首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal waters at the Godavari valley geothermal field are located in the Khammam district of the Telangana state, India. The study area consists of several thermal water manifestations having temperature in the range 36–76 °C scattered over an area of ~35 km2. The thermal waters are Na–HCO3 type with moderate silica and TDS concentrations. In the present study, detailed geochemical (major and trace elements) and isotope hydrological investigations are carried out to understand the hydrogeochemical evolution of these thermal waters. Correlation analysis and principal component analysis (PCA) are performed to classify the thermal waters and to identify the different geochemical processes controlling the thermal water geochemistry. From correlation matrix, it is seen that TDS and EC of the thermal springs are mainly controlled by HCO3 and Na ions. In PCA, thermal waters are grouped into two distinct clusters. One cluster represents thermal waters from deeper aquifer and other one from shallow aquifer. Lithium and boron concentrations are found to be similar followed by rubidium and caesium concentrations. Different ternary plots reveal rock–water interaction to be the dominant mechanism for controlling trace element concentrations. Stable isotopes (δ18O, δ2H) data indicate the meteoric origin of the thermal waters with no appreciable oxygen-18 shift. The low tritium values of the samples originating from deeper aquifer reveal the long residence time (>50 years) of the recharging waters. XRD results of the drill core samples show that quartz constitutes the major mineral phase, whereas kaolinite, dolomite, microcline, calcite, mica, etc. are present as minor constituents. Quartz geothermometer suggests a reservoir temperature of 100 ± 20 °C which is in good agreement with the values obtained from K–Mg and Mg-corrected K–Mg–Ca geothermometers.  相似文献   

2.
Reservoir fluid compositions have been assessed from analytical data on water samples collected from thermal and cold waters in Balçova geothermal field. The results of mineral equilibrium modelling indicate that the waters, with some exceptions, are systematically supersaturated with respect to calcite, aragonite, dolomite, chalcedony and quartz, but undersaturated with respect to amorphous silica, celestite, anhydrite and gypsum and undersaturated or supersaturated with respect to barite, low-albite, K-feldspar, gibbsite and Fe(OH)3(a). Calculation of mineral saturation states and geochemical analyses of scale and field observations show that carbonate minerals (calcite, aragonite and dolomite) are most likely to be precipitated as a scale type. Besides carbonates, scale formation risk of amorphous silica, Fe(OH)3(a), anhydrite, barite and celestite minerals should be taken into account in some wells and surface equipment. Most of the waters, with some exceptions, have carbonate scaling risk at all temperatures, whereas the other scaling risks only exist over a limited temperature range. While silica, Fe(OH)3(a) and barite show a scaling tendency at low temperatures, anhydrite and celestite scaling occurs at higher temperatures.  相似文献   

3.
Data are presented on rare-earth elements (REE) in prefiltered (<450 nm) near-surface and deeper groundwaters and in corresponding particulate matter (>450 nm) from the Osamu Utsumi uranium mine and the Morro do Ferro thorium-REE-deposit. Groundwaters from both sites typically contain between 1–50 μg/l of total REE, but can reach values of up to 160 μg/l in the deepest borehole F4 (U-Mine: 150–415 m). Even higher REE concentrations of up to 29 mg/l were measured in acidic, sulfate-rich near-surface waters of the same site. The chondrite-normalized REE patterns in deeper, more reducing groundwaters and in their corresponding suspended particle fractions are similar to those observed in the bedrock (phonolites), indicating that bedrock leaching and secondary mineral sorption occurred without significant fractionation between these elements, in accordance with the only small variations in the stability constants of the expected REE-sulfate complexes in these waters. Groundwaters from the unsaturated zone of both sites show a very characteristic cerium depletion (less pronounced than that observed in the corresponding suspended particulate fractions), which is most probably related to the oxidation of Ce (III) under the prevailing Eh-conditions of these waters (600 to 800 mV), and to sorption/precipitation reactions of the much less soluble Ce(IV) species. Coarse particulate matter (>450 nm), composed mainly of amorphous ferric hydrous oxides, has a strong capacity for sorption of REE. This is shown by its very high REE concentrations, in some boreholes > 8,000 μg/g (total REE), and by the calculated association ratios Ra (ml/g), which are in the order of 105 to 106. The implications of these findings for the migration behavior of REE in both environments are discussed.  相似文献   

4.
The Yakima River, a major tributary of the Columbia River, is currently overallocated in its surface water usage in part because of large agricultural water use. As a result, groundwater availability and surface water/groundwater interactions have become an important issue in this area. In several sub-basins, the Yakima River water is diverted and applied liberally to fields in the summer creating artificial recharge of shallow groundwater. Major ion, trace element, and stable isotope geochemistry of samples from 26 groundwater wells from a transect across the Yakima River and 24 surface waters in the Kittitas sub-basin were used to delineate waters with similar geochemical signatures and to identify surface water influence on groundwater. Major ion chemistry and stable isotope signatures combined with principal component analysis revealed four major hydrochemical groups. One of these groups, collected from shallow wells within the sedimentary basin fill, displays temporal variations in NO3 and SO4 along with high δ18O and δD values, indicating significant contribution from Yakima River and/or irrigation water. Two other major hydrochemical groups reflect interaction with the main aquifer lithologies in the basin: the Columbia River basalts (high-Na groundwaters), and the volcaniclastic rocks of the Ellensburg Formation (Ca–Mg–HCO3 type waters). The fourth major group has interacted with the volcaniclastic rocks and is influenced to a lesser degree by surface waters. The geochemical groupings constrain a conceptual model for groundwater flow that includes movement of water between underlying Columbia River basalt and deeper sedimentary basin fill and seasonal input of irrigation water.  相似文献   

5.
The Vazante Group hosts the Vazante nonsulfide zinc deposit, which comprises high-grade zinc silicate ore (ZnSiO4), and late-diagenetic to epigenetic carbonate-hosted sulfide-rich zinc deposits (e.g. Morro Agudo, Fagundes, and Ambrósia). In the sulfide-rich deposits, hydrothermal alteration involving silicification and dolomitization was related with ground preparation of favorable zones for fluid migration (e.g. Fagundes) or with direct interaction with the metalliferous fluid (e.g. Ambrósia). At Vazante, hydrothermal alteration resulted in silicification and dolomite, siderite, jasper, hematite, and chlorite formation. These processes were accompanied by strong relative gains of SiO2, Fe2O3(T), Rb, Sb, V, U, and La, which are typically associated with the nonsulfide zinc mineralization. All sulfide-rich zinc ores in the district display a similar geochemical signature suggesting a common metal source from the underlying sedimentary sequences.Oxygen and carbon isotope compositions of hydrothermally altered rocks reveal a remarkable alteration halo at the Vazante deposit, which is not a notable feature in the sulfide-rich deposits. This pattern could be attributed to fluid mixing processes involving the metalliferous fluid and channelized meteoric water, which may control the precipitation of the Vazante nonsulfide ore. Sulfide deposition resulted from fluid–rock interaction processes and mixing between the ascending metalliferous fluids and sulfur-rich tectonic brines derived from reduced shale units.  相似文献   

6.
Data are presented on suspended particles and colloids in groundwaters from the Osamu Utsumi mine and the Morro do Ferro analogue study sites. Cross-flow ultrafiltration with membranes of different pore sizes (450 nm to 1.5 nm) was used to prepare colloid concentrates and ultrafiltrates for analyses of major and trace elements and U- and Th-isotopic compositions. Additional characterization of colloidal and particulate material was performed by ESCA, SEM and X-ray diffraction. The results indicate the presence of low concentrations of colloids in these waters (typically < 500 μg/l), composed mainly of iron/organic species. Minor portions of uranium and other trace elements, but significant fractions of the total concentrations of Th and REE in prefiltered waters (< 450 nm) were associated with these colloids.Suspended particles (> 450 nm), also composed mainly of hydrous ferric oxides and humic-like compounds, show the same trend as the colloids with respect to U, Th and REE associations, but elemental concentrations were typically higher by a factor of 1,000 or more. In waters of low pH and with high sulphate content, these associations are considerably lower. Due to the low concentrations of suspended particles in groundwaters from the Osamu Utsumi uranium mine (typically <0.5 mg/l), these particles carry only a minor fraction of U and the REE (<10% of the total concentrations in unfiltered groundwaters), but a significant, usually predominant fraction of Th (30–70%). The suspended particle load in groundwaters from the Morro do Ferro environment is typically higher than in those from the mine by a factor of 5 to 10. This suggests that U, Th and the REE could be transported predominantly by particulate matter. However, these particles and colloids seem to have a low capacity for migration.  相似文献   

7.
Chemical characterization of groundwater is essential to bring out its nature and utility. Samples from shallow and deep ground water of the same location were collected and studied for their geochemical characteristics following standard procedures (APHA 1998). Sediment samples from different depths were collected and analysed for minerals using FTIR and SEM. Resisitivity logging was carried out in the bore well to understand the variations in depth to fresh water potential. The shallow ground water is dominated by Na–Cl–HCO3–SO4 and deeper groundwater by Na–HCO3–SO4–Cl types. It is observed that there is a significant ionic variation with depth. The ionic strength of the deeper samples is lesser than in the shallower samples. Wide pH variations in the shallow water samples are due to ion exchange process. Thermodynamic stability plot was used to identify the state of stability. It is inferred that there is no major significant difference in the thermodynamic state of stability in the shallow and the deeper aquifers as the aquifer matrix for the shallow and deeper aquifers are almost similar. Saturation index of Gibbsite, Kaolinite, Calcite, Dolomite and anhydrite, were studied for shallow and deep aquifers, to identify the difference in hydro chemical signatures. The Si/Al ratios of shallow samples are less when compared with the deeper samples. Leaching of secondary salts was the chief mechanism controlling the ground water chemistry of the region.  相似文献   

8.
《Applied Geochemistry》2005,20(11):2116-2137
Samples of mine water from Butte, Montana were collected for paired geochemical and stable isotopic analysis. The samples included two sets of depth profiles from the acidic Berkeley pit lake, deep groundwater from several mine shafts in the adjacent flooded underground mine workings, and the acidic Horseshoe Bend Spring. Beginning in July-2000, the spring was a major surface water input into the Berkeley pit lake. Vertical trends in major ions and heavy metals in the pit lake show major changes across a chemocline at 10–20 m depth. The chemocline most likely represents the boundary between pre-2000 and post-2000 lake water, with lower salinity, modified Horseshoe Bend Spring water on top of higher salinity lake water below. Based on stable isotope results, the deep pit lake has lost approximately 12% of its initial water to evaporation, while the shallow lake is up to 25% evaporated. The stable isotopic composition of SO4 in the pit lake is similar to that of Horseshoe Bend Spring, but differs markedly from SO4 in the surrounding flooded mine shafts. The latter is heavier in both δ34S and δ18O, which may be due to dissolution of hypogene SO4 minerals (anhydrite, gypsum, barite) in the ore deposit. The isotopic and geochemical evidence suggests that much of the SO4 and dissolved heavy metals in the deep Berkeley pit lake were generated in situ, either by leaching of soluble salts from the weathered pit walls as the lake waters rose, or by subaqueous oxidation of pyrite on the submerged mine walls by dissolved Fe(III). Laboratory experiments were performed to contrast the isotopic composition of SO4 formed by aerobic leaching of weathered wallrock vs. SO4 from anaerobic pyrite oxidation. The results suggest that both processes were likely important in the evolution of the Berkeley pit lake.  相似文献   

9.
Thermal water samples and related young and fossil mineralization from a geothermal system at the northern margin of the Upper Rhine Graben have been investigated by combining hydrochemistry with stable and Sr isotope geochemistry. Actively discharging thermal springs and mineralization are present in a structural zone that extends over at least 60 km along strike, with two of the main centers of hydrothermal activity being Wiesbaden and Bad Nauheim. This setting provides the rare opportunity to link the chemistry and isotopic signatures of modern thermal waters directly with fossil mineralization dating back to at least 500–800 ka. The fossil thermal spring mineralization can be classified into two major types: barite-(pyrite) fracture filling associated with laterally-extensive silicification; and barite, goethite and silica impregnation mineralization in Tertiary sediments. Additionally, carbonatic sinters occur around active springs. Strontium isotope and trace element data suggest that mixing of a hot (>100 °C), deep-sourced thermal water with cooler groundwater from shallow aquifers is responsible for present-day thermal spring discharge and fossil mineralization. The correlation between both Sr and S isotope ratios and the elevation of the barite mineralization relative to the present-day water table in Wiesbaden is explained by mixing of deep-sourced thermal water having high 87Sr/86Sr and low δ34S with shallow groundwater of lower 87Sr/86Sr and higher δ34S. The Sr isotope data demonstrate that the hot thermal waters originate from an aquifer in the Variscan crystalline basement at depths of 3–5 km. The S isotope data show that impregnation-type mineralization is strongly influenced by mixing with SO4 that has high δ34S values. The fracture style mineralization formed by cooling of the thermal waters, whereas impregnation-type mineralization precipitated by mixing with SO4-rich groundwater percolating through the sediments.  相似文献   

10.
The aim of this study was to determine geochemical properties of groundwater and thermal water in the Misli Basin and to assess thermal water intrusion into shallow groundwater due to over-extraction. According to isotope and hydrochemical analyses results, sampled waters can be divided into three groups: cold, thermal, and mixed waters. Only a few waters reach water–rock chemical equilibrium. Thermal waters in the area are characterized by Na+–Cl–HCO3, while the cold waters by CaHCO3 facies. On the basis of isotope results, thermal waters in the Misli basin are meteoric origin. In particular, δ18O and δ2H values of shallow groundwater vary from −10.2 to −12.2‰ and −71.2 to −82‰, while those of thermal waters range from −7.8 to −10.1‰ and from −67 to −74‰, respectively. The tritium values of shallow groundwater having short circulation as young waters coming from wells that range from 30 to 70 m in depth vary from 10 to 14 TU. The average tritium activity of groundwater in depths more than 100 m is 1.59 ± 1.16, which indicates long circulation. The rapid infiltration of the precipitation, the recycling of the evaporated irrigation water, the influence of thermal fluids and the heterogeneity of the aquifer make it difficult to determine groundwater quality changes in the Misli Basin. Obtained results show that further lowering of the groundwater table by over-consumption will cause further intrusion of thermal water which resulted in high mineral content into the fresh groundwater aquifer. Because of this phenomenon, the concentrations of some chemical components which impairs water quality in terms of irrigation purposes in shallow groundwaters, such as Na+, B, and Cl, are highy probably expected to increase in time.  相似文献   

11.
Ayadi  Rahma  Trabelsi  Rim  Zouari  Kamel  Saibi  Hakim  Itoi  Ryuichi  Khanfir  Hafedh 《Hydrogeology Journal》2018,26(4):983-1007

Major element concentrations and stable (δ18O and δ2H) and radiogenic (3H and 14C) isotopes in groundwater have proved useful tracers for understanding the geochemical processes that control groundwater mineralization and for identifying recharge sources in the semi-arid region of Sfax (southeastern Tunisia). Major-ion chemical data indicate that the origins of the salinity in the groundwater are the water–rock interactions, mainly the dissolution of evaporitic minerals, as well as the cation exchange with clay minerals. The δ18O and δ2H relationships suggest variations in groundwater recharge mechanisms. Strong evaporation during recharge with limited rapid water infiltration is evident in the groundwater of the intermediate aquifer. The mixing with old groundwater in some areas explains the low stable isotope values of some groundwater samples. Groundwaters from the intermediate aquifer are classified into two main water types: Ca-Na-SO4 and Ca-Na-Cl-SO4. The high nitrate concentrations suggest an anthropogenic source of nitrogen contamination caused by intensive agricultural activities in the area. The stable isotopic signatures reveal three water groups: non-evaporated waters that indicate recharge by recent infiltrated water; evaporated waters that are characterized by relatively enriched δ18O and δ2H contents; and mixed groundwater (old/recent) or ancient groundwater, characterized by their depleted isotopic composition. Tritium data support the existence of recent limited recharge; however, other low tritium values are indicative of pre-nuclear recharge and/or mixing between pre-nuclear and contemporaneous recharge. The carbon-14 activities indicate that the groundwaters were mostly recharged under different climatic conditions during the cooler periods of the late Pleistocene and Holocene.

  相似文献   

12.
Uttarakhand geothermal area, located in the central belt of the Himalayan geothermal province, is one of the important high temperature geothermal fields in India. In this study, the chemical characteristics of the thermal waters are investigated to identify the main geochemical processes affecting the composition of thermal waters during its ascent toward the surface as well as to determine the subsurface temperature of the feeding reservoir. The thermal waters are mainly Ca–Mg–HCO3 type with moderate silica and TDS concentrations. Mineral saturation states calculated from PHREEQC geochemical code indicate that thermal waters are supersaturated with respect to calcite, dolomite, aragonite, chalcedony, quartz (SI > 0), and undersaturated with respect to gypsum, anhydrite, and amorphous silica (SI < 0). XRD study of the spring deposit samples fairly corroborates the predicted mineral saturation state of the thermal waters. Stable isotopes (δ18O, δ2H) data confirm the meteoric origin of the thermal waters with no oxygen-18 shift. The mixing phenomenon between thermal water with shallow ground water is substantiated using tritium (3H) and chemical data. The extent of dilution is quantified using tritium content of thermal springs and non-thermal waters. Classical geothermometers, mixing model, and multicomponent fluid geothermometry modeling (GeoT) have been applied to estimate the subsurface reservoir temperature. Among different classical geothermometers, only quartz geothermometer provide somewhat reliable estimation (96–140 °C) of the reservoir temperature. GeoT modeling results suggest that thermal waters have attained simultaneous equilibrium with respect to minerals like calcite, quartz, chalcedony, brucite, tridymite, cristobalite, talc, at the temperature 130 ± 5 °C which is in good agreement with the result obtained from the mixing model.  相似文献   

13.
The Bijgan barite deposit, which is located northeast of Delijan in Markazi Province of Iran, occurs as a small lenticular body at the uppermost part of an Eocene volcano-sedimentary rock unit. The presence of fossiliferous and carbonaceous strata suggests that the host rocks were deposited in a quiet marine sedimentary environment. Barite, calcite, iron oxides and carbonaceous clay materials are found as massive patches as well as thin layers in the deposit. Barite is marked by very low concentrations of Sr (1–2%) and total amounts of rare earth elements (REEs) (6.25–17.39?ppm). Chondrite-normalized REE patterns of barite indicate a fractionation of light REEs (LREEs) from La to Sm, similar to those for barite of different origins from elsewhere. The LaCN/LuCN ratios and chondrite-normalized REE patterns reveal that barite in the Bijgan deposit is enriched in LREE relative to heavy rare earth elements (HREEs). The similarity between the Ce/La ratios in the barite samples and those found in deep-sea barite supports a marine origin for barite. Lanthanum and Gd exhibit positive anomalies, which are common features of marine chemical sediments. Cerium shows a negative anomaly in most samples that was inherited from the negative Ce anomaly of hydrothermal fluid that mixed with seawater at the time of barite precipitation. The δ18O values of barites show a narrow range of 9.1–11.4‰, which is close to or slightly lower than that of contemporaneous seawater at the end of the Eocene. This suggests a contribution of oxygen from seawater in the barite-forming solution. The δ34S values of barites (9.5–15.3‰) are lower than that of contemporaneous seawater, which suggests a contribution of magmatic sulfur to the ore-forming solution. The oxygen and sulfur isotope ratios indicate that submarine hydrothermal vent fluids are a good analog for solutions that precipitated barite, due to similarities in the isotopic composition of the sulfates. The available data including tectonic setting, host rock characteristics, REE geochemistry, and oxygen and sulfur isotopic compositions support a submarine hydrothermal origin for the Bijgan barite deposit. At the seafloor, barite deposition occurred where ascending Ba-bearing hydrothermal fluids encountered seawater. Sulfate was derived from the sulfate-bearing marine waters, and, to a lesser extent, by oxidized H2S, which was derived from magmatic hydrothermal fluids.  相似文献   

14.
Rajlich  P.  Legierski  J.  Šmejkal  V. 《Mineralium Deposita》1983,18(2):161-171

Tertiary epigenetic lead ± zinc and copper mineralizations occur in the Mesozoic carbonate cover and stibnite, barite and copper mineralization in the Precambrian to Palaezoic basement in the Eastern High Atlas, Morocco. The carbon isotope data from host carbonates range from +3 to -1‰ PDB. The data are typical for marine carbon. There is no difference between surrounding dolomites and younger vein dolomites. The oxygen isotopic composition of the samples is enriched in 16O; the range is from -3 to -11‰ PDB with respect to that of carbonates in equilibrium with marine water. It is postulated that the isotopic composition was changed during dolomitization being caused by transition of connate formation waters diluted to some degree by meteoritic water. The bacteriogenically reduced sulphur from syngenetic sulphides and Mesozoic marine sulphate mobilized during Tertiary orogenesis are thought to be the source of H2S and SO4. Cambro-Ordovicien sulphate is also supposed to be the source of sulphur in the Jebel Zelmou barite deposit in the basement. Isotopic composition of lead from galenas in the Tertiary deposits from the Mesozoic cover are strikingly homogenous. Model ages vary between 230–180 Ma. It is suggested that important mobilization processes are responsible for Tertiary metallogeny in Morocco.

  相似文献   

15.
We present the results of a study on gabbroic rocks, syenites, pegmatites, carbonatites, and hydrothermal products of the Oshurkovo apatite-bearing massif. The results include Nd and Sr isotope ratios; the isotope compositions of carbon and oxygen in calcite; oxygen in apatite, magnetite, and silicate minerals (phlogopite, titanite, diopside, amphibole, K-feldspar, and quartz); sulfur in barite; and hydrogen in mica. The isotopic data are close to the EM-1 enriched mantle values and confirm a comagmatic relationship between the gabbros and carbonatites. The binary plot ?Nd vs. 87Sr/86Sr demonstrates strong differentiation between silicate rocks and carbonatites, as is the case with the other Late Mesozoic carbonatite occurrences of southwestern Transbaikalia. The oxygen isotope composition of all comagmatic phases also falls within the range of mantle values. A clear trend toward heavier oxygen and lighter carbon isotope compositions is observed in all successively emplaced phases, which is consistent with a trend defined by hydrothermal products formed under the influence of the parent magma chamber. Carbonates formed during the greenstone alteration of gabbroic rocks are enriched in the light oxygen isotope (δ18O from ?2.8 to ?7.3‰), suggesting a contribution of vadose water.  相似文献   

16.
A geochemical survey, in shallow aquifers and soils, has been carried out to evaluate the feasibility of natural gas (CH4) storage in a deep saline aquifer at Rivara (MO), Northern Italy. This paper discusses the areal distribution of CO2 and CH4 fluxes and CO2, CH4, Rn, He, H2 concentrations both in soils and shallow aquifers above the proposed storage reservoir. The distribution of pathfinder elements such as 222Rn, He and H2 has been studied in order to identify potential faults and/or fractures related to preferential migration pathways and the possible interactions between the reservoir and surface. A geochemical and isotopic characterization of the ground waters circulating in the first 200 m has allowed to investigation of (i) the origin of the circulating fluids, (ii) the gas–water–rock interaction processes, (iii) the amount of dissolved gases and/or their saturation status. In the first 200 m, the presence of CH4-rich reducing waters are probably related to organic matter (peat) bearing strata which generate shallow-derived CH4, as elsewhere in the Po Plain. On the basis of isotopic analysis, no hints of thermogenic CH4 gas leakage from a deeper reservoir have been shown. The δ13C(CO2) both in ground waters and free gases suggests a prevalent shallow origin of CO2 (i.e. organic and/or soil-derived). The acquisition of pre-injection data is strategic for the natural gas storage development project and as a baseline for future monitoring during the gas injection/withdrawing period. Such a geochemical approach is considered as a methodological reference model for future CO2/CH4 storage projects.  相似文献   

17.
18.
Natural and anthropogenic impacts on karst ground water, Zunyi, Southwest China, are discussed using the stable isotope composition of dissolved inorganic carbon and particulate organic carbon, together with carbon species contents and water chemistry. The waters can be mainly characterized as HCO3–Ca type, HCO3 · SO4–Ca type, or HCO3 · SO4–Ca · Mg type, according to mass balance considerations. It is found that the average δ13CDIC values of ground waters are higher in winter (low-flow season) than in summer (high-flow season). Lower contents of dissolved inorganic carbon (DIC) and lower values of δ13CDIC in summer than in winter, indicate that local rain events in summer and a longer residence time of water in winter play an important role in the evolution of ground water carbon in karst flow systems; therefore, soil CO2 makes a larger contribution to the DIC in summer than in winter. The range of δ13CDIC values indicate that dissolved inorganic carbon is mainly controlled by the rate of carbonate dissolution. The concentrations of dissolved organic carbon and particulate organic carbon in most ground water samples are lower than 2.0 mg C L−1 and 0.5 mg C L−1, respectively, but some waters have slightly higher contents of organic carbon. The waters with high organic carbon contents are generally located in the urban area where lower δ13CDIC values suggest that urbanization has had an effect on the ground water biogeochemistry and might threaten the water quality.  相似文献   

19.
226Ra, 228Ra and Ba distributions as well as 228Ra/226Ra and 226Ra/Ba ratios were measured in seawater, suspended and sinking particles at the DYFAMED station in the Western Mediterranean Sea at different seasons of year 2003 in order to track the build-up and fate of barite through time. The study of the 228Raex/226Raex ratios (Raex = Ra activities corrected for the lithogenic Ra) of suspended particles suggests that Baex (Baex = Ba concentrations corrected for the lithogenic Ba, mostly barite) formation takes place not only in the upper 500 m of the water column but also deeper (i.e. throughout the mesopelagic layer). Temporal changes in the 228Raex/226Raex ratios of sinking particles collected at 1000 m depth likely reflect changes in the relative proportion of barite originating from the upper water column (with a high 228Ra/226Ra ratio) and formed in the mesopelagic layer (with a low 228Ra/226Ra ratio). 228Raex/226Raex ratios measured in sinking particles collected in the 1000 m-trap in April and May suggest that barite predominantly formed in the upper water column during that period, while barite found outside the phytoplankton bloom period (February and June) appears to form deeper in the water column. Combining ratios of both the suspended and sinking particles provides information on aggregation/disaggregation processes. High 226Raex/Baex ratios were also found in suspended particles collected in the upper 500 m of the water column. Because celestite is expected to be enriched in Ra [Bernstein R. E., Byrne R. H. and Schijf J. (1998) Acantharians: a missing link in the oceanic biogeochemistry of barium. Deep-Sea Res. II45, 491-505], acantharian skeletons may contribute to these high ratios in shallow waters. The formation of both acantharian skeletons and barite enriched in 226Ra may thus contribute to the decrease in the dissolved 226Ra activity and 226Ra/Ba ratios of surface waters observed between February and June 2003 at the DYFAMED station.  相似文献   

20.
Hydrothermal sediment mineralogy and geochemistry can provide insights into seafloor mineralization processes and changes through time. We report a geochemical investigation of a short (22 cm) near-vent hydrothermal metalliferous sediment core from the Lucky Strike site (LS), on the Mid-Atlantic Ridge (MAR). The sediment was collected from the base of an active white smoker vent and comprises pure hydrothermal precipitates, mainly chalcopyrite, sphalerite, pyrite and barite, with negligible detrital and biogenic inputs. Geochemically, the core is enriched in elements derived from high-temperature hydrothermalism (Fe, Cu, Zn and Ba) and depleted in elements derived from low-temperature hydrothermalism (Mn), and metasomatism (Mg). The U/Fe content ratio is elevated, particularly in the deeper parts of the core, consistent with uptake from seawater associated with sulphide alteration. Rare earth elements (REE) concentrations are low and chondrite-normalized patterns are characteristic of high-temperature vent fluids with an enrichment in light REE and a pronounced positive Eu anomaly. A stronger positive Eu anomaly associated with higher Lan/Smn at the core top is controlled by barite precipitation. The hydrothermal influence on the REE decreases downcore with some evidence for a stronger seawater influence at depth. Nd isotopes also exhibit an increased detrital/seawater influence downcore. Pb isotope ratios are uniform and plot on the Northern Hemisphere Reference Line in a small domain defined by LS basalts and exhibit no detrital or seawater influence. Lucky Strike sediments are derived from high-temperature mineralization and are overprinted by a weak seawater–sediment interaction when compared with other Atlantic hydrothermal sites such as TAG. The larger seawater input and/or a larger detrital contribution in deeper layers can be explained by variable hydrothermal activity during sediment formation, suggesting different pulses in activity of the LS hydrothermal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号