首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Variations in the distribution of mass within the atmosphere, and changes in the pattern of winds produce fluctuations in all three components of the angular momentum of the atmosphere on time-scales upwards of a few days. It, has been shown that variations in theaxial component of atmospheric angular momentum during the Special Observing Periods in the recent First GARP Global Experiment (FGGE, where GARP is the Global Atmospheric Research Programme) are well correlated with short-term changes in the length of the day. They are consistent with the total angular momentum of the atmosphere and solid Earth being conserved on short timescales (allowing for lunar and solar effects), without requiring significant angular momentum transfer between the Earth's liquid core and solid mantle on timescales of weeks or months. It has also been shown that fluctuations, in the equatorial components of atmospheric angular momentum make a major contribution to the observed wobble of the instantaneous pole of the Earth's rotation with respect to the Earth's crust. A necessary step in the investigation was a re-examination of the underlying theory of non-rigid body rotational dynamics and angular momentum exchange between the atmosphere and solid Earth. Since only viscous or topographic coupling between the atmosphere and solid Earth can transfer angular momentum, no atmospheric flow that everywhere satisfied inviscid equations (including, but not solely, geostrophic flow) could affect the rotation of a spherical solid Earth. New effective angular momentum functions were introduced in order to exploit the available data and allow for rotational and surface loading deformation of the Earth. A theoretical basis has now been established for future routine determinations of atmopheric, angular momentum fluctuations for the purpose of meteorological and geophysical research, including the assessment of the extent to which movements in the solid Earth associated with very large earthquakes contribute to the excitation of the Chandlerian wobble.  相似文献   

2.
In 2005 Soufrière Hills Volcano on Montserrat started its third major episode of dome growth since the current eruption started in 1995. The style of seismicity associated with dome growth has changed, in particular the events known as ‘hybrid’ earthquakes have reduced in numbers by an order of magnitude compared to previous dome growth episodes. In the past, hybrid earthquakes have been associated with magma ascent and so it is surprising to observe prolonged periods of rapid dome growth during which very few hybrid earthquakes are recorded. In addition, the frequency of the codas of hybrid earthquakes, as well as of some of the so called ‘long-period’ events, has changed. The changes in recorded seismicity have had a marked effect on the techniques used to monitor the state of the volcano and those events that continue to be recorded in large numbers (‘rockfall events’) have been used to assess the state of activity at the volcano.  相似文献   

3.
Extensive sampling in the Lagoon and Gulf of Venice during the 1980s provided material to establish ‘base’ conditions for subsequent studies of distributions of benthic foraminiferal biotopes and sediments.  相似文献   

4.
The 22 km3 (DRE) 1.8 ka Taupo eruption ejected chemically uniform rhyolite in a wide range of eruptive styles and intensities. The 7 eruptive units include the ‘type examples’ of phreatoplinian (units 3 and 4) and ultraplinian fall (unit 5) deposits, and low-aspect-ratio ignimbrite (unit 6). Contrasts in bulk vesicularity, vesicle (and microlite) number densities and the size distributions of bubbles (and crystals) in the Taupo ejecta can be linked to the influence of shallow conduit processes on volatile exsolution and gas escape, before and during eruption, rather than changes in pre-eruptive chemistry. Existing work has modeled the individual phases of this complex eruption but not fully explained the abrupt shifts in style/intensity that occur between phases. We link these rapid transitions to changes in vent position, which permitted contrasts in storage, conduit geometry, and magma ascent history.  相似文献   

5.
This paper presents the development and application of a distributed rainfall-runoff model for extreme flood estimation, and its use to investigate potential changes in runoff processes, including changes to the ‘rating curve’ due to effects of over-bank flows, during the transition from ‘normal’ floods to ‘extreme’ floods. The model has two components: a hillslope runoff generation model based on a configuration of soil moisture stores in parallel and series, and a distributed flood routing model based on non-linear storage-discharge relationships for individual river reaches that includes the effects of floodplain geometries and roughnesses. The hillslope water balance model contains a number of parameters, which are measured or derived a priori from climate, soil and vegetation data or streamflow recession analyses. For reliable estimation of extreme discharges that may extend beyond recorded data, the parameters of the flood routing model are estimated from hydraulic properties, topographic data and vegetation cover of compound channels (main channel and floodplains). This includes the effects of the interactions between the main channel and floodplain sections, which tend to cause a change to the rating curve. The model is applied to the Collie River Basin, 2545 km2, in Western Australia and used to estimate the probable maximum flood (PMF) from probable maximum precipitation estimates for this region. When moving from normal floods to the PMFs, application of the model demonstrates that the runoff generation process changes with a substantial increase of saturation excess overland flow through the expansion of saturated areas, and the dominant runoff process in the stream channel changes from in-bank to over-bank flows. The effects of floodplain inundation and floodplain vegetation can significantly reduce the magnitude of the estimated PMFs. This study has highlighted the need for the estimation of a number of critical parameters (e.g. cross-sectional geometry, floodplain vegetation, soil depths) through concerted field measurements or surveys, and targeted laboratory experiments.  相似文献   

6.
Although remote sensing data are often plentiful, they do not usually satisfy the users’ needs directly. Data assimilation is required to extract information about geophysical fields of interest from the remote sensing observations and to make the data more accessible to users. Remote sensing may provide, for example, measurements of surface soil moisture, snow water equivalent, snow cover, or land surface (skin) temperature. Data assimilation can then be used to estimate variables that are not directly observed from space but are needed for applications, for instance root zone soil moisture or land surface fluxes. The paper provides a brief introduction to modern data assimilation methods in the Earth sciences, their applications, and pertinent research questions. Our general overview is readily accessible to hydrologic remote sensing scientists. Within the general context of Earth science data assimilation, we point to examples of the assimilation of remotely sensed observations in land surface hydrology.  相似文献   

7.
Most scientists tend to ignore the history of their own discipline, at best it occurs as a sort of ‘big names history’. History is thought to be useless or at least irrelevant for the own scientific work. In the following it is questioned, whether this is an indispensable assumption of productive and progressive science. Some propositions will be discussed, what a positive historical perspective could mean for the current limnological research. It is claimed that it could be not only interesting but even exciting for limnologists to deal with their own history. One important argument is that limnology not only has a history but also is history: the ‘discovery’ of new methods, theories, concepts and instruments depends on the forgoing. Consequently, scientific progress is related to the history and progress of a particular discipline. This means in same time that the historical reflection could be an important issue to a more complete ‘explanation’ and understanding of this progress.Another reason to overcome the traditional separation into actual and historical knowledge and acting could be the hybrid character of ecology. In ecology, and consequently also in limnology, several elements of opposite scientific methodologies are merged together. Therefore the discussions on the saprobial system, an ecosystem ‘lake’ and the ‘microbial loop’ differ fundamentally. Turned positively it means that limnology should be skilled in handling with different systems of knowledge. This skills should be accessible by approaching the own history in a selfconcious way. Of course the internal view alone is not sufficient to write a history of the discipline, which aims to demonstrate the movement of progress, the relation between science and society as well as science and technics. Its history must be studied from the perspective and with the methods of the history and philosophy of science. In doing so there should be a common objective for historians and scientists that is the amelioration of the science ‘limnology’.  相似文献   

8.
Airborne infrared imagery is shown to provide preliminary evidence of surface thermal expressions associated with internal waves that become unstable and break over the continental shelf. These expressions include a narrow wave front that is warmer than the ambient; a wide, spatially intermittent ‘wake’ that is colder than the ambient; and ∼O (10 m) diameter surface-renewal ‘boils’ that populate the wake. These thermal signatures might be useful in assessing the spatial distribution and structure of breaking internal waves.  相似文献   

9.
The most important objective within the European Water Framework Directive (WFD) is to achieve a ‘good ecological status’ (GES) for all waters, by 2015. Some methodologies have been developed for assessing GES within natural water bodies, in which the ecological status is a perceived or measured deviation from a reference condition. However, the WFD also consider ‘Heavily modified water bodies’ (HMWB) (a water body resulted from physical alterations by human activity, which substantially change its hydrogeomorphological character, e.g. a harbour). In implementing the WFD, environmental managers are required to assess the status of HMWBs in terms of achieving ‘Good Ecological Potential’ (GEP). This contribution defines and studies GEP from an ecological point of view, taking into account some ecological restoration principles. Finally, this contribution gives some guidance on how establish GEP, using as example a harbour within the North East Atlantic.  相似文献   

10.
The threats of wide-scale coral bleaching and reef demise associated with anthropogenic climate change are widely known. Here, the additional role of poor water quality in lowering the thermal tolerance (i.e. bleaching ‘resistance’) of symbiotic reef corals is considered. In particular, a quantitative linkage is established between terrestrially-sourced dissolved inorganic nitrogen (DIN) loading and the upper thermal bleaching thresholds of inshore reefs on the Great Barrier Reef, Australia. Significantly, this biophysical linkage provides concrete evidence for the oft-expressed belief that improved coral reef management will increase the regional-scale survival prospects of corals reefs to global climate change. Indeed, for inshore reef areas with a high runoff exposure risk, it is shown that the potential benefit of this ‘local’ management imperative is equivalent to ∼2.0-2.5 °C in relation to the upper thermal bleaching limit; though in this case, a potentially cost-prohibitive reduction in end-of-river DIN of >50-80% would be required. An integrated socio-economic modelling framework is outlined that will assist future efforts to understand (optimise) the alternate tradeoffs that the water quality/coral bleaching linkage presents.  相似文献   

11.
高精度地球物理学是创新未来的必然发展轨迹   总被引:1,自引:0,他引:1  
滕吉文 《地球物理学报》2021,64(4):1131-1144
地球物理学在整个地球科学研究与探索中占有重要地位,突破该领域以描述、推断为主体的框架,并逐步向量化或半量化前进确为必然.地球物理学逐步向高精度升华乃深化理解各有关科学问题的时代需求.基于物理学概念,从定义出发促使多学科交叉和不断创新,是地球物理学能否抢占地球科学制高点的核心所在.为此,真正意义上的高精度观测、高分辨率的...  相似文献   

12.
This article reviews the types and effectiveness of marine mammal mitigation measures used during some naval activities worldwide. The three main standard methods used to mitigate the potential impacts of naval sonar sound on marine mammals are (1) time/area planning (of exercises/active sonar use) to avoid marine mammals; (2) implementation of operational procedures (e.g. ‘soft start’ - where sound levels are gradually increased over time); and (3) monitoring of animals for the purpose of maintaining an ‘exclusion zone’ around the sound source. Suggestions towards a minimum worldwide mitigation standard are made.  相似文献   

13.
—Within the fractal approach to studying the distribution of seismic event locations, different fractal dimension definitions and estimation algorithms are in use. Although one expects that for the same data set, values of different dimensions will be different, it is usually anticipated that the direction of fractal dimension changes among different data sets will be the same for every fractal dimension.¶Mutual relations between the three most popular fractal dimensions, namely the capacity, cluster and correlation dimensions, have been investigated in the present work. The studies were performed on the Monte Carlo generated data sets. The analysis has shown that dependence of the fractal dimensions on epicenter distribution, and relations among the fractal dimensions, are complex and variable. Neither values nor even inequalities among dimension estimates are preserved when different fractal dimensions are used. The correlation and the capacity dimensions seem to be good tools to trace collinear tendencies of eipicenters while the cluster dimension is more appropriate to studying uniform clustering of points.  相似文献   

14.
Xenoliths entrained in alkaline basalts and kimberlites give strong evidence that mantle carbonatitic and carbonated high alkaline mafic silicate melts, which are initially produced at very low degrees of partial melting (?1%), percolate and accumulate to form impregnations with a melt concentration of up to 10%. At present no compaction model has explained such huge local amplification of melt concentration. Recently, Bercovici et al. [1] have shown that the commonly used equations of compaction are not sufficiently general to describe all melt percolation processes in the mantle. In particular, they show that, when the melt concentration in the mantle is very low, the pressure jump ΔP between the solid and liquid fractions of the mantle mush is very important and plays a driving role during compaction. 1-D compaction waves generated with two different systems of equations are computed. Three types of wave-trains are observed, i.e. (1) sinusoidal waves; (2) periodic waves with flat minima and very acute maxima (‘witch hat waves’); (3) periodic solitary waves with flat maxima and extremely narrow minima (‘bowler hat waves’). When the initial melt distribution in the mantle is quite homogeneous, the compaction waves have sinusoidal shapes and can locally amplify the melt concentration by a factor less than two. When there is a drastic obstruction at the top of the wetted domain, the pressure jump ΔP between solid and liquid controls the shape of the waves. If the computation assumes the equality of pressure between the two phases (ΔP=0), the compaction wave has a ‘bowler hat shape’, and locally amplifies the melt concentration by a factor less than 5. Alternatively, simulations taking into account the pressure jump between phases ΔP predict compaction waves with ‘witch hat shape’. These waves collect a large quantity of melt promoting the development of magmons with local melt concentration exceeding 100× the background melt concentration. It is inferred that in a mantle with very low concentrations of carbonatitic or high alkaline mafic silicate melt the magmons are about 1 km thick and reach, in less than 1 Ma, a melt concentration of about 10%. The magmons are likely generated below the lithosphere at some distance away from the center of hot spots. This can explain the development of mantle carbonatitic eruptions in the African rift and the carbonatite and high alkaline mafic silicate volcanic activity in oceanic islands.  相似文献   

15.
Lava flows with preserved bases and brecciated upper crusts constitute a morphological type that differs in character from typical pahoehoe and a'a: such flows have been reported from many provinces around the world. Previous studies had referred to these flows informally as ‘pahoehoe flows with rubbly tops’, ‘broken-top pahoehoe’ and ‘rubbly pahoehoe’. Recent studies have formally applied the latter term to describe parts of the well-studied Laki flow in Iceland as well as flows from the Columbia River Basalt province. Rubbly pahoehoe flows are abundant in the upper stratigraphic formations of the Deccan Volcanic Province (DVP), and are more commonly known as simple flows. This study presents detailed observations of such flows from various parts of the DVP and discusses their implications for understanding flow emplacement. These flows, which appear to be single units at the outcrop-scale, are generally much thicker and significantly more extensive than individual pahoehoe lobes that dominate the lower formations of the Deccan stratigraphy. They are characterised by preserved, gently undulating tachylitic bases but variably disrupted crustal zones that grade into flow-top breccias. The breccias are constituted of highly vesicular and oxidised fragments of varying sizes that appear to have been derived from previously formed pahoehoe crusts. Previous work has indicated that the morphology of these flows might be related to initial inflation, accompanied by rapid volatile exsolution and an increase in effusion rate and/or viscosity with time. This agrees reasonably well with the qualitative and quantitative models of emplacement developed for the Laki flow. The abundance of such flows in the upper formations of the Deccan stratigraphy clearly hints at a significant shift in the nature of the Deccan eruptions; this could be indicative of higher eruption rates during this period. This, in turn, raises the possibility of hazardous impact on the climate during the eruption of these flows, which is also discussed in the paper.  相似文献   

16.
An association of adakite, magnesian andesite (MA), and Nb-enriched basalt (NEB) volcanic flows, which erupted within ‘normal’ intra-oceanic arc tholeiitic to calc-alkaline basalts, has recently been documented in ∼2.7 Ga Wawa greenstone belts. Large, positive initial ?Nd values (+1.95 to +2.45) of the adakites signify that their basaltic precursors, with a short crustal residence, were derived from a long-term depleted mantle source. It is likely that the adakites represent the melts of subducted late Archean oceanic crust. Initial ?Nd values in the MA (+0.14 to +1.68), Nb-enriched basalts and andesites (NEBA) (+1.11 to +2.05), and ‘normal’ intra-oceanic arc tholeiitic to calc-alkaline basalts and andesites (+1.44 to +2.44) overlap with, but extend to lower values than, the adakites. Large, tightly clustered ?Nd values of the adakites, together with Th/Ce and Ce/Yb systematics of the arc basalts that rule out sediment melting, place the enriched source in the sub-arc mantle. Accordingly, isotopic data for the MA, NEBA, and ‘normal’ arc basalts can be explained by melting of an isotopically heterogeneous sub-arc mantle that had been variably enriched by recycling of continental material into the shallow mantle in late Archean subduction zones up to 200 Ma prior to the 2.7 Ga arc. If the late Archean Wawa adakites, MA, and basalts were generated by similar geodynamic processes as their counterparts in Cenozoic arcs, involving subduction of young and/or hot ocean lithosphere, then it is likely that late Archean oceanic crust, and arc crust, were also created and destroyed by modern plate tectonic-like geodynamic processes. This study suggests that crustal recycling through subduction zone processes played an important role for the generation of heterogeneity in the Archean upper mantle. In addition, the results of this study indicate that the Nd-isotope compositions of Archean arc- and plume-derived volcanic rocks are not very distinct, whereas Phanerozoic plumes and intra-oceanic arcs tend to have different Nd-isotopic compositions.  相似文献   

17.
The groundwater inverse problem of estimating heterogeneous groundwater model parameters (hydraulic conductivity in this case) given measurements of aquifer response (such as hydraulic heads) is known to be an ill-posed problem, with multiple parameter values giving similar fits to the aquifer response measurements. This problem is further exacerbated due to the lack of extensive data, typical of most real-world problems. In such cases, it is desirable to incorporate expert knowledge in the estimation process to generate more reasonable estimates. This work presents a novel interactive framework, called the ‘Interactive Multi-Objective Genetic Algorithm’ (IMOGA), to solve the groundwater inverse problem considering different sources of quantitative data as well as qualitative expert knowledge about the site. The IMOGA is unique in that it looks at groundwater model calibration as a multi-objective problem consisting of quantitative objectives – calibration error and regularization – and a ‘qualitative’ objective based on the preference of the geological expert for different spatial characteristics of the conductivity field. All these objectives are then included within a multi-objective genetic algorithm to find multiple solutions that represent the best combination of all quantitative and qualitative objectives. A hypothetical aquifer case-study (based on the test case presented by Freyberg [Freyberg DL. An exercise in ground-water model calibration and prediction. Ground Water 1988;26(3)], for which the ‘true’ parameter values are known, is used as a test case to demonstrate the applicability of this method. It is shown that using automated calibration techniques without using expert interaction leads to parameter values that are not consistent with site-knowledge. Adding expert interaction is shown to not only improve the plausibility of the estimated conductivity fields but also the predictive accuracy of the calibrated model.  相似文献   

18.
Sinking of aggregated phytoplankton cells is a crucial mechanism for transporting carbon to the seafloor and benthic ecosystem, with such aggregates often scavenging particulate material from the water column as they sink. In the vicinity of drilling rigs used by the oil and gas industry, the concentration of particulate matter in the water column may at times be enriched as a result of the discharge of ‘drill cuttings’ - drilling waste material. This investigation exposed laboratory produced phytoplankton aggregates to drill cuttings of various composition (those containing no hydrocarbons from reservoir rocks and those with a <1% hydrocarbon content) and assessed the change in aggregate size, settling rate and resuspension behavior of these using resuspension chambers and settling cylinders. Results indicate that both settling velocity and seabed stress required to resuspend the aggregates are greater in aggregates exposed to drill cuttings, with these increases most significant in aggregates exposed to hydrocarbon containing drill cuttings.  相似文献   

19.
Garnet compositions are used to understand mantle petrogenesis and to reconstruct the lithostratigraphy of the shallow mantle (<200 km). However, garnets in polymict peridotites from the Kaapvaal craton (>2500 Ma) have a centimeter-scale elemental and stable isotopic variability suggestive of a mixed mantle provenance. The chemical heterogeneity of the garnets is similar to that reported from rocks sampled over a considerable depth and temperature range within the lower lithosphere. For example garnets found in polymict peridotites are similar to garnets found in sheared and granular peridotites, ‘cold’ and ‘hot’ lherzolites, peridotitic (P-type) diamond inclusions, and garnets from polybaric (50-200 km) peridotites (i.e. spinel, garnet and diamond facies). These data indicate that the Kaapvaal cratonic root has been disturbed by complex processes possibly associated with crack propagation and entrainment that juxtaposed garnet-bearing lithologies of diverse petrogenesis, provenance and depth. This has preserved chemical disequilibrium in the high pressure minerals in what is, in effect, a mantle breccia possibly associated with kimberlite precursors.  相似文献   

20.
New fundamental thermodynamic relationships of complete generality and absolute rigour of derivation are not to be expected, because the subject has such a secure and complete basis in classical physics. There is, however, still scope for original, fundamental work based on recognised assumptions and approximations which may be obviously acceptable in particular situations. Clarification of relationships between thermodynamic parameters for materials within the Earth is particularly important because there is so little possibility of measuring them individually. This survey first summarises the established relationships in a very condensed form and then concentrates on some recent developments which have direct bearing on the thermal and mechanical states of the Earth's mantle and core. Considerable use is made of the thermodynamic Grüneisen parameter, which is a dimensionless quantity of order unity for almost all materials, solid, liquid and gaseous, and is directly related to the pressure dependences of elastic constants. This allows its value to be estimated for the different regions of the Earth from seismological data. The thermodynamic (heat engine) efficiency of convection in a homogeneous medium, driving tectonic activity or the geomagnetic dynamo, is found to be the ideal (Carnot) efficiency corresponding to adiabatic temperature differences between the heat source and sink, within the assumption that the thermal expansion coefficient is not strongly temperature dependent. The use of this conclusion to infer tectonic stresses is indicated. The thermodynamic basis for Lindemann's melting law is restated and the reasons for supposing it to be valid for materials at megabar pressures reaffirmed. Application to the inner core boundary gives a fixed point on the Earth's temperature profile. Use of thermodynamic relationships in the interpretation of shock wave compressions is indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号