首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A major eruption produced several block-and-ash flows about 4,100 years B.P. at Citlaltépetl volcano (Pico de Orizaba), an ice-capped, 5670-m-high, andesitic, active stratovolcano located at the eastern end of the Mexican Volcanic Belt. Repetitive gravitational collapse of a dacitic dome at the summit crater produced a series of block-and-ash flows, lahars, and floods, which were channeled through two main river-valleys on the west and south flanks of the volcano. The total erupted volume is estimated to be at least 0.27 km3. The deposits in both areas are similar in composition, and size, but they differ in the area covered, distribution, and structure. The western deposits form a large fan, cover a larger area, and include numerous laharic and fluviatile deposits. In contrast, the southern deposits form prominent terraces where confined in narrow channels, and have associated laharic units in distal areas, where the flows reach a maximum distance of 30 km from the vent. Directed disruptions of a central summit dome occurred, possibly first to the west and then to the southeast, perhaps due to minor modifications of the summit dome morphology, producing the voluminous block-and-ash flow deposits documented here. The flows were strongly controlled by topography, influencing the deposition of the moving particles. Grain-size variations along the flow paths are hardly detectable suggesting no evident lateral downstream transformations. Because sudden changes in dome morphology may cause significant variations in the direction of future dome collapse, specific areas of potential affectation cannot be predicted. Therefore, about 350,000 inhabitants living within a radius of 35-km from the vent could be potentially impacted if catastrophic block-and-ash flows were to recur in the future from similar summit dome activity. Recognition of these deposits is therefore important for hazard assessment because some seemingly safe areas may be at high risk.  相似文献   

3.
During volcanic explosions, volcanic ballistic projectiles (VBP) are frequently ejected. These projectiles represent a threat to people, infrastructure, vegetation, and aircraft due to their high temperatures and impact velocities. In order to protect people adequately, it is necessary to delimit the projectiles’ maximum range within well-defined explosion scenarios likely to occur in a particular volcano. In this study, a general methodology to delimit the hazard zones for VBP during volcanic eruptions is applied to Popocatépetl volcano. Three explosion scenarios with different intensities have been defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with VBP ejected during previous eruptions. A ballistic model is used to reconstruct the “launching” kinetic energy of VBP observed in the field. In the case of Vulcanian eruptions, the most common type of activity at Popocatépetl, the ballistic model was used in concert with an eruptive model to correlate ballistic range with initial pressure and gas content, parameters that can be estimated by monitoring techniques. The results are validated with field data and video observations of different Vulcanian eruptions at Popocatépetl. For each scenario, the ballistic model is used to calculate the maximum range of VBP under optimum “launching” conditions: ballistic diameter, ejection angle, topography, and wind velocity. Our results are presented in the form of a VBP hazard map with topographic profiles that depict the likely maximum ranges of VBP under explosion scenarios defined specifically for Popocatépetl volcano. The hazard zones shown on the map allow the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.  相似文献   

4.
El Chichón volcano (Chiapas, Mexico) erupted violently in March–April 1982, breaching through the former volcano–hydrothermal system. Since then, the 1982 crater has hosted a shallow (1–3.3 m, acidic (pH ∼ 2.2) and warm (∼ 30 °C) crater lake with a strongly varying chemistry (Cl/SO4 = 0–79 molar ratio). The changes in crater lake chemistry and volume are not systematically related to the seasonal variation of rainfall, but rather to the activity of near-neutral geyser-like springs in the crater (Soap Pool). These Soap Pool springs are the only sources of Cl for the lake. Their geyser-like behaviour with a long-term (months to years) periodicity is due to a specific geometry of the shallow boiling aquifer beneath the lake, which is the remnant of the 1983 Cl-rich (24,000 mg/l) crater lake water. The Soap Pool springs decreased in Cl content over time. The zero-time extrapolation (1982, year of the eruption) approaches the Cl content in the initial crater lake, meanwhile the extrapolation towards the future indicates a zero-Cl content by 2009 ± 1. This particular situation offers the opportunity to calculate mass balance and Cl budget to quantify the lake–spring system in the El Chichón crater. These calculations show that the water balance without the input of SP springs is negative, implying that the lake should disappear during the dry season. The isotopic composition of lake waters (δD and δ18O) coincide with this crater lake-SP dynamics, reflecting evaporation processes and mixing with SP geyser and meteoric water. Future dome growth, not observed yet in the post-1982 El Chichón crater, may be anticipated by changes in lake chemistry and dynamics.  相似文献   

5.
Popocatépetl Volcano is located in the central Mexican Volcanic Belt, within a densely populated region inhabited by over 20 million people. The eruptive history of this volcano indicates that it is capable of producing a wide range of eruptions, including Plinian events. After nearly 70 years of quiescence, Popocatépetl reawakened in December 21, 1994. The eruptive activity has continued up until the date of this submission and has been characterized by a succession of lava dome growth-and-destruction episodes, similar to events that have apparently been typical for Popocatépetl since the fourteenth century. In this regime, the episodes of effusive and moderately explosive activity alternate with long periods of almost total quiescence. In this paper we analyze five years of volcano-tectonic seismicity preceding the initial eruption of the current episode. The evolution of the V-T seismicity shows four distinct stages, which we interpret in terms of the internal processes which precede an eruption after a long period of quiescence. The thermal effects of a magma intrusion at depth, the fracturing related to the slow development of magma-related fluid pathways, the concentration of stress causing a protracted acceleration of this process, and a final relaxation or redistribution of the stress shortly before the initial eruption are reflected in the rates of V-T seismic energy release. A hindsight analysis of this activity shows that the acceleration of the seismicity in the third stage asymptotically forecast the time of the eruption. The total seismic energy release needed to produce an eruption after a long period of quiescence is related to the volume of rock that must be fractured so imposing a characteristic threshold limit for polygenetic volcanoes, limit that was reached by Popocatépetl before the eruption.  相似文献   

6.
We evaluate the paraglacial activity in Nexpayantla, a subtropical mountainous gorge in Popocatépetl volcano (Central Mexico), fully deglaciated in the 20th century. Glacial advances are evidenced by the presence of moraines. Fluvio-glacial terraces and an alluvial megafan resulted from the gorge deglaciation. Current reworking of the glacigenic material is done by landslides and debris flows produced on the moraines and terraces. To study the different phases of mobilization of glacigenic sediment, we used an approach based on the study of the optically stimulated luminescence (OSL) signals obtained from a portable OSL (POSL) reader in samples extracted from both glacigenic and paraglacial deposits. The luminescence (POSL) results obtained at moraines increase as altitude decreases, which is expected for deglaciated valleys where the oldest moraines are located at lower elevations. We evaluate the grade of luminescence signal reset of the glacigenic sediments during the proglacial stage, and the subsequent deglaciation phases. Our results indicate that there is a marked transition between glacial and fluvially dominated processes at Nexpayantla Gorge. We find that the grade of luminescence signal resetting in the paraglacial deposits is a good indicator to trace paraglacial stages and the beginning of exhaustion of the paraglacial activity in mountain areas. OSL ages confirm that the oldest fluvio-glacial terraces found at the middle sector of Nexpayantla Gorge are ~2 ka, which is also supported by an AMS 14C age. OSL dating was found challenging, since quartz grains have low sensitivity because of their volcanic origin; POSL signals, however, are in good agreement with the location and distribution of geomorphic markers. We propose that luminescence data obtained from the POSL unit can be useful to provide information about sediment mobilization in paraglacial environments during different climatic pulses – even for the case where mineral grains have low sensitivity, such as in volcanic sediments. © 2020 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Lastarria volcano (25°10′ S, 68°31′ W; 5,697 m above sea level), located in the Central Andes Volcanic Zone (northern Chile), is characterized by four distinct fumarolic fields with outlet temperatures ranging between 80°C and 408°C as measured between May 2006–March 2008 and April–June 2009. Fumarolic gasses contain significant concentrations of high temperature gas compounds (i.e., SO2, HCl, HF, H2, and CO), and isotopic ratios (3He/4He, δ13C–CO2, δ18O–H2O, and δD–H2O) diagnostic of magmatic gas sources. Gas equilibria systematics, in both the H2O-H2-CO2-CO-CH4 and alkane–alkene C3 system, suggest that Lastarria fumarolic gasses emanate from a superheated vapor that is later cooled and condensed at relatively shallow depths. This two-stage process inhibits the formation of a continuous aquifer (e.g., horizontal liquid layer) at relatively shallow depth. Recent developments in the magmatic gas system may have enhanced the transfer and release of heat causing shallow aquifer vaporization. The consequent pressure increase and aquifer vaporization likely triggered the inflation events beginning in 2003 at the Lastarria volcano.  相似文献   

9.
10.
After the earthquakes of September 26, 1997, that hit the Umbria-Marcheboundary (Apennine, Central Italy), with a maximum 6.0 Mw, aprogram of geochemical surveying together with a collection ofhydrogeological changes episodes was extended throughout theepicentre-area, taking the yearly period of the seismic sequence as a whole.After a first areal screening, the Bagni di Triponzo thermal spring wasselected for a discrete temporal monitoring (weekly and monthly basis),being the unique thermal spring throughout the epicentre area. This sitedeserves peculiar interest in deepening the knowledge about deep fluidscirculation changing during seismicity.Laboratory and on-field analyses included major, minor and trace elementsas well as dissolved gases (He, Ar, CH4, CO2, H2S,222Rn, NH4, As, Li, Fe, B, etc...) and selected isotopic ratios(C, H, O, He, Sr, Cl), meaningful from tectonic point of view.The chemistry and isotopic chemistry of the spring were fully outlined anddiscussed, pointing out the main process involving the thermal aquifer: thewater-rock interaction inside the Evaporite Triassic Basement (ETB),possibly involving also the Paleozoic Crystalline Basement. On theother hand, sudden and apparent geochemical and hydrogeologicalvariations during the seismic sequence ruled out an evolution in thewater-rock interaction processes. They occurred both at depth, i.e.,induced by fluid remobilization within the crust explained by the Coseismic Strain Model and by the Fault Valve Activity Model, and in the shallow part of the reservoir (i.e., meteoric watercontamination). A statistical multivariable analysis (Factor Analysis) wasaccomplished to better constrain the correlation between the paroxysmalphases of the seismic sequence and the observed trends and spike-likeanomalies. The groundwater variations was inferred to occur mainly insidethe ETB, from depth (1–2 km) up to surface, particularly in associationof the Sellano earthquake (14/10/1997) and of the seismic re-activationof the sequence at the end of March 1998 (Gualdo Tadino-Rigali andVerchiano areas). The lack of deeper input from below the ETB (slightsignature of PCB), as the lack of He mantle signature, during the seismicperiod as a whole, accounted for seismogenic fault segments rooted onlyin the crust. The results also provide useful information about theearthquake-related response mechanisms occurring at this site, thatrepresent the basic task for planning and managing the impendinghydro-geochemical network aimed at defining the relationships betweenseismic cycle, fluids and reliable earthquake forerunners.  相似文献   

11.
As is well known, researches on rupture process of earthquakes can not only deepen our understanding of earthquake occurrence, but also help to achieve earthquake prediction, which is one of the most difficult scientific problems in the world. Seismologists always pay great attention to it. Since the beginning of 1990s, they have aimed at the time-space variation of earthquake source rupture during the mainshock. In their works the digital data of seismic waves are inverted for the rupture pro…  相似文献   

12.
The block-lava effusion at Volcán de Colima, México began on November 20, 1998, after 12 months of seismic activity, and ended about 80 days later. Three types of seismic events were observed during the lava effusion. Volcano—tectonic earthquakes occurred mainly at the very beginning and after the termination of lava effusion. Explosion earthquakes occurred frequently during the period of the maximum rate in lava effusion. The remainder of the seismic signals were associated with pyroclastic flows and rockfalls from the lava dome. These latter signals increased sharply in number at the onset of lava effusion. The rate of occurrence remained high when the lava discharge rate decreased but gradually decreased after the termination of lava effusion. Maximum daily durations of seismic signals are proportional to the daily volumetric output of lava, indicating the dependence of the number of pyroclastic flows on the rate of lava output. A log-log plot of seismic signal duration vs. number of events with this duration displays a linear relationship. The short-period seismic signals can be divided into three categories based on duration: short events with durations less than 100 s; intermediate events with durations between 100 and 250 s; and long events with durations longer than 250 s. We infer that long events correspond to pyroclastic flows with mean deposit volume 2×105 m3, and intermediate events represent pyroclastic flows with mean deposit volume 1×103 m3.Editorial responsibility: J McPhie  相似文献   

13.
Introduction The January 10, 1998 Zhangbei-Shangyi, Hebei Province, earthquake has been the third large event of magnitude 6.0 and greater since the 1976 great Tangshan earthquake of magnitude 7.8 in the northern China (33皛42癗, 110皛124癊). Before this event, there were only two events of magnitude 6.0 and greater occurred in or around the Tangshan area since 1976: the M=6.9 Ninghe, Tianjin, earthquake of November 15, 1976 and the M=6.2 Hangu, Tianjin, earthquake of May 12, 1977. The …  相似文献   

14.
The continuous background seismic activity contains information on the internal state of a volcanic system. Here, we report the influence of major regional tectonic earthquakes (M > 5 in most cases) on such state, reflected as changes in the spectral and dynamical parameters of the volcano continuous seismic data. Although changes do not always occur, analysis of five cases of earthquake-induced variations in the signals recorded at Popocatépetl volcano in central México reveal significant fluctuations following the tectonic earthquakes. External visible volcanic activity, such as small to moderate explosions and ash emissions, were related to those fluctuations. We briefly discuss possible causes of the variations. We conclude that recognition of fluctuations in the dynamical parameters in volcano monitoring seismic signals after tectonic earthquakes, even those located in the far field, hundreds of kilometers away, may provide an additional criterion for eruption forecasting, and for decision making in the definition of volcanic alert levels.  相似文献   

15.
16.
Observations of the summit eruption of Klyuchevskoi volcano in the period from February 15, 2007 to July 9, 2007 are considered. This typical (for this volcano) summit eruption was explosive-effusive in character. The ejectamenta volume is estimated at 0.025 km3. Calculation of active phases of the volcano was carried out in accordance with V.A. Shirokov’s technique. The identified active phases agree well with the eruptive periods. The 2007 summit eruption corresponds to an active phase (May 2006 to May 2009) favorable for the volcano’s eruption. Geodetic observations carried out since 1979 along a radial profile have revealed uplifts and subsidences of the northeastern slope of the volcano. The maximum displacement of 23 cm was recorded in 2007 on the site closest to the volcano crater at a distance of 11 km from the summit crater center. In the course of two previous summit eruptions (2003–2004 and 2005) insignificant uplifts and subsidences of the slope were also noted, although the general ascent of the slope remained. This indicated possible repeated eruptions in the nearest future. Changes in the seismicity before, during and after the eruption are also discussed.  相似文献   

17.
We investigated the impacts on buildings of three pyroclastic surges that struck three separate villages on 25 June, 21 September and 26 December, 1997, during the course of the andesitic dome building eruption of the Soufrière Hills Volcano, Montserrat, which began on 18 July, 1995. A detailed analysis of the building damage of the 26 December event was used to compare the findings on the flow and behaviour of dilute pyroclastic density currents (PDCs) with the classical reports of PDCs from historical eruptions of similar size. The main characteristics of the PDC, as inferred from the building damage, were the lateral loading and directionality of the current; the impacts corresponded to the dynamic pressure of the PDC, with a relatively slow rate of rise and without the peak overpressure or a shock front associated with explosive blast; and the entrainment of missiles and ground materials which greatly added to the destructiveness of the PDC. The high temperature of the ash, causing the rapid ignition of furniture and other combustibles, was a major cause of damage even where the dynamic pressure was low at the periphery of the current. The vulnerability of buildings lay in the openings, mainly windows, which allowed the current to enter the building envelope, and in the flammable contents, as well as the lack of resistance to the intense heat and dynamic pressure of some types of vernacular building construction, such as wooden chattel houses, rubble masonry walls and galvanised steel-sheet roofs. Marked variability in the level of damage due to dynamic pressure (in a range 1–5 kPa, or more) was evident throughout most of the impact area, except for the zone of total loss, and this was attributable to the effects of topography and sheltering, and projectiles, and probably localised variations in current velocity and density. A marked velocity gradient existed from the outer part to the central axis of the PDC, where buildings and vegetation were razed to the ground. The gradient correlated with the impacts due to lateral loading and heat transfer, as well as the size of the projectiles, whilst the temperature of the ash in the undiluted PDC was probably uniform across the impact area. The main hazard characteristics of the PDCs were very consistent with those described by other authors in the classic eruptions of Pelée (1902), Lamington (1951) and St Helens (1980), despite differences in the eruptive styles and scales. We devised for the first time a building damage scale for dynamic pressure which can be used in research and in future volcanic emergencies for modelling PDCs and making informed judgements on their potential impacts. Editorial responsibility: T. Druitt  相似文献   

18.
The aim of this study is the refinement of the dynamics of a recent (1994?C1999) minor, slow-inflation episode of the Santorini (Thera) volcano, famous for the Minoan (??3600 B.C.) eruption and the identification of the parameters of the magmatic source responsible for the inflation. Based on the Mogi source equations, on geodetic observations of base-line changes, on a topological, grid-search approach and on the reasonable assumption that the magma source remained practically stable in map view during the inflation period, we have been able to refine the location and depth (approximately 2.7 km) of the magma center. A tendency for increase of the magma pressure with time, roughly corresponding to a sphere with radius between 30 and 60 m, and a short deflation interval were also documented. The overall modeling was based on a topological method of inversion in two steps and for a selected 4-D grid. At a first step the system of Mogi-source equations was approximated by the intersection of the 4-D subspaces (defined by sets of grid points) each satisfying one observation equation on the basis of a grid-search procedure. At a second step, the best estimate of the Mogi source solution and its full variance-covariance matrix were defined using a common stochastic approach. The overall approach leads to a solution of a system of equations focusing on a 4-D space bounding significant minima in the misfits between model and observed values, and not on solutions focusing on single points, usually trapped in local minima. This study is important to understand a new phase of volcanic unrest since January 2011, while the proposed methodology, inspired from traditional navigation methods may be useful for other inversion problems leading to redundant systems of highly non-linear equations with n unknowns (i.e. topological solutions in the n-D space).  相似文献   

19.
IntroductionEarthquake location is one of the inverse problems in seismology. The accurate earthquake source location is the basis of studies of earthquake images, the relation analysis between seismicity and tectonics, and the important parameters of earthquakes. It is also the basic data used to study the space distribution of aftershocks after a strong earthquake. The earthquake location accuracy mainly depends on reliability of the velocity models for the earth(s crust, the reasonable desi…  相似文献   

20.
Introduction On January 10, 1998, at 11h50min Beijing Time (03h50min UTC), an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. In total 87 events with ML3.0 were recorded by Beijing Telemetry Seismic Network (BTSN) before March of 1999. Before relocation the preliminary hypocenters determined by BTSN showed an epicentral distribution of 25 km long and 25 km wide without any predominate orientation. The epicentral a…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号