首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Krafla rifting episode, which occurred in North Iceland in 1975–1984, was followed by inflation of a shallow magma chamber until 1989. At that time, gradual subsidence began above the magma chamber and has continued to the present at a declining rate. Pressure decrease in a shallow magma chamber is not the only source of deformation at Krafla, as other deformation processes are driven by exploitation of two geothermal fields, together with plate spreading. In addition, deep-seated magma accumulation appears to take place, with its centre ∼ 10 km north of the Krafla caldera. The relative strength of these sources has varied with time. New results from a levelling survey and GPS measurements in 2005 allow an updated view on the deformation field. Deformation rates spanning 2000–2005 are the lowest recorded in the 30-year history of geodetic studies at the volcano. The inferred rate of 2000–2005 subsidence related to processes in the shallow magma chamber is less than 0.3 cm/yr whereas it was ∼ 5 cm/yr in 1989–1992. Currently, the highest rate of subsidence takes place in the Leirbotnar area, within the Krafla caldera, and appears to be a result of geothermal exploitation.  相似文献   

2.
Shear-wave splitting is emerging as a useful exploration method for geothermal reservoirs as it can detect the geometry of the fracture system, the intensity of cracking and possibly, changes in fluid pressure within the reservoir. The method is based on the analyses of polarizations and time delays of shear-waves that have been distorted by the anisotropy of the medium through which the seismic waves have propagated. Observations of shear-wave splitting within the Krafla–Leirhnúkur geothermal field, Iceland, using a 20-station 3-component portable seismic array have provided evidence for at least two major crack systems of microfractures, oriented approximately N–S and E–W. Located microearthquakes align roughly along the E–W direction of the geothermal field, with shallow focal depths mostly around the injection well, probably related to the ongoing injection. This unexpected direction is however consistent with results from a simultaneous MT (magnetotelluric) survey.  相似文献   

3.
Previously unrecognized pulses of rhyolite volcanism occurred in the Salton Trough between 420 ± 8 ka and 479 ± 38 ka (2σ), based on high-spatial resolution U–Pb zircon geochronology. Presently, these rhyolite lavas, tuffs and shallow subvolcanic sills are buried to depths between ~ 1.6 and 2.7 km at ambient temperatures between 200 and 300 °C, and are overprinted by propylitic to potassic hydrothermal alteration mineral assemblages consisting of finely intergrown quartz, K-feldspar, chlorite, epidote, and minor pyrite. Alteration resistant geochemical indicators (whole-rock Nd-isotopes, zircon oxygen-isotopes) reveal that these rhyolites are derived from remelting of MORB-type crust that was chilled and hydrothermally altered by deep-circulating hydrothermal waters. U–Pb zircon dating confirms the presence of Bishop Tuff in well State 2-14 at ~ 1.7 km depth, approximately 5 km NE of the geothermal wells that penetrated the buried rhyolites. These results indicate accelerated subsidence towards the center of the Salton Trough, increasing from 2.2 mm/a to 3.8 mm/a. Based on these results, the present-day Salton Sea geothermal field is identified as a focus zone of episodic rhyolitic volcanism, intense heat flow and metamorphism that predates present-day geothermal activity and Holocene volcanism by at least ~ 400 ka.  相似文献   

4.
A fully coupled finite-element model is presented to simulate geothermal reservoirs in terms of the unknown variables of displacement, pore pressure and temperature using an elasto-plastic stress-strain relationship. The mathematical model combines the simultaneous mechanisms of subsidence, mass flow and heat flow through porous media by utilizing the equilibrium, fluid flow and energy flow equations. The governing partial differential equations are based upon constant physical parameters (except fluid density) and formulated for hot-water-type geothermal reservoirs. A simultaneous solution algorithm is applied to the modelling equations yielding transient and spatial distributions of the unknown variables. Application of the simulator to actual field conditions is performed by simulating the production history of a well located in the Denizli-Kızıldere geothermal field in Turkey. The results show an excellent agreement between the computed and the observed values of temperature and pore pressure variations throughout the reservoir.  相似文献   

5.
The Reykjanes geothermal system is a seawater-recharged hydrothermal system that appears to be analogous to seafloor hydrothermal systems in terms of host rock type and low water/rock alteration. The similarities make the Reykjanes system a useful proxy for seafloor vents. At some time during the Pleistocene, the system was dominated by meteoric water recharge, and fluid composition at Reykjanes has evolved through time as a result of changing proportions of meteoric water influx as well as differing pressure and temperature conditions. The purpose of this study is to characterize secondary mineralization, degree of metasomatic alteration, and bulk composition of cuttings from well RN-17 from the Reykjanes geothermal system. The basaltic host rock includes hyaloclastite, breccia, tuff, extrusive basalt, diabase, as well as a marine sedimentary sequence. The progressive hydrothermal alteration sequence observed with increasing depth results from reaction of geothermal fluids with the basaltic host rock. An assemblage of greenschist facies alteration minerals, including actinolite, prehnite, epidote and garnet, occurs at depths as shallow as 350 m; these minerals are commonly found in Icelandic geothermal systems at temperatures above 250 °C (Bird and Spieler, 2004). This requires hydrostatic pressures that exceed the present-day depth to boiling point curve, and therefore must record alteration at higher fluid pressures, perhaps as a result of Pleistocene glaciation. Major, minor, and trace element profiles of the cuttings indicate transitional MORB to OIB composition with limited metasomatic shifts in easily mobilized elements. Changes in MgO, K2O and loss on ignition indicate that metasomatism is strongly correlated with protolith properties. The textures of alteration minerals reveal alteration style to be strongly dependent on protolith as well. Hyaloclastites are intensely altered with calc-silicate alteration assemblages comprising calcic hydrothermal plagioclase, grandite garnet, prehnite, epidote, hydrothermal clinopyroxene, and titanite. In contrast, crystalline basalts and intrusive rocks display a range in alteration intensity from essentially unaltered to pervasive and nearly complete albitization of igneous feldspar and uralitization of clinopyroxene. Hydrothermal anorthite (An92–An98) occurs in veins in the most altered basalt cuttings and is significantly more calcic than igneous feldspar (An48–An79). Amphibole compositions change from actinolite to hornblende at depth. Hydrothermal clinopyroxene, which occurs in veins, has greater variation in Fe content and is systematically more calcic than igneous pyroxene and also lacks uralitic textures. Solid solutions of prehnite, epidote, and garnet indicate evolving equilibria with respect to aluminum and ferric iron.  相似文献   

6.

地热能是储量巨大、分布广泛且供给稳定的清洁能源.地热发电对经济发展和环境保护都具有重要意义.然而, 现有地热电站广泛采用的开放性采热模式易导致发电设备结垢与腐蚀、循环水流量不足与波动、自耗功率高等问题.采用传热工质与地热储层分离的封闭性采热模式, 不但能根治上述问题, 而且提升了选择传热工质和设计传热循环的灵活性.本研究采用有限元方法数值模拟水平井采热的封闭地热系统中自然对流强化储层内渗流与传热的动力学过程, 系统分析了水平井温度、水平井位置、储层渗透率、水平井周围渗透率强化改造范围及储层厚度-宽度比等关键因素对采热热流和采热年限的影响, 从而为适用于地热发电的大型封闭地热系统设计和工程实践提供理论指导和基础数据.模拟结果表明, 在水平井周围半径10 m区域内进行渗透率强化改造就能够启动和强化自然对流, 大幅提高未强化改造区域的地热开采; 水平井从储层采热的先后次序由自然对流区域逐渐拓展控制, 开发厚地热储层并将水平井设置在储层高处能够提高采热效率并延长采热年限; 驱动自然对流的水平井-储层温差与采热热流不成正比但正相关; 地热储层内存在的稳态背景自然对流对水平井采热有显著贡献.

  相似文献   

7.
Phytoplankton biomass, community and size structure, primary production and bacterial production were measured at shelf and continental slope sites near North West Cape, Western Australia (20.5°S–22.5°S) over two summers (October–February 1997–1998 and 1998–1999), and in April 2002. The North West Cape region is characterized by upwelling-favorable, southwesterly winds throughout the summer. Surface outcropping of upwelled water is suppressed by the geostrophic pressure gradients and warm low-density surface waters of the southward flowing Leeuwin Current. Strong El Niño (ENSO) conditions (SOI <0) prevailed through the summer of 1997–1998 which resulted in lower sea levels along the northwestern Australian coast and a weaker Leeuwin Current. La Niña conditions prevailed during the 1998–1999 summer and in April 2002. During the summer of 1997–1998, the North West Cape region was characterized by a shallower thermocline (nutricline), resulting in larger euphotic zone stocks of inorganic nitrogen and silicate over the continental slope. There was evidence for episodic intrusions of upper thermocline waters and the sub-surface chlorophyll maximum onto the outer continental shelf in 1997–1998, but not in 1998–1999. Pronounced differences in phytoplankton biomass, community size structure and productivity were observed between the summers of 1997–1998 and 1998–1999 despite general similarities in irradiance, temperature and wind stress. Phytoplankton primary production and bacterial production were 2- to 4-fold higher during the summer of 1997–1998 than in 1998–1999, while total phytoplankton standing crop increased by<2-fold. Larger phytoplankton (chiefly diatoms in the >10 μm size fraction) made significant contributions to phytoplankton standing crop and primary production during the summer of 1997–1998, but not 1998–1999. Although there were no surface signs of upwelling, primary production rates near North West Cape episodically reached levels (3–8 g C m−2 day−1) characteristic of eastern boundary Ekman upwelling zones elsewhere in the world. Bacterial production (0.006–1.2 g C m−2 day−1) ranged between 0.6 and 145 percent (median=19 percent) of concurrent primary production. The observed differences between years and within individual summers suggest that variations in the Leeuwin Current driven by seasonal or ENSO-related changes in the Indonesian throughflow region may have episodic, but significant influences on pelagic productivity along the western margin of Australia.  相似文献   

8.
We calculated statistical average of thermal data to speculate regional thermal structure of the forearc area of the Japanese Islands. The three thermal statistical averages show a difference of a high thermal regime in the western part of forearc inner zone and a low in the Kanto forearc outer zone. The Kanto zone marks 18 K km−1 for mean geothermal gradient, 44 mW m−2 for mean heat flow, while the western inner zone shows 27 K km−1 for mean geothermal gradient, 63 mW m−2 for mean heat flow. The geothermal gradients of the Nobi Plain and the Osaka Plain in the western inner zone are 29 and 36 K km−1, respectively, while the value of the Kanto Plain in the Kanto zone is 21 K km−1. Taking account of the effect of accumulation of sediments, we see the difference in the thermal regime between the plains and conclude that the difference is significant. Heat flux in the crust depends on the volume of granite rich in radioactive elements. There are few granitic rocks in the Kanto zone, while granitic rocks are dominant in the western inner zone. The heat flow of 20 mW m−2 is attributed to the granitic rocks of about 8 km in thickness. There are two oceanic plate subductions of the Pacific plate and the Philippine Sea plate under the Kanto zone, while only the Philippine Sea plate has been subducting under the western inner zone. The model simulation based on thermal and subduction model shows a heat flow ranging 50-60 mW m−2 in the southwest Japan forarc area and a low value of about 20 mW m−2 in the northeast Japan forearc area. The heat flux from the cooling oceanic lithosphere depends on the age of plate. The Shikoku Basin, a part of the Philippine Sea plate, off the western inner zone is 15-30 Ma, while the Pacific plate off the Kanto zone is 122-132 Ma. Theoretically, heat flux values of 15 and 50 Ma oceanic plates range 60-120 mW m−2 and those of 122-132 Ma could be about 10 mW m−2. If the heat flux contribution from the Philippine Sea plate under the Kanto zone is smaller than the plate under the western inner zone, there could be a thermal regime difference in order of several tens of mW m−2. Conclusively, the cause of the difference of heat flux could be the uneven granitic rocks distribution and/or the difference of heat flux between the two subducting plate.  相似文献   

9.
地热开采对聊古1井地下流体动态的影响及其对策   总被引:2,自引:0,他引:2       下载免费PDF全文
简要介绍了聊古1井井区的水文地质条件,全面调查了聊城地震水化站外围地热资源开发的现状,在此基础上分析了地热开发对地震地下流体观测及其动态的影响。结果表明,井区周围地热开发导致聊古1井断流,引起了各项动态异常的出现;该井区碳酸盐岩岩溶性水的开采对地下流体观测及其动态产生影响,特别是冬季供暖期的开采对地下水物理动态产生严重干扰。为了消除或减弱这种影响,通过改造井口装置实现人工自流的方法,保证了各项观测,而且部分测项的观测条件得到改善,多数测项的动态资料可连续,只有少数测项动态受到较大影响,井口改造取得了一定实效。然而,根本的出路还应是保护观测系统,停止同层地热开发  相似文献   

10.
Temporal observations of rip current circulation on a macro-tidal beach   总被引:2,自引:0,他引:2  
A field experiment was conducted on a high energy macro-tidal beach (Perranporth, UK) to examine rip current dynamics over a low-tide transverse bar/rip system in response to changing tide and wave conditions. Hydrodynamic data were collected using an array of in situ acoustic doppler current meters and pressure transducers, as well as 12 GPS-tracked Lagrangian surf zone drifters. Inter-tidal and sub-tidal morphology were measured through RTK-GPS and echo-sounder surveys. Data were collected for eight consecutive days (15 tides) over a spring-neap tidal cycle with tidal ranges of 4–6.5 m and offshore significant wave heights of 1–2 m and peak periods of 5–12 s.  相似文献   

11.
A swarm of ≈ 9500 hybrid earthquakes preceded the 12–13 July 2003 dome collapse at Soufriere Hills Volcano, Montserrat. Most events had nearly identical waveforms and cross-correlation was applied to measure inter-event periods as well as phase arrival times to determine accurate relative location. Hypocenter depths were shallow (< 3 km), and relative locations were confined to a radius of < 150 m. This small source volume is consistent with the observed waveform similarity. Changes in inter-event periods and energy release, measured from the seismic records, showed that the volcano evolved through several energetic states, possibly linked to cyclic magma movement. Shorter inter-event periods were linked to higher energy release rates and possibly reflect increased pressurization during periods of low extrusion rates.  相似文献   

12.
Previous works have shown that ground deformation and seismicity in the Cerro Prieto geothermal field (CPGF) are due to both tectonics and field exploitation. Here, we use information about current tectonics and data from precision leveling surveys, to model tectonic and anthropogenic subsidence. Our results show that tectonic subsidence constitutes only ∼4% of the measured subsidence. Anthropogenic subsidence was evaluated using a model of rectangular tensional cracks, based on the hydrological model of the field, together with the Coulomb 2.0 program. From the resulting values of the fissure parameters and from extraction and injection data, we calculate that the volume changes caused by closure of the geothermal and cold water reservoirs account for only ∼3% and ∼7%, respectively, of the volume change which should occur due to extraction. Since 18% of the extracted fluids are reinjected, external recharge must compensate for about 72% of the expected volume reduction. An analysis of the changes in Coulomb stress caused by exploitation of the geothermal field suggest that even though the anthropogenic stresses account for only a fraction of tectonic stresses, they are large enough to trigger seismicity.  相似文献   

13.
For more than 20 years, seismohydrological investigations have been undertaken at the mineral aquifer system of Bad Brambach (Vogtland, Germany). Two strong swarm earthquake series in 2000–2001 and 2008–2009 at the Nový Kostel epicentre (Czech Republic, 10 km E of BB) have enabled for the first time a comparison of seismological and groundwater hydraulic features in a semi-quantitative way. In spite of their similar spatial distribution in 2001 and 2008, the earthquake foci of each swarm migrated differently through time, horizontally as well as in depth. The seismic energy of the 2008–2009 events was released predominantly within 1 month, in contrast to 2000–2001 when it occurred over 3 months. The main distinctive features of each are seen in the hydraulic pressure anomalies which accompanied the earthquake swarms: number, shape, and progression (duration) of the anomalies. The comprehensive hydraulic data, with high temporal resolution, suggest that fluid triggering dominated not only the earthquake initiating phases. In particular, the long-lasting seismicity of the 2008–2009 swarm can be attributed to a continued triggering of weak earthquakes by over-pressured deep fluids. Here, the remaining static strain was obviously not sufficient to generate strong earthquakes as at the beginning of the earthquake swarm periods. Furthermore, the enduring high fluid pressure in 2009 could also indicate a continuation of the long-term gas flow increase observed at several gas outlets in the Vogtland/NW Bohemia region between 1998 and 2008. However, it is not possible at present to derive a systematic relationship between anomaly occurrence and seismic activity, as generally proposed in the context of earthquake prediction discussion.  相似文献   

14.
In recent years (1970–72 and 1982–84) two inflation episodes took place in the Campi Flegrei caldera (Italy), characterized by significant ground uplift and gravity variations. An elastic half-space model with vertical density stratification is employed to compute the displacement field and the gravity variations produced by the deformation of buried layers, following the inflation of a spherically symmetric deformation source. Contributions to gravity variations are produced by dilation/contraction of the medium, by the displacements of density interfaces (the free surface and subsurface layers) and of source boundaries and, possibly, by new mass input from remote distances into the source volume. Three cases were examined in detail: In case I, the magma chamber is identified as the deformation source and volume and pressure increase in the magma chamber is due to input of new magma from remote distances; in case II deformation is due to magma differentiation within the magma chamber (deformation source with constant mass); in case III the geothermal system is identified as the deformation source and a pressure increase, possibly driven by the exsolution of high temperature and high pressure volatiles in the magma chamber, is assumed to play a dominant role. From the comparison between measured and computed gravity residuals (free-air-corrected gravity variations) we can assess that, in case I, an inflation source with constant density would predict gravity residuals compatible with observations, whereas an expansion at constant mass (case II) would predict gravity residuals much lower than observed. The resolving power of gravity data however prevents accurate assessment of the density of the emplaced material. In case III, the pervasive density increase of the geothermal fluids induced by pressure increase is assumed to be the main source of gravity variations. The average porosity value required for this model to match both the ground deformation and the gravity residuals is found to be ˜10%, a value which is compatible with measured porosity values at Campi Flegrei in deep wells. The subsidence phases following both inflation episodes and the gravity residuals during subsidence lead us to consider case III as more plausible, even if a suitable combination of cases I and III cannot be discarded.  相似文献   

15.
Equilibrium and disequilibrium degassing of a volatile phase from a magma of K-phonolitic composition was investigated to assess its behavior upon ascent. Decompression experiments were conducted in Ar-pressurized externally heated pressure vessels at superliquidus temperature (1050 °C), in the pressure range 10–200 MPa using pure water as fluid phase. All experiments were equilibrated at 200 MPa and then decompressed to lower pressures with rates varying from 0.0028 to 4.8 MPa/s. Isobaric saturation experiments were performed at the same temperature and at 900–950 °C to determine the equilibrium water solubility in the pressure range 30–250 MPa. The glasses obtained from decompression experiments were analyzed for their dissolved water content, vesicularity and bubble size distribution. All decompressed samples presented a first event of bubble nucleation at the capsule–melt interface. Homogeneous bubble nucleation in the melt only occurred in fast-decompressed experiments (4.8 and 1.7 MPa/s), for ΔP ≅ 100 MPa. For these decompression rates high water over-saturations were maintained until a rapid exsolution was triggered at ΔP > 150 MPa. For slower rates (0.0028, 0.024, 0.17 MPa/s) the degassing of the melt took place by diffusive growth of the bubbles nucleating at the capsule–melt interface. This process sensibly reduced water over-saturation in the melt, preventing homogeneous nucleation to occur. For decompression rates of 0.024 and 0.17 MPa/s low water over-saturations were attained in the melt, gradually declining toward equilibrium concentrations at low pressures. A near-equilibrium degassing path was observed for a decompression rate of 0.0028 MPa/s. Experimental data combined with natural pumice textures suggest that both homogeneous and heterogeneous bubble nucleations occurred in the phonolitic magma during the AD 79 Vesuvius plinian event. Homogeneous bubble nucleation probably occurred at a depth of ∼ 3 km, in response to a fast decompression of the magma during the ascent.  相似文献   

16.
The Peloritani Mts. (NE Sicily) are characterized by frequent seismicity. Between 1994 and 2006 more than 1000 earthquakes (1.0 ≤ ML ≤ 3.3) occurred, mostly as highly clustered swarms located at shallow depth near the villages of Castroreale and Rodì Milici (western part of Peloritani Mts.). The same area is also characterized by some geothermal springs and gas vents. Using a multidisciplinary approach, data were collected on the tectonic setting, seismicity pattern and geochemical characteristics of fluid emissions, with the aim of understanding the process of earthquake swarm generation beneath the investigated area.  相似文献   

17.
Phosphorus (P) in surface sediments of the Laizhou Bay (LB) and the coastal waters around the Zhangzi Island (ZI) was analyzed. Six forms of P were separated — exchangeable or loosely sorbed P (Ads–P), aluminum-bound P (Al–P), iron-bound P (Fe–P), authigenic apatite plus CaCO3-bound P plus biogenic apatite (Ca–P), detrital apatite plus other inorganic P (De–P) and organic P (OP). The average contents of P in the LB were in the order: De–P > OP > Ca–P > Fe–P > Ads–P > Al–P; in the ZI, the corresponding order was De–P > OP > Fe–P > Ca–P > Ads–P > Al–P. Due to the high nutrient loadings from the surrounding rivers, TP contents in sediments of the LB were higher than in those of the ZI. The potential bio-available P (Ads–P and OP) accounted for 14.7% and 24.2% of TP in sediments of the LB and the ZI, respectively.  相似文献   

18.
Matrix bound phosphine (MBP), a kind of chemically reduced phosphorus, has received limited attention in prevailing modeling of the phosphorus biogeochemical cycle. MBP has been found to occur in marine sediments. MBP in the sediments of the Yellow Sea and its coastal areas was measured by gas chromatography from 2004 to 2007. MBP levels in surface sediments were 0.19–38.24 ng kg−1 in the shelf of the Yellow Sea, 0.34–17.15 ng kg−1 in the Jiaozhou Bay, 2.11–71.79 ng kg−1 in the Sanggou Bay and 0.28–319.32 ng kg−1 in the rivers around the Jiaozhou Bay. High levels of MBP occurred in the northern and middle areas of the Yellow Sea. Obvious seasonal variation of MBP was observed in surface sediments of the Sanggou Bay, with the highest MBP level occurring in summer and the lowest in winter. MBP in surface sediments of the inner Jiaozhou Bay was higher than those in the outer region. MBP levels increased with depth in the top 5–10 cm sediments of the Jiaozhou Bay and on the intertidal flats. Environmental factors such as type of sediments, temperature, organic matter and human activity were found to affect the concentrations and distribution of MBP in marine sediments.  相似文献   

19.
The three-dimensional P-wave velocity structure beneath the Katmai group of volcanoes is determined by inversion of more than 10,000 rays from over 1000 earthquakes recorded on a local 18 station short-period network between September 1996 and May 2001. The inversion is well constrained from sea level to about 6 km below sea level and encompasses all of the Katmai volcanoes; Martin, Mageik, Trident, Griggs, Novarupta, Snowy, and Katmai caldera. The inversion reduced the average RMS travel-time error from 0.22 s for locations from the standard one-dimensional model to 0.13 s for the best three-dimensional model. The final model, from the 6th inversion step, reveals a prominent low velocity zone (3.6–5.0 km/s) centered at Katmai Pass and extending from Mageik to Trident volcanoes. The anomaly has values about 20–25% slower than velocities outboard of the region (5.0–6.5 km/s). Moderately low velocities (4.5–6.0 km/s) are observed along the volcanic axis between Martin and Katmai Caldera. Griggs volcano, located about 10 km behind (northwest of) the volcanic axis, has unremarkable velocities (5.0–5.7 km/s) compared to non-volcanic regions. The highest velocities are observed between Snowy and Griggs volcanoes (5.5–6.5 km/s). Relocated hypocenters for the best 3-D model are shifted significantly relative to the standard model with clusters of seismicity at Martin volcano shifting systematically deeper by about 1 km to depths of 0 to 4 km below sea level. Hypocenters for the Katmai Caldera are more tightly clustered, relocating beneath the 1912 scarp walls. The relocated hypocenters allow us to compare spatial frequency-size distributions (b-values) using one-dimensional and three-dimensional models. We find that the distribution of b is significantly changed for Martin volcano, which was characterized by variable values (0.8 < b < 2.0) with standard locations and more uniform values (0.8 < b < 1.2) after relocation. Other seismic clusters at Mageik (1.2 < b < 2.2), Trident (0.5 < b < 1.5) and Katmai Caldera (0.8 < b < 1.8) had stable b-values indicating the robustness of the observations. The strong high b-value region at Mageik volcano is mainly associated with an earthquake swarm in October, 1996 that possibly indicates a shallow intrusion or influx of gas. The new velocity and spatial b-value results, in conjunction with prior gravity (Bouguer anomalies up to − 40 mgal) and interferometry (several cm uplift) data, provide strong evidence in favor of partially molten rock at shallow depths beneath the Mageik–Katmai–Novarupta region. Moderately low velocities beneath Martin and Katmai suggest that old, mostly solidified intrusions exist beneath these volcanoes. Higher relative velocities beneath the Griggs and Snowy vents suggest that no magma is resident in the shallow crust beneath these volcanoes.  相似文献   

20.
In the Jungwon area, South Korea, two contrasting types of deep thermal groundwater (around 20–33 °C) occur together in granite. Compared to shallow groundwater and surface water, thermal groundwaters have significantly lower δ18O and δD values (> 1‰ lower in δ18O) and negligible tritium content (mostly < 2 TU), suggesting a relatively high age of these waters (at least pre-thermonuclear period) and relatively long subsurface circulation. However, the hydrochemical evolution yielded two distinct water types. CO2-rich water (PCO2 = 0.1 to 2 atm) is characterized by lower pH (5.7–6.4) and higher TDS content (up to 3300 mg/L), whereas alkaline water (PCO2 = 10− 4.1–10− 4.6 atm) has higher pH (9.1–9.5) and lower TDS (< 254 mg/L). Carbon isotope data indicate that the CO2-rich water is influenced by a local supply of deep CO2 (potentially, magmatic), which enhanced dissolution of silicate minerals in surrounding rocks and resulted in elevated concentrations of Ca2+, Na+, Mg2+, K+, HCO3 and silica under lower pH conditions. In contrast, the evolution of the alkaline water was characterized by a lesser degree of water–rock (granite) interaction under the negligible inflow of CO2. The application of chemical thermometers indicates that the alkaline water represents partially equilibrated waters coming from a geothermal reservoir with a temperature of about 40 °C, while the immature characteristics of the CO2-rich water resulted from the input of CO2 in Na–HCO3 waters and subsequent rock leaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号