首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 9 毫秒
1.
Slow earthquakes and great earthquakes along the Nankai trough   总被引:2,自引:0,他引:2  
We have reexamined reports indicating that slow deformation occurred before the great Japan earthquakes of 1944 (Tonankai) and 1946 (Nankaido) and find that the observations are well founded. Although no quantitative models have previously been proposed to explain all of the relevant data we show that they are satisfied by a simple model for both earthquakes. The model, based on known properties of subduction zones, has slow slip on the subduction interface in an area deeper than the seismic rupture. If this model is correct and a similar physical situation holds for an anticipated Tokai earthquake, existing instruments will be able to reveal the pre-slip in real time. While differences among the deformation time series at different sites will provide strong constraints on the slow rupture propagation, these differences could result in delaying the recognition of a coherent event.  相似文献   

2.
The nature and origin of the concentrated deformation zone along the Japan Sea coast (NKTZ: Niigata-Kobe tectonic zone) was investigated by carefully analyzing the GPS data and qualitatively modeling the lower crust in NKTZ. It was concluded that this deformation zone is not a plate boundary between the Amurian plate (AMU) and the North America plate but is rather an internal deformation zone near the eastern margin of AMU. The data previously obtained on the conductivity anomalies in the lower crust and the 3He/4He ratios suggest that the concentrated deformation in NKTZ results from the lower crust in NKTZ being weakened by a high water content. The high water content is thought to result from the dehydration of subducting slabs. NKTZ has a higher water content in the lower crust than other regions do because there is no Philippine Sea plate (PHS) seismic slab beneath NKTZ. In other regions, it is estimated that the mantle wedge above the seismic Philippine Sea slab prevents the water dehydrated from the slab from rising to the lower crust, and that the lithosphere within PHS itself prevents the water dehydrated from the Pacific plate from rising up through it.  相似文献   

3.
Vertical coseismic deformation on non-causative fault caused by remote strong earthquakes(epicentral distance≥1500 km,MS≥7.0)are observed by fault-monitoring instruments of new type during recent two years.The monitor-ing result shows,delay time,maximum amplitude and duration of vertical deformation on the non-causative faulthave remarkable close relationship with earthquakes magnitude and epicentral distance.The delay time of verticalcoseismic deformation have positive linear relationship with epicentral distance.The velocity of coseismic defor-mation is 5.5 km/s,close to the velocity of surface wave in granite.The logarithms of maximum amplitude of co-seismic deformation and epicentral distance have remarkable linear relationship with magnitude.The greater themagnitude and the closer the epicentral distance are,the bigger the maximum amplitude of coseismic deformationon non-causative fault will be.Relative to the epicentral distance,the magnitude is the most important factor to theduration of coseismic vertical deformation on the non-causative fault.Stronger earthquake causes longer vibrationduration of coseismic deformation.The experiential equation of co-seismic deformation faults obtained by thiswork is significant on the coseismic deformation research.  相似文献   

4.
Introduction The Tangshan earthquake sequence in 1976 is one of most important events in North China. Although nearly thirty years passed and there are some researches on its cause, it is far from the end. Here we introduce two explanations for the cause of Tangshan earthquakes and point out their defects. One is that there is a diamond block in NEE direction in Tangshan region, which is shaped by cutting action of NingheChangli fault, FengtaiYejituo fault, Luanxian fault and Jiyunhe fau…  相似文献   

5.
6.
本文以中国西部大地形变监测与地震预测实践为基础, 简要总结回顾了利用大地形变进行强震预测研究的工作思路、方法和一些进展; 进而结合2001年昆仑山口西8.1级、 2008年四川汶川8.0级特大地震前区域地壳运动变形背景和已有的研究结果, 分析和探讨了基于大地形变监测、 并考虑地震构造的差异性来进一步提高大震预测的有效性...  相似文献   

7.
利用GPS连续观测资料进行强震危险性预测的探讨   总被引:1,自引:0,他引:1  
中国地壳运动观测网络基准站自1999运行以来已经积累了8年多的观测资料,目前针对地震预测、观测对象和数据处理方法,广义地提出了"点、线、面"的分析方法。实际应用表明,利用"线"的分析方法可能是比较好的方法,它最大的优点是在恰当的空间范围内不但可降低噪声,而且可突出异态信息。在目前较低测控能力的基础上,可通过全空间扫描与现象分析发现:①距昆仑山口西地震震中最近的德令哈观测站相对于拉萨观测站在震前较早的时间,其EW向就出现了缓慢变化,乃至闭锁(或无差异变化),直至地震发生为止,持续时间超过2年,闭锁数值10 mm以上,震后恢复正常;②云南地区数次强震震前下关观测站相对于泸州观测站EW向出现了闭锁或低于正常的变化,2003年强震之后恢复正常;最近的普洱强震自2006年初EW与SN向均出现了相对闭锁,两个方向的数值分别接近和达到10 mm;此外,每阶段异常的持续时间均超过1年;③塔什—乌什间EW向在新疆巴楚地震前出现了闭锁性活动,时间2年以上,数值约10 mm,震后恢复正常;目前SN向有相对闭锁迹象,并正在趋于明朗;④鼎新—西宁间EW方向有相对闭锁的迹象,但时间尚短;⑤通过寻找相对"闭锁"区段有可能成为判定强震危险性存在与否的主要方法。由此推测,若普洱6.4级地震后闭锁不解除,川滇菱形块体的西边界构造带及周围地区仍是近期强震最有可能发生的地区,其次是新疆的西天山地区,目前青藏高原东北缘尚不明朗。  相似文献   

8.
西-海-固地区垂直形变分析及地震趋势研究   总被引:2,自引:0,他引:2  
张四新  张希  陈兵  薛富平 《地震》2000,20(3):48-52
通过对西(吉)-海(原)-固(原)地区垂直形变场的演化分析表明:①90年代以来,垂直形变场升降差异运动减弱;②现今青藏亚板块对鄂尔多斯地块西南缘(西-海-固地区) 的 NE 方向挤压应力有所减弱,华北亚板块 SW 方向挤压应力有所加强;③鄂尔多斯块体周缘小震出现的活跃状态,可能是由于青藏亚板块挤压应力的减弱而造成鄂尔多斯块体水平挤压应力场的“失稳”,以及华北亚板块挤压应力相对增强的结果。  相似文献   

9.
程佳  刘杰  甘卫军  李纲 《地震学报》2009,31(5):477-490
以所建立的川滇地区主要活动块体及其周边断裂带的模型和前期利用GPS及水准资料反演所得到的断裂带长期运动速率作为基础,将汶川地震引起的同震错动量加入到三维断裂几何模型中,计算出汶川地震大范围的同震形变场,然后基于该同震形变场和活动断裂三维几何模型反演了各条断裂对该同震形变场的反映,并通过与各断裂带长期运动速率对比,得到了汶川地震对川滇地区各主要活动断裂带发震趋势的影响.结果表明,在汶川地震引起的同震形变场作用下,在川滇交界东部地区,龙门山断裂带南西段地震危险性提前了305a,鲜水河断裂带南东段大致提前了19a,安宁河断裂带和则木河断裂带分别提前了21a和12a,大凉山断裂带北段和南段分别提前了9.1a和18a,马边断裂带的地震危险性则提前了51a;对川滇交界西部的丽江——小金河断裂带南西段、怒江断裂带、龙陵——澜沧断裂带、南汀河断裂带、中甸断裂带等断裂带地震的能量积累也有促进作用;相反在鲜水河断裂带北西段、小江断裂带等历史地震频发的断裂带上,地震危险性具有一定的减速作用.   相似文献   

10.
The Yilan‐Yitong Fault Zone (YYFZ) is considered to be the key branch of the Tancheng‐Lujiang Fault Zone (TLFZ) in northeastern China. Although the Mesozoic and early Cenozoic deformation of the YYFZ has been studied intensively over the past century, few estimates of slip rate and recurrence interval of large earthquakes in the late Quaternary, which are the two most important parameters for understanding the potential seismic hazard of this crucial structure, were obtained. Based on integrated interpretations of high resolution satellite images and detailed geologic and geomorphic mapping, linear landforms were identified, including fault scarps and troughs, along the Shangzhi segment of the YYFZ, which exceeds 25 km in length. Synthesized results of trench excavations and differential GPS measurements of terrace surfaces indicate that two events (E1, E2) occurred along the Shangzhi segment during the late Holocene, which resulted in 3.2 ±0.1 m of total vertical co‐seismic displacement with clear features of thrust motion. 14C dating of samples suggests that event E1 occurred between 440 ±30 years BP and 180 ±30 years BP and that event E2 occurred between 4 090 ±30 years BP and 3 880 ±30 years BP, which indicates that the minimum vertical slip rate of the Shangzhi segment of the YYFZ has been approximately 0.8 ±0.03 mm/year during the late Holocene. Constraints from paleo events and the slip rate suggest that the average recurrence interval of major earthquakes on the YYFZ is 3 800 ±200 years. Historical documents in Korea show that event E1 possibly corresponds to the earthquake that occurred in AD 1810 (the Qing Dynasty in Chinese history) in the Ningguta area, which had surface‐wave magnitude (Ms) of 6.8–7.5. Studies of kinematics show that the right‐lateral strike‐slip with a reverse component has been dominant along the YYFZ during the late Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号