首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 216 毫秒
1.
Four Holocene-long East Antarctic deuterium excess records are used to study past changes of the hydrological cycle in the Southern Hemisphere. We combine simple and complex isotopic models to quantify the relationships between Antarctic deuterium excess fluctuations and the sea surface temperature (SST) integrated over the moisture source areas for Antarctic snow. The common deuterium excess increasing trend during the first half of the Holocene is therefore interpreted in terms of a warming of the average ocean moisture source regions over this time. Available Southern Hemisphere SST records exhibit opposite trends at low latitudes (warming) and at high latitudes (cooling) during the Holocene. The agreement between the Antarctic deuterium excess and low-latitude SST trends supports the idea that the tropics dominate in providing moisture for Antarctic precipitation. The opposite trends in SSTs at low and high latitudes can potentially be explained by the decreasing obliquity during the Holocene inducing opposite trends in the local mean annual insolation between low and high latitudes. It also implies an increased latitudinal insolation gradient that in turn can maintain a stronger atmospheric circulation transporting more tropical moisture to Antarctica. This mechanism is supported by results from a mid-Holocene climate simulation performed using a coupled ocean-atmosphere model. Received: 7 July 1999 / Accepted: 21 July 2000  相似文献   

2.
We review here proxy records of temperature and precipitation in China during the Holocene, especially the last two millennia. The quality of proxy data, methodology of reconstruction, and uncertainties in reconstruction were emphasized in comparing different temperature and precipitation reconstruction and clarifying temporal and spatial patterns of temperature and precipitation during the Holocene. The Holocene climate was generally warm and wet. The warmest period occurred in 9.6-6.2 cal ka BP, whereas a period of maximum monsoon precipitation started at about 11.0 cal ka BP and lasted until about 8.0-5.0 cal ka BP. There were a series of millennial-scale cold or dry events superimposed on the general trend of climate changes. During past two millennia, a warming trend in the 20th century was clearly detected, but the warming magnitude was smaller than the maximum level of the Medieval Warm Period and the Middle Holocene. Cold conditions occurred over the whole of China during the Little Ice Age (AD 1400-AD 1900), but the warming of the Medieval Warm Period (AD 900-AD 1300) was not distinct in China, especially west China. The spatial pattern of precipitation showed significant regional differences in China, especially east China. The modern warm period has lasted 20 years from 1987 to 2006. Bi-decadal oscillation in precipitation variability was apparent over China during the 20th century. Solar activity and volcanic eruptions both were major forcings governing the climate variability during the last millennium.  相似文献   

3.
By using a climate system model of intermediate complexity, we have simulated long-term natural climate changes occurring over the last 9000 years. The paleo-simulations in which the model is driven by orbital forcing only, i.e., by changes in insolation caused by changes in the Earth's orbit, are compared with sensitivity simulations in which various scenarios of increasing atmospheric CO2 concentration are prescribed. Focussing on climate and vegetation change in northern Africa, we recapture the strong greening of the Sahara in the early and mid-Holocene (some 9000–6000 years ago), and we show that some expansion of grasslandinto the Sahara is theoretically possible, if the atmospheric CO2 concentration increases well above pre-industrial values and if vegetation growth is not disturbed. Depending on the rate of CO2 increase, vegetation migration into the Sahara can be rapid, up to 1/10th of the Saharan area per decade, but could not exceed a coverage of 45%. In ourmodel, vegetation expansion into today's Sahara is triggered by an increase in summer precipitation which is amplified by a positive feedback between vegetation and precipitation. This is valid for simulations with orbital forcing and greenhouse-gas forcing. However, we argue that the mid-Holocene climate optimum some 9000 to 6000 years ago with its marked reduction of deserts in northern Africa is not a direct analogue for future greenhouse-gas induced climate change, as previously hypothesized. Not only does the global pattern of climate change differ between the mid-Holocene model experiments and the greenhouse-gas sensitivity experiments, but the relative role of mechanisms which lead to a reduction of the Sahara also changes. Moreover, the amplitude of simulated vegetation cover changes in northern Africa is less than is estimated for mid-Holocene climate.  相似文献   

4.
Climate drift in preindustrial control (PICTL) simulations can lead to spurious climate trends and large uncertainties in historical and future climate simulations in coupled models. This study examined the long-term behaviors and stabilities of the PICTL simulations in the two versions of FGOALS2 (the Flexible Global Ocean-Atmosphere-Land System model Version 2), which have been submitted to the Coupled Model Inter-comparison Project Phase 5 (CMIP5). As verified by examining time series of thermal fields and their linear trends, the PICTL simulations showed stable long-term integration behaviors and no obvious climate drift [the magnitudes of linear trends of SST were both less than 0.04oC (100 yr)-1] over multiple centuries. The changed SSTs in a century (that corresponded to the linear trends) were less than the standard deviations of annual mean values, which implied the internal variability was not affected. These trend values were less than 10% of those of global averaged SST from observations and historical runs during the periods of slow and rapid warming. Such stable long-term integration behaviors reduced the uncertainty of the estimation of global warming rates in the historical and future climate projections in the two versions of FGOALS2. Compared with the trends in the Northern Hemisphere, larger trends existed in the SST and sea ice extents at the middle to high latitudes of the Southern Hemisphere (SH). To estimate the historical and future climate trends in the SH or at some specific regions in FGOALS2, corrections needed to be carried out. The similar long-term behaviors in the two versions of FGOALS2 may be attributed to proper physical processes in the ocean model.  相似文献   

5.
We review here proxy records of temperatare and precipitation in China during the Holocene,especially the last two millennia.The quality of proxy data,methodology of reconstruction,and uncertainties in reconstruction were emphasized in comparing different temperatare and precipitation reconstruction and clarilying temporal and spatial patterns of temperature and precipitation during the Holocene.The Holocene climate was generally warm and wet.The warmest period occurred in 9.6-6.2 cal ka BP,whereas a period of maximum monsoon precipitation started at about 11.0 cal ka BP and lasted until about 8.O-5.0 cal ka BP.There were a series of millennial-scale cold or dry events superimposed on the general trend of climate changes.During past two millennia,a warming trend in the 20th century was clearly detected,but the warming magnitude was smaller than the maximum level of the Medieval Warm Period and the Middle Holocene.Cold conditions occurred over the whole of China during the Little Ice Age (AD 1400-AD 1900),but the warming of the Medieval Warm Period(AD 900-AD 1300)was not distinct in China,especially west China.The spatial pattern of precipitation showed significant regional differences in China,especially east China.The modern warm period has lasted 20、years from 1987 to 2006.Bi-decadal oscillation in precipitation variability was apparent over China during the 20th century. Solar activity and volcanic eruptions both were major forcings governing the climate variability during the last millennium.  相似文献   

6.
MM5对中全新世时期中国地区气候的模拟研究   总被引:1,自引:1,他引:1  
MM5模式结果与地质记录的对比表明,这个模式系统可以较好地模拟中全新世时气候的变化,特别是模式模拟的降水变化与地质记录吻合得较好.区域模式的结果比全球模式结果有所改进.模式结果显示:与现代相比,中全新世时,中国地区的气温升高,夏季升温超过冬季.同时,中国的内蒙古东部地区、东北地区和华北地区降水显著增加;而中国的华东、华中、华南和西南地区降水减少.中国东部30°N以北地区夏季风增强;中国东部的冬季风减弱.从一系列敏感试验结果,可以发现:在中全新世时,中国地区的气温、风场和降水的变化主要受大尺度环流背景场变化的影响,其对降水变化的影响超过50%.其次受地表状况和植被变化的影响,植被的变化主要影响中国东部地区,使得在冬季和夏季中国地区均升温;而且,对华北部分地区降水变化的影响最大超过25%.地球轨道的变化使得中全新世时太阳辐射的季节变化较大,造成中全新世时中国地区在冬季降温,在夏季升温;同时,对东北和华北地区的降水有重要影响,其影响与植被变化的影响相当.中全新世时,大气中CO2的体积混合比为280×10-6,CO2的变化使得中伞新世时气温降低,但量级较小.影响中全新世时中国地区气候变化的因子,按影响程度由大到小的排序为:大尺度环流背景场、植被变化、地球轨道参数变化和CO2浓度变化.  相似文献   

7.
Non-uniform interhemispheric temperature trends over the past 550 years   总被引:1,自引:0,他引:1  
The warming trend over the last century in the northern hemisphere (NH) was interrupted by cooling from ad 1940 to 1975, a period during which the southern hemisphere experienced pronounced warming. The cause of these departures from steady warming at multidecadal timescales are unclear; the prevailing explanation is that they are driven by non-uniformity in external forcings but recent models suggest internal climate drivers may play a key role. Paleoclimate datasets can help provide a long-term perspective. Here we use tree-rings to reconstruct New Zealand mean annual temperature over the last 550 years and demonstrate that this has frequently cycled out-of-phase with NH mean annual temperature at a periodicity of around 30–60 years. Hence, observed multidecadal fluctuations around the recent warming trend have precedents in the past, strongly implicating natural climate variation as their cause. We consider the implications of these changes in understanding and modelling future climate change.  相似文献   

8.
The land/sea warming contrast is a phenomenon of both equilibrium and transient simulations of climate change: large areas of the land surface at most latitudes undergo temperature changes whose amplitude is more than those of the surrounding oceans. Using idealised GCM experiments with perturbed SSTs, we show that the land/sea contrast in equilibrium simulations is associated with local feedbacks and the hydrological cycle over land, rather than with externally imposed radiative forcing. This mechanism also explains a large component of the land/sea contrast in transient simulations as well. We propose a conceptual model with three elements: (1) there is a spatially variable level in the lower troposphere at which temperature change is the same over land and sea; (2) the dependence of lapse rate on moisture and temperature causes different changes in lapse rate upon warming over land and sea, and hence a surface land/sea temperature contrast; (3) moisture convergence over land predominantly takes place at levels significantly colder than the surface; wherever moisture supply over land is limited, the increase of evaporation over land upon warming is limited, reducing the relative humidity in the boundary layer over land, and hence also enhancing the land/sea contrast. The non-linearity of the Clausius–Clapeyron relationship of saturation specific humidity to temperature is critical in (2) and (3). We examine the sensitivity of the land/sea contrast to model representations of different physical processes using a large ensemble of climate model integrations with perturbed parameters, and find that it is most sensitive to representation of large-scale cloud and stomatal closure. We discuss our results in the context of high-resolution and Earth-system modelling of climate change.  相似文献   

9.
Climate fluctuations in the North Atlantic Ocean have wide-spread implications for Europe, Africa, and the Americas. This study assesses the relative contribution of the long-term trend and variability of North Atlantic warming using EOF analysis of deep-ocean and near-surface observations. Our analysis demonstrates that the recent warming over the North Atlantic is linked to both long-term (including anthropogenic and natural) climate change and multidecadal variability (MDV, ~50–80 years). Our results suggest a general warming trend of 0.031 ± 0.006°C/decade in the upper 2,000 m North Atlantic over the last 80 years of the twentieth century, although during this time there are periods in which short-term trends were strongly amplified by MDV. For example, MDV accounts for ~60% of North Atlantic warming since 1970. The single-sign basin-scale pattern of MDV with prolonged periods of warming (cooling) in the upper ocean layer and opposite tendency in the lower layer is evident from observations. This pattern is associated with a slowdown (enhancement) of the North Atlantic thermohaline overturning circulation during negative (positive) MDV phases. In contrast, the long-term trend exhibits warming in tropical and mid-latitude North Atlantic and a pattern of cooling in regions associated with major northward heat transports, consistent with a slowdown of the North Atlantic circulation as evident from observations and confirmed by selected modeling results. This localized cooling has been masked in recent decades by warming during the positive phase of MDV. Finally, since the North Atlantic Ocean plays a crucial role in establishing and regulating the global thermohaline circulation, the multidecadal fluctuations discussed here should be considered when assessing long-term climate change and variability, both in the North Atlantic and at global scales.  相似文献   

10.
We examine trends in climate variables and their interrelationships over the Tibetan Plateau using global climate model simulations to elucidate the mechanisms for the pattern of warming observed over the plateau during the latter half of the twentieth century and to investigate the warming trend during the twenty-first century under the SRES A1B scenario. Our analysis suggests a 4°C warming over the plateau between 1950 and 2100. The largest warming rates occur during winter and spring. For the 1961–2000 period, the simulated warming is similar to the observed trend over the plateau. Moreover, the largest warming occurs at the highest elevation sites between 1950 and 2100. We find that increases in (1) downward longwave radiation (DLR) influenced by increases in surface specific humidity (q), and (2) absorbed solar radiation (ASR) influenced by decreases in snow cover extent are, in part, the reason for a large warming trend over the plateau, particularly during winter and spring. Furthermore, elevation-based increases in DLR (influenced by q) and ASR (influenced by snow cover and atmospheric aerosols) appear to affect the elevation dependent warming trend simulated in the model.  相似文献   

11.
This study provides a detailed analysis of the mid-Holocene to present-day precipitation change in the Asian monsoon region. We compare for the first time results of high resolution climate model simulations with a standardised set of mid-Holocene moisture reconstructions. Changes in the simulated summer monsoon characteristics (onset, withdrawal, length and associated rainfall) and the mechanisms causing the Holocene precipitation changes are investigated. According to the model, most parts of the Indian subcontinent received more precipitation (up to 5 mm/day) at mid-Holocene than at present-day. This is related to a stronger Indian summer monsoon accompanied by an intensified vertically integrated moisture flux convergence. The East Asian monsoon region exhibits local inhomogeneities in the simulated annual precipitation signal. The sign of this signal depends on the balance of decreased pre-monsoon and increased monsoon precipitation at mid-Holocene compared to present-day. Hence, rainfall changes in the East Asian monsoon domain are not solely associated with modifications in the summer monsoon circulation but also depend on changes in the mid-latitudinal westerly wind system that dominates the circulation during the pre-monsoon season. The proxy-based climate reconstructions confirm the regional dissimilarities in the annual precipitation signal and agree well with the model results. Our results highlight the importance of including the pre-monsoon season in climate studies of the Asian monsoon system and point out the complex response of this system to the Holocene insolation forcing. The comparison with a coarse climate model simulation reveals that this complex response can only be resolved in high resolution simulations.  相似文献   

12.
Hydrologic responses of river basins in the Sierra Nevada of California to historical and future climate variations and changes are assessed by simulating daily streamflow and water-balance responses to simulated climate variations over a continuous 200-yr period. The coupled atmosphere-ocean-ice-land Parallel Climate Model provides the simulated climate histories, and existing hydrologic models of the Merced, Carson, and American Rivers are used to simulate the basin responses. The historical simulations yield stationary climate and hydrologic variations through the first part of the 20th century until about 1975 when temperatures begin to warm noticeably and when snowmelt and streamflow peaks begin to occur progressively earlier within the seasonal cycle. A future climate simulated with business-as-usual increases in greenhouse-gas and aerosol radiative forcings continues those recent trends through the 21st century with an attendant +2.5 °C warming and a hastening of snowmelt and streamflow within the seasonal cycle by almost a month. The various projected trends in the business-as-usual simulations become readily visible despite realistic simulated natural climatic and hydrologic variability by about 2025. In contrast to these changes that are mostly associated with streamflow timing, long-term average totals of streamflow and other hydrologic fluxes remain similar to the historical mean in all three simulations. A control simulation in which radiative forcings are held constant at 1995 levels for the 50 years following 1995 yields climate and streamflow timing conditions much like the 1980s and 1990s throughout its duration. The availability of continuous climate-change projection outputs and careful design of initial conditions and control experiments, like those utilized here, promise to improve the quality and usability of future climate-change impact assessments.  相似文献   

13.
Using a regional climate model MM5 nested with an atmospheric global climate model CCM3, a series of simulations and sensitivity experiments have been performed to investigate responses of the mid-Holocene climate to different factors over China. Model simulations of the mid-Holocene climate change, especially the precipitation change, are in good agreement with the geologic records. Model results show that relative to the present day (PD) climate, the temperature over China increased in the mid-Holocene, and the increase in summer is more than that in winter. The summer monsoon strengthened over the eastern China north of 30°N, and the winter monsoon weakened over the whole eastern China; the precipitation increased over the west part of China, North China, and Northeast China, and decreased over the south part of China.The sensitive experiments indicate that changes in the global climate (large-scale circulation background),vegetation, earth orbital parameter, and CO2 concentration led to the mid-Holocene climate change relative to the PD climate, and changes in precipitation, temperature and wind fields were mainly affected by change of the large-scale circulation background, especially with its effect on precipitation exceeding 50%. Changes in vegetation resulted in increasing of temperature in both winter and summer over China, especially over eastern China; furthermore, its effect on precipitation in North China accounts for 25% of the total change.Change in the orbital parameter produced the larger seasonal variation of solar radiation in the mid-Holocene than the PD, which resulted in declining of temperature in winter and increasing in summer; and also had an important effect on precipitation with an effect equivalent to vegetation in Northeast China and North China. During the mid-Holocene, CO2 content was only 280×10-6, which reduced temperature in a very small magnitude. Therefore, factors affecting the mid-Holocene climate change over China from strong to weak are large-scale circulation pattern, vegetation, earth orbital parameter, and CO2 concentration.  相似文献   

14.
In this the second of a two-part study, we examine the physical mechanisms responsible for the increasing contrast of the land–sea surface air temperature (SAT) in summertime over the Far East, as observed in recent decades and revealed in future climate projections obtained from a series of transient warming and sensitivity experiments conducted under the umbrella of the Coupled Model Intercomparison Project phase 5. On a global perspective, a strengthening of land–sea SAT contrast in the transient warming simulations of coupled atmosphere–ocean general circulation models is attributed to an increase in sea surface temperature (SST). However, in boreal summer, the strengthened contrast over the Far East is reproduced only by increasing atmospheric CO2 concentration. In response to SST increase alone, the tropospheric warming over the interior of the mid- to high-latitude continents including Eurasia are weaker than those over the surrounding oceans, leading to a weakening of the land–sea SAT contrast over the Far East. Thus, the increasing contrast and associated change in atmospheric circulation over East Asia is explained by CO2-induced continental warming. The degree of strengthening of the land–sea SAT contrast varies in different transient warming scenarios, but is reproduced through a combination of the CO2-induced positive and SST-induced negative contributions to the land–sea contrast. These results imply that changes of climate patterns over the land–ocean boundary regions are sensitive to future scenarios of CO2 concentration pathways including extreme cases.  相似文献   

15.
 A multi-fingerprint analysis is applied to the detection and attribution of anthropogenic climate change. While a single fingerprint is optimal for the detection of climate change, further tests of the statistical consistency of the detected climate change signal with model predictions for different candidate forcing mechanisms require the simultaneous application of several fingerprints. Model-predicted climate change signals are derived from three anthropogenic global warming simulations for the period 1880 to 2049 and two simulations forced by estimated changes in solar radiation from 1700 to 1992. In the first global warming simulation, the forcing is by greenhouse gas only, while in the remaining two simulations the direct influence of sulfate aerosols is also included. From the climate change signals of the greenhouse gas only and the average of the two greenhouse gas-plus-aerosol simulations, two optimized fingerprint patterns are derived by weighting the model-predicted climate change patterns towards low-noise directions. The optimized fingerprint patterns are then applied as a filter to the observed near-surface temperature trend patterns, yielding several detection variables. The space-time structure of natural climate variability needed to determine the optimal fingerprint pattern and the resultant signal-to-noise ratio of the detection variable is estimated from several multi-century control simulations with different CGCMs and from instrumental data over the last 136 y. Applying the combined greenhouse gas-plus-aerosol fingerprint in the same way as the greenhouse gas only fingerprint in a previous work, the recent 30-y trends (1966–1995) of annual mean near surface temperature are again found to represent a significant climate change at the 97.5% confidence level. However, using both the greenhouse gas and the combined forcing fingerprints in a two-pattern analysis, a substantially better agreement between observations and the climate model prediction is found for the combined forcing simulation. Anticipating that the influence of the aerosol forcing is strongest for longer term temperature trends in summer, application of the detection and attribution test to the latest observed 50-y trend pattern of summer temperature yielded statistical consistency with the greenhouse gas-plus-aerosol simulation with respect to both the pattern and amplitude of the signal. In contrast, the observations are inconsistent with the greenhouse-gas only climate change signal at a 95% confidence level for all estimates of climate variability. The observed trend 1943–1992 is furthermore inconsistent with a hypothesized solar radiation change alone at an estimated 90% confidence level. Thus, in contrast to the single pattern analysis, the two pattern analysis is able to discriminate between different forcing hypotheses in the observed climate change signal. The results are subject to uncertainties associated with the forcing history, which is poorly known for the solar and aerosol forcing, the possible omission of other important forcings, and inevitable model errors in the computation of the response to the forcing. Further uncertainties in the estimated significance levels arise from the use of model internal variability simulations and relatively short instrumental observations (after subtraction of an estimated greenhouse gas signal) to estimate the natural climate variability. The resulting confidence limits accordingly vary for different estimates using different variability data. Despite these uncertainties, however, we consider our results sufficiently robust to have some confidence in our finding that the observed climate change is consistent with a combined greenhouse gas and aerosol forcing, but inconsistent with greenhouse gas or solar forcing alone. Received: 28 April 1996 / Accepted: 27 January 1997  相似文献   

16.
Holocene climate modes are identified by the statistical analysis of reconstructed sea surface temperatures (SSTs) from the tropical and North Atlantic regions. The leading mode of Holocene SST variability in the tropical region indicates a rapid warming from the early to mid Holocene followed by a relatively weak warming during the late Holocene. The dominant mode of the North Atlantic region SST captures the transition from relatively warm (cold) conditions in the eastern North Atlantic and the western Mediterranean Sea (the northern Red Sea) to relatively cold (warm) conditions in these regions from the early to late Holocene. This pattern of Holocene SST variability resembles the signature of the Arctic Oscillation/North Atlantic Oscillation (AO/NAO). The second mode of both tropical and North Atlantic regions captures a warming towards the mid Holocene and a subsequent cooling. The dominant modes of Holocene SST variability emphasize enhanced variability around 2300 and 1000 years. The leading mode of the coupled tropical-North Atlantic Holocene SST variability shows that an increase of tropical SST is accompanied by a decrease of SST in the eastern North Atlantic. An analogy with the instrumental period as well as the analysis of a long-term integration of a coupled ocean-atmosphere general circulation model suggest that the AO/NAO is one dominant mode of climate variability at millennial time scales.  相似文献   

17.
Palaeoclimate simulations provide an opportunity for climate model evaluation as well as having a potential role in assigning relative likelihood to different ensemble members in probabilistic climate change prediction, supplementing constraints provided by the instrumental record. Here we take some initial steps towards such an approach by performing ensemble experiments with the Hadley Centre HadCM3 model under pre-industrial and mid-Holocene (6,000 years before present) forcing conditions. We examine the changes in both mean tropical climate and El Niño-Southern Oscillation (ENSO) variability, as palaeoclimate records suggest that ENSO amplitude was reduced in the mid-Holocene. Experiments are performed with perturbations to physical parameters in the atmosphere–surface component of the model, and with different implementations of heat and freshwater flux adjustments. Heat flux adjustments are required to stabilise model versions in which perturbations cause a net radiative imbalance. While we find broad agreement between different model versions in terms of changes in mean climate in the mid-Holocene, a detailed and quantitative comparison with the geographically-sparse palaeo-record is limited by systematic model biases. In the simulations without seasonally-varying flux adjustments there are modest reductions in ENSO amplitude of the order of 10–15%, lower than the range of reductions inferred from coral proxy records. We examine the mechanisms for these changes, and discuss the implications for the design of future ensemble experiments to formally quantify uncertainty in climate change predictions using palaeoclimate simulations.  相似文献   

18.
By using a 9-level global atmospheric general circulation model developed at the Institute of Atmospheric Physics (IAP9L-AGCM) under the Chinese Academy of Sciences, the authors investigated the response of the East Asian monsoon climate to changes both in orbital forcing and the snow and glaciers over the Tibetan Plateau at the mid-Holocene, about 6000 calendar years before the present (6 kyr BP). With the Earth’s orbital parameters appropriate for the mid-Holocene, the IAP9L-AGCM computed warmer and wetter conditions in boreal summer than for the present day. Under the precondition of continental snow and glacier cover existing over part of the Tibetan Plateau at the mid-Holocene, the authors examined the regional climate response to the Tibetan Plateau cooling. The simulations indicated that climate changes in South Asia and parts of central Asia as well as in East Asia are sensitive to the Tibetan Plateau cooling at the mid-Holocene, showing a significant decrease in precipitation in northern India, northern China and southern Mongolia and an increase in Southeast Asia during boreal summer. The latter seems to correspond to the weakening, southeastward shift of the Asian summer monsoon system resulting from reduced heat contrast between the Eurasian continent and the Pacific and Indian Oceans when a cooling over the Tibetan Plateau was imposed. The simulation results suggest that the snow and glacier environment over the Tibetan Plateau is an important factor for mid-Holocene climate change in the areas highly influenced by the Asian monsoon.  相似文献   

19.
We analyse the observed climate-driven changes in summer wildfires and their future evolution in a typical Mediterranean environment (NE Spain). By analysing observed climate and fire data from 1970 to 2007, we estimate the response of fire number (NF) and burned area (BA) to climate trends, disentangling the drivers responsible for long-term and interannual changes by means of a parsimonious Multi Linear Regression model (MLR). In the last forty years, the observed NF trend was negative. Here we show that, if improvements in fire management were not taken into account, the warming climate forcing alone would have led to a positive trend in NF. On the other hand, for BA, higher fuel flammability is counterbalanced by the indirect climate effects on fuel structure (i.e. less favourable conditions for fine-fuel availability and fuel connectivity), leading to a slightly negative trend. Driving the fire model with A1B climate change scenarios based on a set of Regional Climate Models from the ENSEMBLES project indicates that increasing temperatures promote a positive trend in NF if no further improvements in fire management are introduced.  相似文献   

20.
2000多年来二十四节气已广泛用于指导人们生产和生活。然而传统二十四节气的应用意义在当前全球变暖背景下正在发生变化。气候学二十四节气的提出赋予了二十四节气动态变化的内涵,有利于更好地发挥其现实指导作用。本文利用北京观象台1940~2017年和上海徐家汇站1873~2017年均一化的逐日气温观测序列,分析了近百余年二十四节气气候变化特征。结果显示,北京1941~2016年和上海1874~2016年的年平均气温和二十四节气气温都呈现变暖趋势,导致早春到初夏阶段的气候学节气呈现提前的趋势,而夏末到初冬阶段的节气呈现推迟的趋势;这些趋势大部分是统计显著的。北京和上海的极端冷事件(以大寒标准定义)均呈现显著的减少趋势,上海的极端热事件(以大暑标准定义)呈现显著的增多趋势。除了长期趋势之外,上海极端热事件频数和夏季平均气温演变中都存在明显的60~80年周期的多年代际变率,和大西洋多年代际振荡相关。相比以往基于1960年以来的观测所做的二十四节气气候趋势分析,本文揭示了更完善的长期气候变化特征,有助于从精细化的季节循环演变角度丰富关于近代中国气候变暖的认识,为适应气候变化提供科学基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号