough. The bathymetric data show that the trough is bounded by a single, steep, 3-km-high scarp to the southeast and a series of smaller, en-echelon scarps to the northwest. Wide-angle seismic data show that a typical oceanic crustal velocity structure is present to the northwest, with a crustal thickness of ~ 6 km. There is an abrupt change in crustal thickness and velocity structure at the northwestern edge of the trough, and the trough itself is underlain by 12-km-thick crust interpreted as thinned continental crust. Therefore we infer that Dalrymple Trough is an unusual obliquely extending plate boundary at which continental crust and oceanic crust are juxtaposed. The extensional deformation is focused on a single major fault in the continental lithosphere, but distributed over a region ~ 60 km wide in the oceanic lithosphere.  相似文献   

15.

超慢速扩张的北冰洋Gakkel洋中脊具有六个沿扩张方向的线性基底隆起(本文编号为A-F).这些线性基底隆起在中轴两侧的地球物理场和地壳结构呈现不同程度的非对称性.本文利用Gakkel洋中脊的地形、空间重力异常(FAA)和航空磁力数据,计算了它的扩张速率、剩余地幔布格重力异常(RMBA)、地壳厚度和非均衡地形.根据中轴两侧地形和地壳厚度的对称关系,我们将六个基底隆起分为对称型和非对称型两种类型.整体上,B、D和F区基底隆起在中轴两侧的地形和地壳厚度的非对称幅值(两侧差值的绝对值)较小,其中地形的非对称幅值分别为~157 m、~125 m、~208 m,地壳厚度的非对称幅值分别为~1 km、~0.06 km、~0.3 km;而A、C和E区的非对称幅值较大,其中地形的非对称幅值分别为~510 m、~410 m、~673 m,地壳厚度的非对称幅值分别为~2 km、~2.5 km、~1.1 km.我们因此推断B、D和F区具有相对对称的地壳结构,而A、C和E区具有非对称的地壳结构.根据A、C和E区中轴两侧非均衡地形的对称关系和非对称地形的补偿状态,推测A区的非对称性可能是由岩浆分配不均所导致;而C区和E区的非对称性可能是由构造断层作用使断层下盘向上抬升变薄所导致.我们进一步推测洋中脊走向的改变可能使得构造作用更易集中于基底隆起的一侧.

  相似文献   

16.
The Laccadive Ridge (L-R), trending roughly parallel to the west coast of India, is an intriguing segment of the northernmost Chagos-Laccadive Ridge (C-L-R) system. Although crustal nature and isostatic response of the southern C-L-R is well known, there are no similar studies on the L-R. In the present study, the isostatic response of the lithosphere beneath the L-R is estimated so as to characterize its crustal nature, total crustal as well as effective elastic plate thickness and mode of compensation. Twelve gravity and bathymetry profiles across the ridge were analyzed using linear transfer function and forward model techniques. The observed admittance function within the diagnostic waveband of 250 < λ > 80 km (0.025 < k > 0.080 km−1) fits well with (i) the Airy model whose average crustal thickness (Tc) and density are 17 ± 2 km and 2.7 × 103 kg m−3, respectively, and (ii) the thin plate flexure model of isostasy with an effective elastic plate thickness (Te) of 2–3 km. The estimated average crustal thickness and density are in good agreement with published seismic refraction results over the ridge. The results of the present study support an Airy model of isostasy for the L-R. The low Te value, in view of other published results in the study area, suggests stretched and loaded continental lithosphere of the L-R during the evolution of the western continental margin of India.  相似文献   

17.
Abstract   The southern margin of the Caribbean Plate is well exposed in the Cordillera de la Costa of northern Venezuela, where amalgamated terranes consisting of continental and oceanic units occur. In the Cordillera de la Costa, metamorphosed oceanic units crop out along the coast near Caracas. Among them, the Tacagua unit is characterized by metaserpentinites and metabasites showing mid-oceanic ridge basalt geochemical affinity. These lithologies, representative of a disrupted ophiolite sequence, are associated with metasediments consisting of calcschists alternating with pelitic and psammitic schists, whose protoliths were probably represented by deep-sea hemipelagic and turbiditic deposits. In the Tacagua unit, a polyphase deformation history has been reconstructed, consisting of four folding phases from D1 to D4 . Geological setting suggests an involvement of the Tacagua unit in the processes connected with a subduction zone. The following deformations (from D2 to D4 ) observed in the field might be related to the exhumation history of the Tacagua unit. The late deformation history consists of an alternation of deformation phases characterized by displacement parallel ( D2 and D4 phases) and normal ( D3 phase) to plate boundary between the Caribbean and South America Plates. All lines of geological evidence suggest that the whole evolution of the Tacagua unit was acquired in a setting dominated by oblique convergence, in which alternation of strike-slip and pure compressional or pure extensional tectonics occurred through time.  相似文献   

18.

西南印度洋中脊(SWIR)增生的洋壳面积仅占印度洋的15%左右,但其具有比东南印度洋中脊和西北印度洋中脊更悠久而复杂的演化历史.基于已有的地质、地球物理和地球化学等资料,系统总结了SWIR的地质构造特征,并讨论了SWIR的演化过程、洋脊地幔的不均一性、洋脊周边海底高原成因等核心问题.SWIR地形中段高、东西两段低,空间重力异常基本与地形变化一致.按转换断层一级边界可将SWIR划分为20个一级段.SWIR的磁异常条带呈现两端渐进式分布和中段带状分布特征,对应洋脊的三期演化历史.SWIR的地幔源区极不均一,尤其是中新元古代造山带根部集中拆离的中段.源区地幔的不均一性与大陆裂解和洋脊演化过程密切相关.SWIR的东端与西北印度洋中脊和东南印度洋中脊的邻近洋脊段具有地球化学亲缘性,西端与大西洋中脊和南美洲—南极洲洋中脊的邻近洋脊段具有地球化学亲缘性,这与SWIR的渐近式扩张有关.SWIR周边海底高原普遍具有较大的地壳厚度,其成因除了陆壳基底之外,可能与热点火山作用、热点-洋脊相互作用或热点-三联点相互作用有关,目前尚未形成统一的认识.SWIR的形成演化及其作用域内的熔融异常(如海底高原)是冈瓦纳大陆裂解、残留岩石圈地幔、软流圈地幔和深部地幔热柱物质共同作用的结果.了解SWIR的演化过程对揭示冈瓦纳大陆的裂解过程和印度洋的演化具有重要意义.

  相似文献   

19.
西南印度洋中脊(SWIR)增生的洋壳面积仅占印度洋的15%左右,但其具有比东南印度洋中脊和西北印度洋中脊更悠久而复杂的演化历史.基于已有的地质、地球物理和地球化学等资料,系统总结了SWIR的地质构造特征,并讨论了SWIR的演化过程、洋脊地幔的不均一性、洋脊周边海底高原成因等核心问题.SWIR地形中段高、东西两段低,空间重力异常基本与地形变化一致.按转换断层一级边界可将SWIR划分为20个一级段.SWIR的磁异常条带呈现两端渐进式分布和中段带状分布特征,对应洋脊的三期演化历史.SWIR的地幔源区极不均一,尤其是中新元古代造山带根部集中拆离的中段.源区地幔的不均一性与大陆裂解和洋脊演化过程密切相关.SWIR的东端与西北印度洋中脊和东南印度洋中脊的邻近洋脊段具有地球化学亲缘性,西端与大西洋中脊和南美洲—南极洲洋中脊的邻近洋脊段具有地球化学亲缘性,这与SWIR的渐近式扩张有关.SWIR周边海底高原普遍具有较大的地壳厚度,其成因除了陆壳基底之外,可能与热点火山作用、热点-洋脊相互作用或热点-三联点相互作用有关,目前尚未形成统一的认识.SWIR的形成演化及其作用域内的熔融异常(如海底高原)是冈瓦纳大陆裂解、残留岩石圈地幔、软流圈地幔和深部地幔热柱物质共同作用的结果.了解SWIR的演化过程对揭示冈瓦纳大陆的裂解过程和印度洋的演化具有重要意义.  相似文献   

20.
The researches in this paper disclose a huge earthquake migration series that lasted more than one century—from the 17th century to the early day of the 18th, transverse migration of huge earthquake from West Pacific trench to the Chinese mainland, lasted about 134 a, the distance is about 2600 km, the velocity is about 19 km/a, and the direction of migration agrees with the direction of plate subduction and vertical to the strike of plate boundary. The migration has two branches. One extends westwards and terminates at the central longitude belt (Helanshan—Liupanshan fault zone) of the Chinese mainland, triggered the strongest seismicity episode in North China, including 4 earthquakes withM ⩾8.0. The other extends northwards, passing through Korea Peninsula, terminates at the north part of Heilongjian Province, and triggered the volcanic eruption activity in Changbaishan and Wudalianchi. The time-space linearity of migration is good. Its velocity is stable and its activity attenuates gradually. It is estimated that it is related with the disturbance of asthenosphere matters caused by the sudden acceleration of the subduction of the trench plate. There are two similar transverse migration series from 1498 to 1556 and from 1843 to 1927, and the velocities are 36.2 and 33.7 km/a respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号