首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Eruptions fed from subsurface reservoirs commonly construct volcanic edifices at the surface, and the growth of an edifice will in turn modify the subsurface stress state that dictates the conditions under which subsequent rupture of the inflating reservoir can occur. We re-examine this problem using axisymmetric finite element models of ellipsoidal reservoirs beneath conical edifices, explicitly incorporating factors (e.g., full gravitational loading conditions, an elastic edifice instead of a surface load, reservoir pressures sufficient to induce tensile rupture) that compromise previous solutions to illustrate why variations in rupture behavior can occur. Relative to half-space model results, the presence of an edifice generally rotates rupture toward the crest of a spherical reservoir, with increasing flank slope (for an edifice of constant volume) and larger edifices (or greater reservoir scaled depths) normally serving to enhance this trend. When non-spherical reservoirs are considered, the presence of an edifice amplifies previously identified half-space failure characteristics, shifting rupture to the crest more rapidly for prolate reservoirs while forcing rupture closer to the midpoint of oblate reservoirs. Rupture is always observed to occur in the σt orientation, and depending on where initial failure occurs rupture favors the initial emplacement of either lateral sills, circumferential intrusions or vertically ascending dikes. Ultimately, integration of our numerical model results with other information, for instance the sequence of intrusion/eruption events observed at a given volcano, can provide useful new insight into how a volcano's subsurface magma plumbing system evolved. We demonstrate this process through application of our model to Summer Coon, a well-studied stratocone on Earth, and Ilithyia Mons, a large conical shield volcano on Venus.  相似文献   

2.
Caldera formation has been explained by magma withdrawal from a crustal reservoir, but little is known about the conditions that lead to the critical reservoir pressure for collapse. During an eruption, the reservoir pressure is constrained to lie within a finite range: it cannot exceed the threshold value for eruption, and cannot decrease below another threshold value such that feeder dykes get shut by the confining pressure, which stops the eruption. For caldera collapse to occur, the critical reservoir pressure for roof failure must therefore be within this operating range. We use an analytical elastic model to evaluate the changes of reservoir pressure that are required for failure of roof rocks above the reservoir with and without a volcanic edifice at Earth's surface. With no edifice at Earth's surface, faulting in the roof region can only occur in the initial phase of reservoir inflation and affects a very small part of the focal area. Such conditions do not allow caldera collapse. With a volcanic edifice, large tensile stresses develop in the roof region, whose magnitude increase as the reservoir deflates during an eruption. The edifice size must exceed a threshold value for failure of the roof region before the end of eruption. The largest tensile stresses are reached at Earth's surface, indicating that faulting starts there. Failure affects an area whose horizontal dimensions depend on edifice and chamber dimensions. For small and deep reservoirs, failure conditions cannot be achieved even if the edifice is very large. Quantitative predictions are consistent with observations on a number of volcanoes.  相似文献   

3.
The influence of magma expansion due to volatile exsolution and gas dilation on dyke propagation is studied using a new numerical code. Many natural magmas contain sufficient amounts of volatiles for fragmentation to occur well below Earth's surface. Magma fragmentation has been studied for volcanic flows through open conduits but it should also occur within dykes that rise towards Earth's surface. The characteristics of volatile-rich magma flow within a hydraulic fracture are studied numerically. The mixture of melt and gas is treated as a compressible viscous fluid below the fragmentation level and as a gas phase carrying melt droplets above it. The numerical code solves for elastic deformation of host rocks, the flow of the magmatic mixture and fracturing at the dyke tip. With volatile-free magma, a dyke fed at a constant rate in a uniform medium adopts a constant shape and width and rises at a constant velocity. With volatiles involved, magma expands and hence the volume flux of magma increases. With no fragmentation, this enhanced flux leads to acceleration and thinning of the dyke. Simple scaling laws allow accurate predictions of dyke width and ascent rate for a wide range of conditions. With fragmentation, dyke behaviour is markedly different. Due to the sharp drop of head loss that occurs in gas-rich fragmented material, large internal overpressures develop below the dyke tip and induce swelling of the nose region, leading to deceleration of the dyke. These results are applied to the two-month long period of volcanic unrest that preceded the May 1980 eruption of Mount St Helens. An initial phase of rapid earthquake migration from the 7–8 km deep reservoir to shallow levels was followed by very slow progression of magma within the edifice. Such behaviour can be accounted for by magma fragmentation at the top of a dyke.  相似文献   

4.
The Puu Oo eruption of Kilauea Volcano in Hawaii is one of its largest and most compositionally varied historical eruptions. The mineral and whole-rock compositions of the Puu Oo lavas indicate that there were three compositionally distinct magmas involved in the eruption. Two of these magmas were differentiated (<6.8 wt% MgO) and were apparently stored in the rift zone prior to the eruption. A third, more mafic magma (9–10 wt% MgO) was probably intruded as a dike from Kilauea's summit reservoir just before the start of the eruption. Its intrusion forced the other two magmas to mix, forming a hybrid that erupted during the first three eruptive episodes from a fissure system of vents. A new hybrid was erupted during episode 3 from the vent where Puu Oo later formed. The composition of the lava erupted from this vent became progressively more mafic over the next 21 months, although significant compositional variation occurred within some eruptive episodes. The intra-episode compositional variation was probably due to crystal fractionation in the shallow (0.0–2.9 km), dike-shaped (i.e. high surface area/volume ratio) and open-topped Puu Oo magma reservoir. The long-term compositional variation was controlled largely by mixing the early hybrid with the later, more mafic magma. The percentage of mafic magma in the erupted lava increased progressively to 100% by episode 30 (about two years after the eruption started). Three separate magma reservoirs were involved in the Puu Oo eruption. The two deeper reservoirs (3–4 km) recharged the shallow (0.4–2.9 km) Puu Oo reservoir. Recharge of the shallow reservoir occurred rapidly during an eruption indicating that these reservoirs were well connected. The connection with the early hybrid magma body was cut off before episode 30. Subsequently, only mafic magma from the summit reservoir has recharged the Puu Oo reservoir.  相似文献   

5.
The 2002–03 Mt Etna flank eruption began on 26 October 2002 and finished on 28 January 2003, after three months of continuous explosive activity and discontinuous lava flow output. The eruption involved the opening of eruptive fissures on the NE and S flanks of the volcano, with lava flow output and fire fountaining until 5 November. After this date, the eruption continued exclusively on the S flank, with continuous explosive activity and lava flows active between 13 November and 28 January 2003. Multi-disciplinary data collected during the eruption (petrology, analyses of ash components, gas geochemistry, field surveys, thermal mapping and structural surveys) allowed us to analyse the dynamics of the eruption. The eruption was triggered either by (i) accumulation and eventual ascent of magma from depth or (ii) depressurisation of the edifice due to spreading of the eastern flank of the volcano. The extraordinary explosivity makes the 2002–03 eruption a unique event in the last 300 years, comparable only with La Montagnola 1763 and the 2001 Lower Vents eruptions. A notable feature of the eruption was also the simultaneous effusion of lavas with different composition and emplacement features. Magma erupted from the NE fissure represented the partially degassed magma fraction normally residing within the central conduits and the shallow plumbing system. The magma that erupted from the S fissure was the relatively undegassed, volatile-rich, buoyant fraction which drained the deep feeding system, bypassing the central conduits. This is typical of most Etnean eccentric eruptions. We believe that there is a high probability that Mount Etna has entered a new eruptive phase, with magma being supplied to a deep reservoir independent from the central conduit, that could periodically produce sufficient overpressure to propagate a dyke to the surface and generate further flank eruptions.Editorial responsibility: J. Donnelly-Nolan  相似文献   

6.
An eruption on the eastern flank of Piton de la Fournaise volcano started on 16 November, 2002 after 10 months of quiescence. After a relatively constant level of activity during the first 13 days of the eruption, lava discharge, volcanic tremor and seismicity increased from 29 November to 3 December. Lava effusion suddenly ceased on 3 December while shallow earthquakes beneath the Dolomieu summit crater were still recorded at a rate of about one per minute. This unusual activity continued and increased in intensity over the next three weeks, ending with the formation of a pit crater within Dolomieu. Based on ground deformation, measured by rapid-static and continuous GPS and an extensometer, seismic data, and lava effusion patterns, the eruptive period is divided into five stages: 1) slow summit inflation and sporadic seismicity; 2) rapid summit inflation and a short seismic crisis; 3) rapid flank inflation, onset of summit deflation, sporadic seismicity, accompanied by stable effusion; 4) flank inflation, coupled with summit deflation, intense seismicity, and increased lava effusion; and finally 5) little deflation, intense shallow seismicity, and the end of lava effusion. We propose a model in which the pre-intrusive inflation of Stage 1 in the months preceding the eruption was caused by a magma body located near sea level. The magma reservoir was the source of an intrusion rising under the summit during Stage 2. In Stage 3, the magma ponded at a shallow level in the edifice while the lateral injection of a radial dike reached the surface on the eastern flank of the basaltic volcano, causing lava effusion. Pressure decrease in the magmatic plumbing system followed, resulting in upward migration of a collapse front, forming a subterranean column of debris by faulting and stoping. This caused intense shallow seismicity, increase in discharge of lava and volcanic tremor at the lateral vent in Stage 4 and, eventually the formation of a pit crater in Stage 5.  相似文献   

7.
Electro-optical distance measurements made on the summit of Mt. Etna from 1971 to 1974 show evidence of large surface deformation of the volcano. This deformation cannot be satisfactorily analysed in terms of the models of subsurface magma reservoirs of various geometries that have been previously used, as they have, for instance, on Kilauea in Hawaii. A model that gives a better fit between the observed and computed data involves horizontal, radial strain about an open, cylindrical magma column. In this model, strain is inversely proportional to the square of the distance from the centre of the deformation. This strain pattern is probably confined to the immediate vicinity of the summit vents and is of a different nature lower down the volcano. Tiltmeter, precise levelling and distance measurement data collected over the period of a small flank eruption in January–March 1974 indicate that the eruption was fed by magma through a conduit from the summit reservoir system of the Chasm and Bocca Nuova. Inflation of the summit around the Northeast Crater, which had been measured since 1971, continued despite the flank eruption, and eruptive activity was resumed at the Northeast Crater in September 1974.  相似文献   

8.
9.
Geochemical modeling of magma mixing allows for evaluation of volumes of magma storage reservoirs and magma plumbing configurations. A new analytical expression is derived for a simple two-component box-mixing model describing the proportions of mixing components in erupted lavas as a function of time. Four versions of this model are applied to a mixing trend spanning episodes 3–31 of Kilauea Volcano’s Puu Oo eruption, each testing different constraints on magma reservoir input and output fluxes. Unknown parameters (e.g., magma reservoir influx rate, initial reservoir volume) are optimized for each model using a non-linear least squares technique to fit model trends to geochemical time-series data. The modeled mixing trend closely reproduces the observed compositional trend. The two models that match measured lava effusion rates have constant magma input and output fluxes and suggest a large pre-mixing magma reservoir (46±2 and 49±1 million m3), with little or no volume change over time. This volume is much larger than a previous estimate for the shallow, dike-shaped magma reservoir under the Puu Oo vent, which grew from ∼3 to ∼10–12 million m3. These volumetric differences are interpreted as indicating that mixing occurred first in a larger, deeper reservoir before the magma was injected into the overlying smaller reservoir. Electronic Supplementary Material Supplementary material is available at and is accessible for authorized users.  相似文献   

10.
Hawaiian volcanoes pass through a sequence of four eruptive stages characterized by distinct lava types, magma supply rates, and xenolith populations. Magma supply rates are low in the earliest and two latest alkalic stages and high in the tholeiitic second stage. Magma storage reservoirs develop at shallow and intermediate depths as the magma supply rate increases during the earliest stage; magma in these reservoirs solidifies as the supply rate declines during the alkalic third stage. These magma storage reservoirs function as hydraulic filters and remove dense xenoliths that the ascending magma has entrained. During the earliest and latest stages, no magma storage zone exists, and mantle xenoliths of lherzolite are carried to the surface in primitive alkalic lava. During the tholeiitic second stage, magma storage reservoirs develop and persist both at the base of the ocean crust and 3–7 km below the caldera; only xenoliths of shallow origin are carried to the surface by differentiated lava. During the alkalic third stage, magma in the shallow subcaldera reservoir solidifies, and crustal xenoliths, including oceanic-crustal rocks, are carried to the surface in lava that fractionates in an intermediate-depth reservoir. Worldwide xenolith populations in tholeiitic and alkalic lava may reflect the presence or absence of subvolcanic magma storage reservoirs.  相似文献   

11.
Ngauruhoe cone, in southern Taupo Volcanic Zone, New Zealand, has grown rapidly over the last 2,500 years in an alternation of effusive, strombolian, vulcanian, and sub-plinian eruptions of andesitic magma. At times growth has been 'staccato' in fashion as evidenced in the historical record. Each historical eruption typically lasted days to months, alternating with repose periods of years to decades. Major historic eruptions occurred in 1870 1949 1954-1955 and 1973-1975, encompassing wide variations in eruptive style over short timescales. The early period of cone building appears to have been dominated by a more continuous form of activity characterised by a series of numerous frequent explosive eruptions, with associated lava flows. The 2.2-km3 cone has grown in a piecemeal sectorial manner reflecting constant modification to the morphology of the summit, which has funnelled eruption products to specific sectors of the cone. Eruption rates can be calculated on several different timescales. Discharge rates averaged over individual eruptive pulses vary by two orders of magnitude (2.7-280 m3 s-1), reflecting variations in high level magma ascent rates and processes such as degassing, which are, in turn, reflected in contrasting eruptive styles. Lower rates (e.g. 0.65 m3 s-1) are obtained by averaging the discharge over an entire eruption lasting several months and may correspond to the ascent rate of magma batch(es) feeding the eruption. The long-term growth rate of Ngauruhoe is 0.9 km3 ky-1. This is an average rate reflecting the long-term deep supply rate of magma to crustal reservoirs. By looking at eruption rates on these different timescales we are better able to constrain processes occurring at various depths within the plumbing system. There are few detailed studies of the growth patterns of young volcanic cones, but such data are essential in understanding the dynamics of andesitic systems. More than 60 lavas and pyroclastic units mapped on different sectors of Ngauruhoe cone have been correlated by flow chronology and their distinctive compositions into five groups. Although the cone has grown rapidly, Ngauruhoe shows little evidence for the existence of large crustal magma reservoirs and long-lived magma batches. Instead, abrupt and non-systematic changes in magma chemistry and isotopic composition between and within the five groups indicate that the volcano has an open-system, multi-process, multi-directional character and erupts small (<0.1 km3) and short-lived (100-103 years) magma batches with no simple time-composition relationships between successive batches.  相似文献   

12.
Available geophysical and geologic data provide a simplified model of the current magmatic plumbing system of Mount St. Helens (MSH). This model and new geochemical data are the basis for the revised hazards assessment presented here. The assessment is weighted by the style of eruptions and the chemistry of magmas erupted during the past 500 years, the interval for which the most detailed stratigraphic and geochemical data are available. This interval includes the Kalama (A. D. 1480–1770s?), Goat Rocks (A.D. 1800–1857), and current eruptive periods. In each of these periods, silica content decreased, then increased. The Kalama is a large amplitude chemical cycle (SiO2: 57%–67%), produced by mixing of arc dacite, which is depleted in high field-strength and incompatible elements, with enriched (OIB-like) basalt. The Goat Rocks and current cycles are of small amplitude (SiO2: 61%–64% and 62%–65%) and are related to the fluid dynamics of magma withdrawal from a zoned reservoir. The cyclic behavior is used to forecast future activity. The 1980–1986 chemical cycle, and consequently the current eruptive period, appears to be virtually complete. This inference is supported by the progressively decreasing volumes and volatile contents of magma erupted since 1980, both changes that suggest a decreasing potential for a major explosive eruption in the near future. However, recent changes in seismicity and a series of small gas-release explosions (beginning in late 1989 and accompanied by eruption of a minor fraction of relatively low-silica tephra on 6 January and 5 November 1990) suggest that the current eruptive period may continue to produce small explosions and that a small amount of magma may still be present within the conduit. The gas-release explosions occur without warning and pose a continuing hazard, especially in the crater area. An eruption as large or larger than that of 18 May 1980 (0.5 km3 dense-rock equivalent) probably will occur only if magma rises from an inferred deep (7 km), relative large (5–7 km3) reservoir. A conservative approach to hazard assessment is to assume that this deep magma is rich in volatiles and capable of erupting explosively to produce voluminous fall deposits and pyroclastic flows. Warning of such an eruption is expectable, however, because magma ascent would probably be accompanied by shallow seismicity that could be detected by the existing seismic-monitoring system. A future large-volume eruption (0.1 km3) is virtually certain; the eruptive history of the past 500 years indicates the probability of a large explosive eruption is at least 1% annually. Intervals between large eruptions at Mount St. Helens have varied widely; consequently, we cannot confidently forecast whether the next large eruption will be years decades, or farther in the future. However, we can forecast the types of hazards, and the areas that will be most affected by future large-volume eruptions, as well as hazards associated with the approaching end of the current eruptive period.  相似文献   

13.
Horizontal ground deformation measurements were made repeatedly with an electronic distance meter near the Puu Oo eruption site approximately perpendicular to Kilauea's east rift zone (ERZ) before and after eruptive episodes 22–42. Line lengths gradually extended during repose periods and rapidly contracted about the same amount following eruptions. The repeated extension and contraction of the measured lines are best explained by the elastic response of the country rock to the addition and subsequent eruption of magma from a local reservoir. The deformation patterns are modeled to constrain the geometry and location of the local reservoir near Puu Oo. The observed deformation is consistent with deformation patterns that would be produced by the expansion of a shallow, steeply dipping dike just uprift of Puu Oo striking parallel to the trend of the ERZ. The modeled dike is centered about 800 m uprift of Puu Oo. Its top is at a depth of 0.4 km, its bottom at about 2.9 km, and the length is about 1.6 km; the dike strikes N65° E and dips at about 87°SE. The model indicates that the dike expanded by 11 cm during repose periods, for an average volumetric expansion of nearly 500 000 m3. The volume of magma added to the dike during repose periods was variable but correlates positively with the volume of erupted lava of the subsequent eruption and represents about 8% of the new lava extruded. Dike geometry and expansion values are used to estimate the pressure increase near the eruption site due to the accumulation of magma during repose periods. On average, vent pressures increased by about 0.38 MPa during the repose periods, one-third of the pressure increase at the summit. The model indicates that the dikelike body below Puu Oo grew in volume from 3 million cubic meters (Mm3) to about 10–12 Mm3 during the series of eruptions. The width of this body was probably about 2.5–3.0 m. No net long-term deformation was detected along the measured deformation lines.  相似文献   

14.
Mt. Etna, in Sicily (Italy) is well known for frequent effusive and explosive eruptions from both its summit and flanks. South-East Crater (SE Crater), one of the four summit craters, has been the most active in the last 20 years and often produces episodic lava fountains over periods lasting from a few weeks to months. The most striking of such eruptive phases was in 2000. Sixty four lava fountains, separated by quiescent intervals and sometimes associated with lava overflows, occurred that year between January and June, a time period during which we consider the volcano to have been in episodic eruption. This paper presents mainly results of petrochemical investigations carried out on both tephra and lavas collected during a number of the lava fountain episodes in 2000. The new data have been integrated with volcanological and seismic information in order to correlate the features of the eruptive activity with magma-gas dynamics in the plumbing system of SE Crater. The main findings allow us to characterise the 2000 episodic eruption in the framework of the recent SE Crater activity. In particular, we infer that the onset of the 2000 eruption was triggered by the ascent of new, more primitive and volatile-rich magma that progressively intruded into the SE Crater reservoir, where it mixed with the resident, more evolved magma. Furthermore, we argue that the 2000 SE Crater lava fountains largely resulted from the instability of a foam layer accumulated at the top of the underlying reservoir and rebuilt prior to each episode, in agreement with the collapsing foam model for lava fountains.  相似文献   

15.
Following the 2001 and 2002–2003 flank eruptions, activity resumed at Mt. Etna on 7 September 2004 and lasted for about 6 months. This paper presents new petrographic, major and trace element, and Sr–Nd isotope data from sequential samples collected during the entire 2004–2005 eruption. The progressive change of lava composition allowed defining three phases that correspond to different processes controlling magma dynamics inside the central volcano conduits. The compositional variability of products erupted up to 24 September is well reproduced by a fractional crystallization model that involves magma already stored at shallow depth since the 2002–2003 eruption. The progressive mixing of this magma with a distinct new one rising within the central conduits is clearly revealed by the composition of the products erupted from 24 September to 15 October. After 15 October, the contribution from the new magma gradually becomes predominant, and the efficiency of the mixing process ensures the emission of homogeneous products up to the end of the eruption. Our results give insights into the complex conditions of magma storage and evolution in the shallow plumbing system of Mt. Etna during a flank eruption. Furthermore, they confirm that the 2004–2005 activity at Etna was triggered by regional movements of the eastern flank of the volcano. They caused the opening of a complex fracture zone extending ESE which drained a magma stored at shallow depth since the 2002–2003 eruption. This process favored the ascent of a different magma in the central conduits, which began to be erupted on 24 September without any significant change in eruptive style, deformation, and seismicity until the end of eruption.  相似文献   

16.
Stromboli volcano has been in continuous eruption for several thousand years without major changes in the geometry and feeding system. The thermal structure of its upper part is therefore expected to be close to steady state. In order to mantaim explosive activity, magma must release both gas and heat. It is shown that the thermal and gas budgets of the volcano lead to consistent conclusions. The thermal budget of the volcano is studied by means of a finite-element numerical model under the assumption of conduction heat transfer. It is found that the heat loss through the walls of an eruption conduit is weakly sensitive to the dimensions of underlying magma reservoirs and depends mostly on the radius and length of the conduit. In steady state, this heat loss must be balanced by the cooling of magma which flows through the system. For the magma flux of about 1 kg s-1 corresponding to normal Strombolian activity, this requires that the conduits are a few meters wide and not deeper than a few hundred meters. This implies the existence of a magma chamber at shallow depth within the volcanic edifice. This conclusion is shown to be consistent with considerations on the thermal effects of degassing. In a Strombolian explosion, the mass ratio of gas to lava is very large, commonly exceeding two, which implies that the thermal evolution of the erupting mixture is dominated by that of the gas phase. The large energy loss due to decompression of the gas phase leads to decreased eruption temperatures. The fact that lava is molten upon eruption implies that the mixture does not rise from more than about 200 m depth. To sustain the magmatic and volcanic activity of Stromboli, a mass flux of magma of a few hundred kilograms per second must be supplied to the upper parts of the edifice. This represents either the rate of magma production from the mantle source feeding the volcano or the rate of magma overturn in the interior of a large chamber.  相似文献   

17.
The 2007 effusive eruption of Stromboli followed a similar pattern to the previous 2002–2003 episode. In both cases, magma ascent led to breaching of the uppermost part of the conduit forming an eruptive fissure that discharged lava down the Sciara del Fuoco depression. Both eruptions also displayed a ‘paroxysmal’ explosive event during lava flow output. From daily effusion rate measurements retrieved from helicopter- and satellite-based infrared imaging, we deduce that the cumulative volume of lava erupted before each of the two paroxysms was similar. Based on this finding, we propose a conceptual model to explain why both paroxysms occurred after this ‘threshold’ cumulative volume of magma was erupted. The gradual decompression of the deep plumbing system induced by magma withdrawal and eruption, drew deeper volatile-rich magma into the conduit, leading to the paroxysms. The proposed model might provide a basis for forecasting paroxysmal explosions during future effusive eruptions of Stromboli.  相似文献   

18.
One of the fundamental questions in modern volcanology is the manner in which a volcanic eruption is triggered; the intrusion of fresh magma into a reservoir is thought to be a key component. The amount by which previously ponded reservoir magma interacts with a newly intruded magma will determine the nature and rate of eruption as well as the chemistry of erupted lavas and shallow dykes. The physics of this interaction can be investigated through a conventional monitoring procedure that incorporates the simple and much used Mogi model relating ground deformation (most simply represented by Δh) to changes in volume of a magma reservoir. Gravity changes (Δg) combined with ground deformation provide information on magma reservoir mass changes. Our models predict how, during inflation, the observed Δgh gradient will evolve as a volcano develops from a state of dormancy through unrest into a state of explosive activity. Calderas in a state of unrest and large composite volcanoes are the targets for the methods proposed here and are exemplified by Campi Flegrei, Rabaul, Krafla, and Long Valley. We show here how the simultaneous measurement of deformation and gravity at only a few key stations can identify important precursory processes within a magma reservoir prior to the onset of more conventional eruption precursors.  相似文献   

19.
Mount Etna volcano was shaken during the summer 2001 by one of the most singular eruptive episodes of the last centuries. For about 3 weeks, several eruptive fractures developed, emitting lava flows and tephra that significantly modified the landscape of the southern flank of the volcano. This event stimulated the attention of the scientific community especially for the simultaneous emission of petrologically distinct magmas, recognized as coming from different segments of the plumbing system. A stratigraphically controlled sampling of tephra layers was performed at the most active vents of the eruption, in particular at the 2,100 m (CAL) and at the 2,550 m (LAG) scoria cones. Detailed scanning electron microscope and energy dispersive x-ray spectrometer (SEM-EDS) analyses performed on glasses found in tephra and comparison with lava whole rock compositions indicate an anomalous increase in Ti, Fe, P, and particularly of K and Cl in the upper layers of the LAG sequence. Mass balance and thermodynamic calculations have shown that this enrichment cannot be accounted for by “classical” differentiation processes, such as crystal fractionation and magma mixing. The analysis of petrological features of the magmas involved in the event, integrated with the volcanological evolution, has evidenced the role played by volatiles in controlling the magmatic evolution within the crustal portion of the plumbing system. Volatiles, constituted of H2O, CO2, and Cl-complexes, originated from a deeply seated magma body (DBM). Their upward migration occurred through a fracture network possibly developed by the seismic swarms during the period preceding the event. In the upper portion of the plumbing system, a shallower residing magma body (ABT) had chemical and physical conditions to receive migrating volatiles, which hence dissolved the mobilized elements producing the observed selective enrichment. This volatile-induced differentiation involved exclusively the lowest erupted portion of the ABT magma due to the low velocity of volatiles diffusion within a crystallizing magma body and/or to the short time between volatiles migration and the onset of the eruption. Furthermore, the increased amount of volatiles in this level of the chamber strongly affected the eruptive behavior. In fact, the emission of these products at the LAG vent, towards the end of the eruption, modified the eruptive style from classical strombolian to strongly explosive.  相似文献   

20.
 During the 1944 eruption of Vesuvius a sudden change occurred in the dynamics of the eruptive events, linked to variations in magma composition. K-phonotephritic magmas were erupted during the effusive phase and the first lava fountain, whereas the emission of strongly porphyritic K-tephrites took place during the more intense fountain. Melt inclusion compositions (major and volatile elements) highlight that the magmas feeding the eruption underwent differentiation at different pressures. The K-tephritic volatile-rich melts (up to 3 wt.% H2O, 3000 ppm CO2, and 0.55 wt.% Cl) evolved to reach K-phonotephritic compositions by crystallization of diopside and forsteritic olivine at total fluid pressure higher than 300 MPa. These magmas fed a very shallow reservoir. The low-pressure differentiation of the volatile-poor K-phonotephritic magmas (H2O<1 wt.%) involved mixing, open-system degassing, and crystallization of leucite, salite, and plagioclase. The eruption was triggered by intrusion of a volatile-rich magma batch that rose from a depth of 11–22 km into the shallow magma chamber. The first phase of the eruption represents the partial emptying of the shallow reservoir, the top of which is within the volcanic edifice. The newly arrived magma mixed with that resident in the shallow reservoir and forced the transition from the effusive to the lava fountain phase of the eruption. Received: 14 September 1998 / Accepted: 10 January 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号