首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
A microscale air pollutant dispersion model system is developed for emergency response purposes. The model includes a diagnostic wind field model to simulate the wind field and a random-walk air pollutant dispersion model to simulate the pollutant concentration through consideration of the influence of urban buildings. Numerical experiments are designed to evaluate the model's performance, using CEDVAL(Compilation of Experimental Data for Validation of Microscale Dispersion Models) wind tunnel experiment data, including wind fields and air pollutant dispersion around a single building. The results show that the wind model can reproduce the vortexes triggered by urban buildings and the dispersion model simulates the pollutant concentration around buildings well. Typically, the simulation errors come from the determination of the key zones around a building or building cluster. This model has the potential for multiple applications; for example, the prediction of air pollutant dispersion and the evaluation of environmental impacts in emergency situations; urban planning scenarios;and the assessment of microscale air quality in urban areas.  相似文献   

2.
本文利用兰州1944~1997年的月平均降水资料,建立了线性平稳序列的降水预测模型,该模型使用了功谱密度函数中的最大熵法(或叫全极模型),并将特征多项式模大于1的根反射到单位圆内,再返回修正后的线性预测的系数。并对1986~1997年11年的月降水做了预测试验,试验结果表明,该模型具有一定的预报能力,其中取15阶预报效果较好。此方法在短期气候预测业务中,可作为台站月、季、年降水预测走向客观化、定量化方法的一种初步尝试  相似文献   

3.
A simple Lagrangian stochastic model for the trajectories of particle pairs in high Reynolds-number turbulent flows is presented. In this model, the velocities of particle pairs are initially correlated but subsequently each particle moves independently. The independent single-particle trajectories are simulated using Thomson's model [J. Fluid Mech. 180, 529–556, 1987]. This two-particle model exactly satisfies the well-mixed condition for Gaussian turbulence when length scales, characterizing the two-point Eulerian velocity correlation function, vanish. Temperature variances, due to heat released as a passive scalar from an elevated plane source, within a model plant canopy (Coppin et al. Boundary Layer Meteorol. 35, 167–191, 1986) are shown to be well predicted by the model. It is suggested that for strongly inhomogeneous flows, the two-point Eulerian velocity function is of secondary importance in determining the simulated trajectories of particle pairs compared to the importance of ensuring satisfaction of the two-to-one constraint (Borgas and Sawford. J. Fluid Mech. 279, 69–99, 1994); i.e ensuring that one-particle statistics obtained from the two-particle model are the same as those obtained from the corresponding one-particle model. Limitations of this modelling approach are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号