首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present Galaxy Evolution Explorer ( GALEX ) far-ultraviolet (FUV) and near-ultraviolet (NUV) imaging of the nearby early-type galaxy NGC 2974, along with complementary ground-based optical imaging. In the ultraviolet, the galaxy reveals a central spheroid-like component and a newly discovered complete outer ring of radius 6.2 kpc, with suggestions of another partial ring at an even larger radius. Blue FUV–NUV and UV-optical colours are observed in the centre of the galaxy and from the outer ring outwards, suggesting young stellar populations (≲1 Gyr) and recent star formation in both locations. This is supported by a simple stellar population model which assumes two bursts of star formation, allowing us to constrain the age, mass fraction and surface mass density of the young component pixel by pixel. Overall, the mass fraction of the young component appears to be just under 1 per cent (lower limit, uncorrected for dust extinction). The additional presence of a nuclear and an inner ring (radii 1.4 and 2.9 kpc, respectively), as traced by [O  iii ] emission, suggests ring formation through resonances. All three rings are consistent with a single pattern speed of  78 ± 6  km s−1 kpc−1, typical of S0 galaxies and only marginally slower than expected for a fast bar if traced by a small observed surface brightness plateau. This thus suggests that star formation and morphological evolution in NGC 2974 at the present epoch are primarily driven by a rotating asymmetry (probably a large-scale bar), despite the standard classification of NGC 2974 as an E4 elliptical.  相似文献   

2.
We present VLA A-array 21-cm atomic hydrogen (H  i ) absorption observed against the central region of the starburst galaxy M82 with an angular resolution of ∼1.3 arcsec (≃20 pc). These observations, together with MERLIN H  i absorption measurements, are compared with the molecular (CO) and ionized ([Ne  ii ]) gas distributions and are used to constrain the dynamics and structure of the ionized, neutral and molecular gas in this starburst.
A position–velocity diagram of the H  i distribution reveals an unusual 'hole' feature which, when previously observed in CO, has been interpreted as an expanding superbubble contained within a ring of gas in solid body rotation. However, we interpret this feature as a signature of a nearly edge-on barred galaxy. In addition, we note that the CO, H  i and [Ne  ii ] position–velocity diagrams reveal two main velocity gradients, and we interpret these as gas moving on x1- and x2-orbits within a bar potential. We find the best fit to the data to be produced using a bar potential with a flat rotation curve velocity v b=140 km s−1 and a total length of 1 kpc, a non-axisymmetry parameter q =0.9, an angular velocity of the bar Ωb=217 km s−1 arcsec−1, a core radius R c=25 pc, an inclination angle i =80° and a projected angle between the bar and the major axis of the galaxy φ '=4°. We also discuss the orientation of the disc and bar in M82.  相似文献   

3.
A statistical study of global galaxy parameters can help to improve our understanding of galaxy formation processes. In this paper we present the analysis of global galaxy parameters based on optical and near-infrared observations of a large sample of edge-on disc galaxies. We found a correlation between the ratio of the radial to vertical scale parameter and galaxy type: galaxies become systematically thinner when going from type S0 to type Sc, whereas the distribution seems to level off for later types. The observed scalelength ratios (and thus the radial colour gradients) largely represent the dust content of the galaxies. On average, the colour gradients indicated by the scalelength ratios increase from type Sa to at least type Sc. For galaxy types later than Sc, the average colour gradient seems to decrease again. The distribution of K -band (edge-on) disc central surface brightnesses is rather flat, although with a large scatter. However, the latest-type sample galaxies ( T  > 6) show an indication that their average disc central surface brightnesses may be fainter than those of the earlier types. This effect is probably not the result of dust extinction.  相似文献   

4.
Many barred disc galaxies show rings of gas clouds and young stars thought to be in periodic orbits near the two-fold inner and outer Lindblad resonances (ILR and OLR) plus a four-fold ultraharmonic resonance (UHR) of the turning bar with oscillations about the disc orbital motion. To confirm and extend simulations by Schwarz and by Byrd et al. of resonance ring formation, we present an analytical formulation of the clouds' orbital motion which includes dissipative damping of oscillations relative to the local interstellar medium plus the rotation curve, bar pattern speed, and strength. Observed ring morphology matches our plots of periodic orbits where the density is enhanced but clouds do not collide violently. Pairs of 'outer rings' bracket the OLR. Dimpled outer rings like that of ESO 507-16 can be matched by plots with strong bars. Slightly dimpled outer rings like that of ESO 509-98 can be matched by weak bar plots. For flat rotation curves, a pair of two-fold rings bracket the ILR; the smaller can be identified with the tiny 'nuclear rings'. We find narrow UHR rings just outside this pair as well as just inside the OLR pair. We confirm the identification of the larger ILR ring and the inner UHR ring with 'inner rings'. Disagreeing with the common identification, we associate the dimpled outer rings with the UHR just inside the OLR. See ESO 507-16 as an example. We predict that damping can misalign the ILR and OLR rings relative to the bar as seen in our match to ESO 507-16. We find that for weak bars, if the linearly rising portion of the rotation curve is a significant fraction of the corotation radius, nuclear and inner rings are absent with outer rings still present. We show this in a match to ESO 509-98. Success of the matches to ESO 507-16 and 509-98 shows how the analytic formulation can be used to estimate disc orientation and pattern speed if rotation curve observations are available.  相似文献   

5.
The inclination of M31 is too close to edge-on for a bar component to be easily recognized and is not sufficiently edge-on for a boxy/peanut bulge to protrude clearly out of the equatorial plane. Nevertheless, a sufficient number of clues allow us to argue that this galaxy is barred. We use fully self-consistent N -body simulations of barred galaxies and compare them with both photometric and kinematic observational data for M31. In particular, we rely on the near-infrared photometry presented in a companion paper. We compare isodensity contours to isophotal contours and the light profile along cuts parallel to the galaxy major axis and offset towards the north, or the south, to mass profiles along similar cuts on the model. All these comparisons, as well as position–velocity diagrams for the gaseous component, give us strong arguments that M31 is barred. We compare four fiducial N -body models to the data and thus set constraints on the parameters of the M31 bar, as its strength, length and orientation. Our 'best' models, although not meant to be exact models of M31, reproduce in a very satisfactory way the main relevant observations. We present arguments that M31 has both a classical and a boxy/peanut bulge. Its pseudo-ring-like structure at roughly 50 arcmin is near the outer Lindblad resonance of the bar and could thus be an outer ring, as often observed in barred galaxies. The shape of the isophotes also argues that the vertically thin part of the M31 bar extends considerably further out than its boxy bulge, that is, that the boxy bulge is only part of the bar, thus confirming predictions from orbital structure studies and from previous N -body simulations. It seems very likely that the backbone of M31's boxy bulge is families of periodic orbits, members of the x1-tree and bifurcating from the x1 family at its higher order vertical resonances, such as the x1v3 or x1v4 families.  相似文献   

6.
We have observed broad H  i absorption in the radio galaxy 3C 293 using Multi-Element Radio Linked Interferometric Network (MERLIN) at 0.2-arcsec angular resolution and the Giant Meterwavelength Radio Telescope (GMRT) at arcsec resolution. Extensive H  i is found in absorption across the centre of this peculiar radio galaxy, allowing a detailed study of the dynamics of the neutral gas on linear scales down to ∼160 pc. In optical depth position–velocity diagrams across the central few kpc we detect a distinct velocity gradient of 179 km s−1 arcsec−1 associated with the broad absorption. This is interpreted as a ring of neutral gas rotating around the suspected position of the active galactic nucleus (AGN) . The radius of this high velocity gradient ring is found to be >0.74 arcsec (600 pc), implying an upper limit upon the enclosed mass of     , assuming a near edge-on disc with an inclination of i . The optical depth of H  i is mapped across the entire central region of 3C 293 showing enhancements of a factor of 4 in the areas that are co-spatial with dust lanes seen in Hubble Space Telescope ( HST ) imaging of this galaxy.  相似文献   

7.
It has been known for a long time that a large fraction of disc galaxies are lopsided. We simulate three different mechanisms that can induce lopsidedness: flyby interactions, gas accretion from cosmological filaments and ram pressure from the intergalactic medium. Comparing the morphologies, H  i spectrum, kinematics and   m = 1  Fourier components, we find that all of these mechanisms can induce lopsidedness in galaxies, although in different degrees and with observable consequences. The time-scale over which lopsidedness persists suggests that flybys can contribute to ∼20 per cent of lopsided galaxies. We focus our detailed comparison on the case of NGC 891, a lopsided, edge-on galaxy with a nearby companion (UGC 1807). We find that the main properties of NGC 891 (morphology, H  i spectrum, rotation curve, existence of a gaseous filament pointing towards UGC 1807) favour a flyby event for the origin of lopsidedness in this galaxy.  相似文献   

8.
We carry out a detailed orbit analysis of gravitational potentials selected at different times from an evolving self-consistent model galaxy consisting of a two-component disc (stars+gas) and a live halo. The results are compared with a pure stellar model, subject to nearly identical initial conditions, which are chosen so as to make the models develop a large-scale stellar bar. The bars are also subject to hose-pipe (buckling) instability which modifies the vertical structure of the disc. The diverging morphological evolution of both models is explained in terms of gas radial inflow, the resulting change in the gravitational potential at smaller radii, and the subsequent modification of the main families of orbits, both in and out of the disc plane.   We find that dynamical instabilities become milder in the presence of the gas component, and that the stability of planar and 3D stellar orbits is strongly affected by the related changes in the potential — both are destabilized, with the gas accumulation at the centre. This is reflected in the overall lower amplitude of the bar mode and in the substantial weakening of the bar, which appears to be a gradual process. The vertical buckling of the bar is much less pronounced and the characteristic peanut shape of the galactic bulge almost disappears when there is a substantial gas inflow towards the centre. Milder instability results in a smaller bulge, the basic parameters of which are in agreement with observations. We also find that the overall evolution in the model with a gas component is accelerated because of the larger central mass concentration and the resulting decrease in the characteristic dynamical time.  相似文献   

9.
We discuss the morphology, photometry and kinematics of the bars which have formed in three N -body simulations. These have initially the same disc and the same halo-to-disc mass ratio, but their haloes have very different central concentrations. The third model includes a bulge. The bar in the model with the centrally concentrated halo (model MH) is much stronger, longer and thinner than the bar in the model with the less centrally concentrated halo (model MD). Its shape, when viewed side-on, evolves from boxy to peanut and then to 'X'-shaped, as opposed to that of model MD, which stays boxy. The projected density profiles obtained from cuts along the bar major axis, for both the face-on and the edge-on views, show a flat part, as opposed to those of model MD which are falling rapidly. A Fourier analysis of the face-on density distribution of model MH shows very large  m=2  , 4, 6 and 8 components. Contrary to this, for model MD the components  m=6  and 8 are negligible. The velocity field of model MH shows strong deviations from axial symmetry, and in particular has wavy isovelocities near the end of the bar when viewed along the bar minor axis. When viewed edge-on, it shows cylindrical rotation, which the MD model does not. The properties of the bar of the model with a bulge and a non-centrally concentrated halo (MDB) are intermediate between those of the bars of the other two models. All three models exhibit a lot of inflow of the disc material during their evolution, so that by the end of the simulations the disc dominates over the halo in the inner parts, even for model MH, for which the halo and disc contributions were initially comparable in that region.  相似文献   

10.
We have modelled 38 barred galaxies by using near-infrared and optical data from the Ohio State University Bright Spiral Galaxy Survey. We constructed the gravitational potentials of the galaxies from H -band photometry, assuming a constant mass-to-light ratio. The halo component we choose corresponds to the so-called universal rotation curve. In each case, we used the response of gaseous and stellar particle disc to rigidly rotating potential to determine the pattern speed.
We find that the pattern speed of the bar depends roughly on the morphological type. The average value of corotation resonance radius to bar radius,     , increases from 1.15 ± 0.25 in types SB0/a–SBab to 1.44 ± 0.29 in SBb and 1.82 ± 0.63 in SBbc–SBc. Within the error estimates for the pattern speed and bar radius, all galaxies of type SBab or earlier have a fast bar     , whereas the bars in later type galaxies include both fast and slow rotators. Of 16 later type galaxies with a nominal value of     , there are five cases, where the fast-rotating bar is ruled out by the adopted error estimates.
We also study the correlation between the parameter     and other galactic properties. The clearest correlation is with the bar size: the slowest bars are also the shortest bars when compared to the galaxy size. A weaker correlation is seen with bar strength in a sense that slow bars tend to be weaker. These correlations leave room for a possibility that the determined pattern speed in many galaxies corresponds to actually that of the spiral, which rotates more slowly than the bar. No clear correlation is seen with either the galaxy luminosity or the colour.  相似文献   

11.
We investigate the dynamical effects of an interaction between an initially barred galaxy and a small spherical companion using an N -body/smoothed-particle-hydrodynamics algorithm. In the models described here the small companion passes through the disc of the larger galaxy nearly perpendicular to its plane. The impact positions and times are varied with respect to the phase of the bar and the dynamical evolution of the disc.
The interactions produce expanding ring structures, offset bars, spokes and other asymmetries in the stars and gas. These characteristic signatures of the interaction are present in the disc for about 1 Gyr. We find that in some cases it is possible to destroy the bar while keeping the disc structure. In general, the central impacts cause larger damage to the bar and the disc than the peripheral ones. The interaction tends to accelerate the transition from a strongly-barred galaxy to a weakly- or non-barred galaxy. The final disc morphology is determined more by the impact position relative to the bar rather than the impact time.  相似文献   

12.
We are presenting new results on kinematics and structure of the Mrk 334 Seyfert galaxy. Panoramic (3D) spectroscopy is performed at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences using the integral-field Multi-Pupil Fiber Spectrograph (MPFS) and scanning Fabry–Pérot interferometer. The deep images have revealed that Mrk 334 is observed during the final stage of its merging with a massive companion. A possible mass ratio ranges from 1/5 to 1/3. The merger has triggered mass redistribution in the disc resulting in an intensification of nuclear activity and in a burst of star formation in the inner region of the galaxy. The circumnuclear starburst is so intense that its contribution to the gas ionization exceeds that contribution of the active galactic nuclei (AGN). We interpret the nuclear gas outflow with velocities of  ∼200 km s−1  as a galactic superwind that accompanies the violent star formation. This suggestion is consistent with the asymmetric X-ray brightness distribution in Mrk 334. The trajectory of the fragments of the disrupted satellite in the vicinity of the main galaxy nucleus can be traced. In the galaxy disc, a cavern is found that is filled with a low-density ionized gas. We consider this region to be the place where the remnants of the companion have recently penetrated through the gaseous disc of the main galaxy.  相似文献   

13.
The pattern speed is a defining parameter of any barred galaxy. A large number of model-dependent techniques have therefore been developed to derive the pattern speed. However, the only model-independent technique for measuring this quantity – the Tremaine–Weinberg method – has hitherto been applied to just one case, the SB0 galaxy NGC 936. In this paper, we apply the technique to a second system, the SBa galaxy NGC 4596. The resulting estimate for the pattern speed is Ωp=52±13 km s−1 kpc−1. This result is corroborated by a spectrum obtained along the major axis of the bar in this system. The corotation radius associated with this pattern speed lies just beyond the end of the bar indicating a fast bar. Combining the bar major-axis spectra with data obtained from a Hubble Space Telescope WFPC2 image, we also find strong evidence for a nuclear disc.  相似文献   

14.
We have identified two new galaxies with gas counter-rotation (NGC 1596 and 3203) and have confirmed similar behaviour in another one (NGC 128), this using results from separate studies of the ionized-gas and stellar kinematics of a well-defined sample of 30 edge-on disc galaxies. Gas counter-rotators thus represent 10 ± 5 per cent of our sample, but the fraction climbs to 21 ± 11 per cent when only lenticular (S0) galaxies are considered and to 27 ± 13 per cent for S0 galaxies with detected ionized gas only. Those fractions are consistent with but slightly higher than previous studies. A compilation from well-defined studies of S0 galaxies in the literature yields fractions of 15 ± 4 and 23 ± 5 per cent, respectively. Although mainly based on circumstantial evidence, we argue that the counter-rotating gas originates primarily from minor mergers and tidally induced transfer of material from nearby objects. Assuming isotropic accretion, twice those fractions of objects must have undergone similar processes, underlining the importance of (minor) accretion for galaxy evolution. Applications of gas counter-rotators to barred galaxy dynamics are also discussed.  相似文献   

15.
The vertical profiles of disc galaxies are built by the material trapped around stable periodic orbits, which form their 'skeletons'. Therefore, knowledge of the stability of the main families of periodic orbits in appropriate 3D models enables one to predict possible morphologies for edge-on disc galaxies. In a pilot survey we compare the orbital structures that lead to the appearance of 'peanut'- and 'X'-like features with the edge-on profiles of three disc galaxies (IC 2531, NGC 4013 and UGC 2048). The subtraction from the images of a model representing the axisymmetric component of the galaxies reveals the contribution of the non-axisymmetric terms. We find a direct correspondence between the orbital profiles of 3D bars in models and the observed main morphological features of the residuals. We also apply a simple unsharp masking technique in order to study the sharpest features of the images. Our basic conclusion is that the morphology of the boxy 'bulges' of these galaxies can be explained by considering disc material trapped around stable 3D periodic orbits. In most models, these building-block periodic orbits are bifurcated from the planar central family of a non-axisymmetric component, usually a bar, at low-order vertical resonances. In such a case, the boxy 'bulges' are parts of bars seen edge-on. For the three galaxies we study, the families associated with the 'peanut' or 'X'-shape morphology are probably bifurcations at the vertical 2/1 or 4/1 resonance.  相似文献   

16.
We present an analysis of the orientations of 1433 galaxies found in the region  15h 48m≤α(2000) ≤ 19h 28m, −68°≤δ(2000) ≤−62°  . In this region we investigated three Abell clusters (S0794, S0797, S0805) of richness Class 0 and the Triangulum Australis cluster. Our aim is to examine non-random effects in galaxy orientations in clusters. In addition, we classified the investigated galaxies into subsamples on the basis of their axial ratio, major diameter and morphology. The spin vector orientations of total galaxies in the investigated region is found to be random. No preferred orientation is found in the clusters. We could not note any morphological dependence of the galaxy orientations in our samples. No preferred orientations can be seen for the spiral galaxies. The morphologically unidentified galaxies, galaxies having major diameters of <47 arcsec, and the nearly edge-on galaxies  ( b / a < 0.5, 0.4 < b / a ≤ 0.5)  show anisotropy: spin vectors of galaxies tend to be oriented perpendicular to the Local Supercluster plane and spin vector projections tend to point radially with respect to the Virgo cluster centre.  相似文献   

17.
We present a multiwavlength infrared (IR) study of the nearby, edge-on, spiral galaxy NGC 891. We have examined 20 independent, spatially resolved IR images of this galaxy, 14 of which are newly reduced and/or previously unpublished images. These images span a wavelength regime from  λ 1.2 μ  m in which the emission is dominated by cool stars, through the mid-IR, in which emission is dominated by polycyclic aromatic hydrocarbons (PAHs), to λ 850 μm, in which emission is dominated by cold dust in thermal equilibrium with the radiation field. The changing morphology of the galaxy with wavelength illustrates the changing dominant components. We detect extraplanar dust emission in this galaxy, consistent with previously published results, but now show that PAH emission is also in the halo, to a vertical distance of   z ≥ 2.5 kpc  . We compare the vertical extents of various components and find that the PAHs (from λ 7.7 and 8 μm data) and warm dust (λ 24 μm) extend to smaller z heights than the cool dust (λ 450 μm). For six locations in the galaxy for which the signal-to-noise ratio was sufficient, we present spectral energy distributions (SEDs) of the IR emission, including two in the halo – the first time a halo SED in an external galaxy has been presented. We have modelled these SEDs and find that the PAH fraction, f PAH, is similar to Galactic values (within a factor of 2), with the lowest value at the galaxy's centre, consistent with independent results of other galaxies. In the halo environment, the fraction of dust exposed to a colder radiation field, f cold, is of the order of unity, consistent with an environment in which there is no star formation. The source of excitation is likely from photons escaping from the disc.  相似文献   

18.
We present XMM–Newton observations of NGC 891, a nearby edge-on spiral galaxy. We analyse the extent of the diffuse emission emitted from the disc of the galaxy, and find that it has a single-temperature profile with best-fitting temperature of 0.26 keV, though the fit of a dual-temperature plasma with temperatures of 0.08 and 0.30 keV is also acceptable. There is a considerable amount of diffuse X-ray emission protruding from the disc in the north-west direction out to approximately 6 kpc. We analyse the point-source population using a Chandra observation, using a maximum-likelihood method to find that the slope of the cumulative luminosity function of point sources in the galaxy is  −0.77+0.13−0.1  . Using a sample of other local galaxies, we compare the X-ray and infrared properties of NGC 891 with those of 'normal' and starburst spiral galaxies, and conclude that NGC 891 is most likely a starburst galaxy in a quiescent state. We establish that the diffuse X-ray luminosity of spirals scales with the far-infrared luminosity as   L X∝ L 0.87±0.07FIR  , except for extreme starbursts, and NGC 891 does not fall in the latter category. We study the supernova SN1986J in both XMM–Newton and Chandra observations, and find that the X-ray luminosity has been declining with time more steeply than expected  ( L X∝ t −3)  .  相似文献   

19.
In this work we build a detailed dynamic model for an S0 galaxy possibly hosting a central massive dark object (MDO). We show that the photometric profiles and the kinematics along the major and minor axes, including the h 3 and h 4 profiles, imply the presence of a central MDO of mass     i.e. 0.3–2.8 per cent of the mass derived for the stellar spheroidal component. Models without MDO are unable to reproduce the kinematic properties of the inner stars and of the rapidly rotating nuclear gas.
The stellar population consists of an exponential disc (27 per cent of the light) and a diffuse spheroidal component (73 per cent of the light) that cannot be represented by a simple de Vaucouleurs profile at any radius. The M L ratios we found for the stellar components (3.3 and 6.6 respectively) are typical of those of disc and elliptical galaxies.  相似文献   

20.
We use recent observations of high-redshift galaxies to study the evolution of galactic discs over the redshift range 0 <  z ≲1. The data are inconsistent with models in which discs were already assembled at z  = 1 and have evolved only in luminosity since that time. Assuming that disc properties change with redshift as powers of 1 +   z and analysing the observations assuming an Einstein–de Sitter universe, we find that for given rotation speed, disc scalelength decreases with z as ∼ (1 +  z )−1, total B -band mass-to-light ratio decreases with z as ∼ (1 +  z )−1, and disc luminosity (again in B ) depends only weakly on z . These scalings are consistent with current data on the evolution of disc galaxy abundance as a function of size and luminosity. Both the scalings and the abundance evolution are close to the predictions of hierarchical models for galaxy formation. If different cosmogonies are compared, the observed evolution in disc size and disc abundance favours a flat low-Ω0 universe over an Einstein–de Sitter universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号