首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present the first spectrum through the L band of an irregular satellite from the outer Solar System. Spectra of Himalia (JVI) were obtained with the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. The Himalia spectrum is essentially featureless, showing a slight red slope and the suggestion of an absorption at 3 μm that might indicate the presence of water in some form. Better measurements of the spectrum of Himalia, particularly in the region of the apparent 3-μm band, could help determine whether water is present, and if so, in what form.  相似文献   

2.
Titan is known to have a young surface. Here we present evidence from the Cassini Visual and Infrared Mapping Spectrometer that it is currently geologically active. We report that changes in the near-infrared reflectance of a 73,000 km2 area on Titan (latitude 26° S, longitude 78° W) occurred between July 2004 and March of 2006. The reflectance of the area increased by a factor of two between July 2004 and March-April 2005; it then returned to the July 2004 level by November 2005. By late December 2005 the reflectance had surged upward again, establishing a new maximum. Thereafter, it trended downward for the next three months. Detailed spectrophotometric analyses suggest these changes happen at or very near the surface. The spectral differences between the region and its surroundings rule out changes in the distribution of the ices of reasonably expected materials such as H2O, CO2, and CH4 as possible causes. Remarkably, the change is spectrally consistent with the deposition and removal of NH3 frost over a water ice substrate. NH3 has been proposed as a constituent of Titan's interior and has never been reported on the surface. The detection of NH3 frost on the surface might possibly be explained by episodic effusive events occur which bring juvenile ammonia from the interior to the surface. If so, its decomposition would feed nitrogen to the atmosphere now and in the future. The lateral extent of the region exceeds that of active areas on the Earth (Hawaii) or Io (Loki).  相似文献   

3.
We report a comprehensive review of the UV–visible spectrum and rotational lightcurve of Vesta combining new observations by Hubble Space Telescope and Swift Gamma-ray Burst Observatory with archival International Ultraviolet Explorer observations. The geometric albedos of Vesta from 220 nm to 953 nm are derived by carefully comparing these observations from various instruments at different times and observing geometries. Vesta has a rotationally averaged geometric albedo of 0.09 at 250 nm, 0.14 at 300 nm, 0.26 at 373 nm, 0.38 at 673 nm, and 0.30 at 950 nm. The linear spectral slope as measured between 240 and 320 nm in the ultraviolet displays a sharp minimum near a sub-Earth longitude of 20°, and maximum in the eastern hemisphere. This is consistent with the longitudinal distribution of the spectral slope in the visible wavelength. The photometric uncertainty in the ultraviolet is ∼20%, and in the visible wavelengths it is better than 10%. The amplitude of Vesta’s rotational lightcurves is ∼10% throughout the range of wavelengths we observed, but is smaller at 950 nm (∼6%) near the 1-μm band center. Contrary to earlier reports, we found no evidence for any difference between the phasing of the ultraviolet and visible/near-infrared lightcurves with respect to sub-Earth longitude. Vesta’s average spectrum between 220 and 950 nm can well be described by measured reflectance spectra of fine particle howardite-like materials of basaltic achondrite meteorites. Combining this with the in-phase behavior of the ultraviolet, visible, and near-infrared lightcurves, and the spectral slopes with respect to the rotational phase, we conclude that there is no global ultraviolet/visible reversal on Vesta. Consequently, this implies a lack of global space weathering on Vesta, as previously inferred from visible–near-infrared data.  相似文献   

4.
The Deep Impact encounter with the Jupiter family Comet 9P/Tempel 1 on UT 2005 July 4 was observed at high spectral resolving power (λ/δλ∼25,000) using the cross-dispersed near-infrared echelle spectrometer (NIRSPEC) at Keck-2. We report the temporal evolution of parent volatiles and dust (simultaneously measured) resulting from the event. Column abundances are presented for H2O and C2H6 beginning 30 min prior to impact (T−30) and ending 50 min following impact (T+50), and for H2O and HCN from T+50 until T+96, in time steps of approximately 6 min post-impact. The ejecta composition was revealed by an abrupt increase in H2O and C2H6 near T+25. This showed C2H6/H2O to be higher than its pre-impact value by a factor 2.4±0.5, while HCN/H2O was unchanged within the uncertainty of the measurements. The mixing ratios for C2H6 and HCN in the ejecta agree with those found in the majority of Oort cloud comets, perhaps indicating a common region of formation. The expanding dust plume was tracked by continuum measurements, both through the 3.5-μm spectral continuum and through 2-μm images acquired with the SCAM slit-viewing camera, and each showed a monotonic increase in continuum intensity following impact. A Monte Carlo model that included dust opacity was applied to the dust coma, and its parameters were constrained by observations; the simulated continuum intensities reproduced both spectral and SCAM data. The relatively sudden appearance of the volatile ejecta signature is attributed to heating of icy grains (perhaps to a threshold temperature) that are decreasingly shadowed by intervening (sunward) dust particles in an optically thick ejecta plume, perhaps coupled with an accelerated decrease in dust optical depth near T+25.  相似文献   

5.
Measurements of the disk-integrated reflectance spectrum of Mercury and the Moon have been obtained by the MESSENGER spacecraft. A comparison of spectra from the two bodies, spanning the wavelength range 220-1450 nm, shows that the absolute reflectance of Mercury is lower than that of the nearside waxing Moon at the same phase angle with a spectral slope that is less steep at visible and near-infrared wavelengths. We interpret these results and the lack of an absorption feature at a wavelength near 1000 nm as evidence for a Mercury surface composition that is low in ferrous iron within silicates but is higher in the globally averaged abundance of spectrally neutral opaque minerals than the Moon. Similar conclusions have been reached by recent investigations based on observations from both MESSENGER and Mariner 10. There is weak evidence for a phase-reddening effect in Mercury that is slightly larger in magnitude than for the lunar nearside. An apparent absorption in the middle-ultraviolet wavelength range of the Mercury spectrum detected from the first MESSENGER flyby of Mercury is found to persist in subsequent observations from the second flyby. The current model of space weathering on the Moon, which also presumably applies to Mercury, does not provide an explanation for the presence of this ultraviolet absorption.  相似文献   

6.
P.G.J. Irwin  N.A. Teanby 《Icarus》2009,203(1):287-302
Long-slit spectroscopy observations of Uranus by the United Kingdom Infrared Telescope UIST instrument in 2006, 2007 and 2008 have been used to monitor the change in Uranus’ vertical and latitudinal cloud structure through the planet’s northern spring equinox in December 2007.The observed reflectance spectra in the Long J (1.17-1.31 μm) and H (1.45-1.65 μm) bands, obtained with the slit aligned along Uranus’ central meridian, have been fitted with an optimal estimation retrieval model to determine the vertical cloud profile from 0.1 to 6-8 bar over a wide range of latitudes. Context images in a number of spectral bands were used to discriminate general zonal cloud structural changes from passing discrete clouds. From 2006 to 2007 reflection from deep clouds at pressures between 2 and 6-8 bar increased at all latitudes, although there is some systematic uncertainty in the absolute pressure levels resulting from extrapolating the methane coefficients of Irwin et al. (Irwin, P.G.J., Sromovsky, L.A., Strong, E.K., Sihra, K., Teanby, N.A., Bowles, N., Calcutt, S.B., Remedios, J.J. [2006] Icarus, 181, 309-319) at pressures greater than 1 bar, as noted by Tomasko et al. and Karkoschka and Tomasko (Tomasko, M.G., Bezard, B., Doose, L., Engel, S., Karkoschka, E. [2008] Planet. Space Sci., 56, 624-647; Karkoschka, E., Tomasko, M. [2009] Icarus). However, from 2007 to 2008 reflection from these clouds throughout the southern hemisphere and from both northern and southern mid-latitudes (30° N,S) diminished. As a result, the southern polar collar at 45°S has diminished in brightness relative to mid-latitudes, a similar collar at 45°N has become more prominent (e.g. Rages, K.A., Hammel, H.B., Sromovsky, L. [2007] Bull. Am. Astron. Soc., 39, 425; Sromovsky, L.A., Fry, P.M., Ahue, W.M., Hammel, H.B., de Pater, I., Rages, K.A., Showalter, M.R., van Dam, M.A. [2008] vol. 40 of AAS/Division for Planetary Sciences Meeting Abstracts, pp. 488-489; Sromovsky, L.A., Ahue, W.K.M., Fry, P.M., Hammel, H.B., de Pater, I., Rages, K.A., Showalter, M.R. [2009] Icarus), and the lowering reflectivity from mid-latitudes has left a noticeable brighter cloud zone at the equator (e.g. Sromovsky, L.A., Fry, P.M. [2007] Icarus, 192, 527-557;Karkoschka, E., Tomasko, M. [2009] Icarus). For such substantial cloud changes to have occurred in just two years suggests that the circulation of Uranus’ atmosphere is much more vigorous and/or efficient than is commonly thought. The composition of the main observed cloud decks between 2 and 6-8 bar is unclear, but the absence of the expected methane cloud at 1.2-1.3 bar (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987] J. Geophys. Res., 92, 14987-15001) is striking (as previously noted by, among others, Sromovsky, L.A., Irwin, P.G.J., Fry, P.M. [2006] Icarus, 182, 577-593; Sromovsky, L.A., Fry, P.M. [2007] Icarus, 192, 527-557; Sromovsky, L.A., Fry, P.M. [2008] Icarus, 193, 252-266; Karkoschka, E., Tomasko, M. [2009] Icarus) and suggests that cloud particles may be considerably different from pure condensates and may be linked with stratospheric haze particles drizzling down from above, or that tropospheric hazes are generated near the methane condensation level and then drizzle down to deep pressures as suggested by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2009] Icarus).The retrieved cloud structures were also tested for different assumptions of the deep methane mole fraction, which Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2009] Icarus) find may vary from ∼1-2% in polar regions to perhaps as much as 4% equatorwards of 45°N,S. We found that such variations did not significantly affect our conclusions.  相似文献   

7.
We compare 13 near-infrared (0.8-2.4 μm) spectra of two low albedo C complex outer-belt asteroid families: Themis and Veritas. The disruption ages of these two families lie at opposite extremes: 2.5 ± 1.0 Gyr and 8.7 ± 1.7 Myr, respectively. We found striking differences between the two families, which show a range of spectral shapes and slopes. The seven Themis family members (older surfaces) have “red” (positive) slopes in the 1.6-2.4 μm region; in contrast, the six Veritas members (younger surfaces) have significantly “flatter” slopes at these same wavelengths. Moreover, the two families are characterized by different concavity at shorter (1.0-1.5 μm) wavelengths with the Themis group being consistently flat or concave up (smile) and the Veritas group being consistently concave down (frown). Each family contains a broad range of diameters, suggesting our results are not due to comparisons of asteroids of different sizes. The statistically significant clustering of the two spectral groups could be explained by one of the following three possibilities or a combination of them: (1) space weathering effects, (2) differences in original composition, or (3) differences in thermal history perhaps as a result of the difference in parent body sizes. As a result of our analyses, we propose a new method to quantify broad and shallow structures in the spectra of primitive asteroids. We found reasonable matches between the observed asteroids and individual carbonaceous chondrite meteorites. Because these meteoritic fits represent fresh surfaces, space weathering is neither necessary nor ruled out as an explanation of spectral differences between families. The six Veritas family near-infrared (NIR) spectra represent the first NIR analysis of this family, thus significantly increasing our understanding of this family over these wavelengths.  相似文献   

8.
Radar imaging results for Mercury's non-polar regions are presented. The dual-polarization, delay-Doppler images were obtained from several years of observations with the upgraded Arecibo S-band (λ12.6-cm) radar telescope. The images are dominated by radar-bright features associated with fresh impact craters. As was found from earlier Goldstone-VLA and pre-upgrade Arecibo imaging, three of the most prominent crater features are located in the Mariner-unimaged hemisphere. These are: “A,” an 85-km-diameter crater (348° W, 34° S) whose radar ray system may be the most spectacular in the Solar System; “B,” a 95-km-diameter crater (343° W, 58° N) with a very bright halo but less distinct ray system; and “C,” an irregular feature with bright ejecta and rays distributed asymmetrically about a 125-km source crater (246° W, 11° N). Due south of “C” lies a “ghost” feature (242° W, 27° S) that resembles “A” but is much fainter. An even fainter such feature is associated with Bartok Crater. These may be two of the best mercurian examples of large ejecta/ray systems observed in an intermediate state of degradation. Virtually all of the bright rayed craters in the Mariner 10 images show radar rays and/or bright rim rings, with radar rays being less common than optical rays. Radar-bright craters are particularly common in the H-7 quadrangle. Some diffuse radar albedo variations are seen that have no obvious association with impact ejecta. In particular, some smooth plains regions such as the circum-Caloris plains in Tir, Budh, and Sobkou Planitiae and the interiors of Tolstoj and “Skinakas” basins show high depolarized brightness relative to their surroundings, which is the reverse of the mare/highlands contrast seen in lunar radar images. Caloris Basin, on the other hand, appears dark and featureless in the images.  相似文献   

9.
The backscattered reflectivity of Jupiter's ring has been previously measured over distinct visible and near infrared wavelength bands by a number of ground-based and spaceborne instruments. We present spectra of Jupiter's main ring from 2.21-2.46 μm taken with the NIRSPEC spectrometer at the W.M. Keck observatory. At these wavelengths, scattered light from Jupiter is minimal due to the strong absorption of methane in the planet's atmosphere. We find an overall flat spectral slope over this wavelength interval, except for a possible red slope shortward of 2.25 μm. We extended the spectral coverage of the ring to shorter wavelengths by adding a narrow-band image at 1.64 μm, and show results from 2.27-μm images over phase angles of 1.2°-11.0°. Our images at 1.64 and 2.27 μm reveal that the halo contribution is stronger at the shorter wavelength, possibly due to the redder spectrum of the ring parent bodies as compared with the halo dust component. We find no variation in main ring reflectivity over the 1.2°-11.0° phase angle range at 2.27 μm. We use adaptive optics imaging at the longer wavelength L′ band (3.4-4.1 μm) to determine a 2-σ upper limit of 22 m of vertically-integrated I/F. Our observing campaign also produced an L′ image of Callisto, showing a darker leading hemisphere, and a spectrum of Amalthea over the 2.2-2.5 and 2.85-3.03 μm ranges, showing deep 3-μm absorption.  相似文献   

10.
We have constructed synthetic solar spectra for the 2302-4800 cm−1 (2.08-4.34 μm) range, a spectral range where planetary objects mainly emit reflected sunlight, using ATMOS (Atmospheric Trace Molecule Spectroscopy)/Spacelab-3 and Atlas-3 spectra, of which resolution is 0.01 cm−1. We adopted Voigt line profiles for the modeling of line shapes based on an atlas of line identifications compiled by Geller [Geller, M., 1992. Key to Identification of Solar Features. A High-Resolution Atlas of the Infrared Spectrum of the Sun and the Earth Atmosphere from Space. NASA Reference Publ. 1224, vol. III. NASA, Washington, DC, pp. 1-22], who derived solar line positions and intensities from contaminated high-resolution solar spectra obtained by ATMOS/Spacelab-3. Because the ATMOS spectra in these wavelength ranges are compromised by absorption lines of molecules existing in Earth's high-altitude atmosphere and in the compartment of the spacecraft, the direct use of these high-resolution solar spectra has been inconvenient for the data reductions of planetary spectra. We compared the synthetic solar spectra with the ATMOS spectra, and obtained satisfactory fits for the majority of the solar lines with the exception of abnormal lines, which do not fit with Voigt line profiles. From the model fits, we were able to determine Voigt line parameters for the majority of solar lines; and we made a list of the abnormal lines. We also constructed telluric-line-free solar spectra by manually eliminating telluric lines from the ATMOS spectra and filling the gaps with adjacent continua. These synthetic solar spectra will be useful to eliminate solar continua from spectra of planetary objects to extract their own intrinsic spectral features.  相似文献   

11.
The potentially hazardous Asteroid (33342) 1998 WT24 approached the Earth within 0.0125 AU on 2001 December 16 and was the target of a number of optical, infrared, and radar observing campaigns. Interest in 1998 WT24 stems from its having an orbit with an unusually low perihelion distance, which causes it to cross the orbits of the Earth, Venus, and Mercury, and its possibly being a member of the E spectral class, which is rare amongst near-Earth asteroids (NEAs). We present the results of extensive thermal-infrared observations of 1998 WT24 obtained in December 2001 with the 3-m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii and the ESO 3.6-m telescope in Chile. A number of thermal models have been applied to the data, including thermophysical models that give best-fit values of 0.35±0.04 km for the effective diameter, 0.56±0.2 for the geometric albedo, pv, and 100-300 J m−2 s−0.5 K−1 for the thermal inertia. Our values for the diameter and albedo are consistent with results derived from radar and polarimetric observations. The albedo is one of the highest values obtained for any asteroid and, since no other taxonomic type is associated with albedos above 0.5, supports the suggested rare E-type classification for 1998 WT24. The thermal inertia is an order of magnitude higher than values derived for large main-belt asteroids but consistent with the relatively high values found for other near-Earth asteroids. A crude pole solution inferred from a combination of our observations and published radar results is β=−52°, λ=355° (J2000), but we caution that this is uncertain by several tens of degrees.  相似文献   

12.
The 390 cm−1 spectral feature of polycrystalline hematite is shown to be caused by a crystallite size effect which is caused by the anisotropic nature of single crystalline hematite. This effect occurs if the probing light is able to resolve the heterogeneous nature of a polycrystalline material and if the corresponding single crystalline material is optically anisotropic. Therefore it does not depend on whether the material of interest is a powder or consolidated. As a consequence, the resulting macroscopic reflectance and transmittance of the polycrystalline material is an average of the microscopic reflectance and transmittance of the individual crystallites. Therefore, randomly oriented polycrystalline materials with large crystallites show characteristic changes in their spectral profile compared to the spectral profiles of polycrystalline materials consisting of crystallites that are small in comparison with the wavelength. The extent of the spectral changes depends on the degree of optical anisotropy of the corresponding single crystalline material. The spectral changes also comprise non-zero cross-polarization terms despite of random orientation. Therefore a characterization of a polycrystalline material with a scalar dielectric function is possible in general only if the material consists of randomly oriented crystallites small compared to the wavelength.  相似文献   

13.
We have determined the real and imaginary indices of refraction (n and k) for six iron oxide/oxyhydroxide phases—magnetite, maghemite, goethite, lepidocrocite, akaganéite, and ferrihydrite. A single crystal of magnetite was used to derive bulk n and k values from 100-2000 cm−1 (5-100 μm). Synthetic nanocrystalline samples of maghemite, goethite, lepidocrocite, akaganéite, and ferrihydrite were pressed into compact pellets used to determine bulk n and k values from 100-1200 cm−1 (8.33-100 μm). All values of n and k (the optical constants) were determined from specular reflectance spectra acquired at 2 cm−1 spectral sampling using classical Lorentz-Lorenz dispersion theory. In this paper, we present the optical constants of all six minerals and the oscillator parameters with which they were modeled. Use of these optical constants could aid in radiative transfer models of terrestrial dust as well as Mars, the Moon, and airless bodies in the Solar System.  相似文献   

14.
We present a number of spectra of Near-Earth Objects taken in the period 1998-2003 with two different instruments (CGS4 and UIST) on the UKIRT telescope. Since observations with CGS4 require multiple spectral fragments to be observed sequentially and then spliced together we assess the reliability of this technique using comparisons between multiple observations of the same object, between observations of the same object with both instruments and with independent spectra of common objects. We conclude that while problems in the spectral splicing can occur, they are usually intuitively obvious and that overall our dataset is sound. The objects for which we present new spectral data are: 1627 Ivar, 4179 Toutatis, 5381 Sekhmet, (5587) 1990 SB, 6489 Golevka, (11405) 1999 CV3, (14402) 1991 DB, 25143 Itokawa, (25330) 1999 KV4, (52760) 1998 ML14, (66391) 1999 KW4, and (101955) 1999 RQ36. Our results, together with albedo data from the literature, suggest carbonaceous compositions for 25330 and 101955. The available data for 14402 suggest it may belong to the relatively rare M class. Our analysis suggests an S or Sq classification for 52760 and a V classification for 5381 Sekhmet. For all remaining objects the UKIRT data are consistent with published spectral classifications. We find that only 3 of the 12 objects are not S/Q/V-class, which is roughly consistent with the results of Binzel et al. [Binzel, R.P., Rivkin, A.S., Stuart, J.S., Harris, A.W., Bus, S.J., Burbine, T.H., 2004. Icarus 170, 259-294]. Four spectra of Toutatis taken over a range of solar phase angles between 0.7°-81° and at intervals of several weeks are indistinguishable within the uncertainties and therefore do not reveal any evidence for phase reddening or surface variegation.  相似文献   

15.
J.P Emery  R.H Brown 《Icarus》2003,164(1):104-121
We present new near-infrared spectra of 20 Trojan asteroids. The spectra were recorded at the NASA Infrared Telescope Facility (IRTF) using the recently commissioned medium-resolution spectrograph SpeX and at the Multiple Mirror Telescope (MMT) using the instrument FSPEC. Spectra of all of these objects were measured in K-band (1.95-2.5 μm), 8 of these in L-band (2.8-4.0 μm), and 14 in the range 0.8-2.5 μm. These observations nearly double the number of published 0.8-2.5 μm spectra of Trojan asteroids and provide the first systematic study of the L-band region for these distant asteroids. The data show that the red spectral slope measured in the near-IR extends through the L-band, though it is not as steep here as at shorter wavelengths. A significant diversity is apparent in the near-IR spectral slopes of this sampling of objects. Most of the spectra do not contain any definitive absorption features characteristic of surface composition (e.g., H2O, organics, silicates) as seen on main-belt asteroids and several Centaur and Kuiper Belt objects. A few objects may display spectral activity, and the reliability of these possible features is discussed. While these spectra are generally compatible with silicate surfaces to explain the spectral slope mixed with some fraction of low albedo material, there is no absolute indication of silicates. The spectral slope could also be explained by the presence of hydrocarbons, but the lack of absorption features, especially in L-band where very strong fundamental absorptions from these molecules appear, constrains the character and abundance of these materials at the surface.  相似文献   

16.
An automatic procedure has been implemented on the original MGM approach (Sunshine et al., 1990) in order to deal with an a priori unknown mafic mineralogy observed in the visible-near infrared by reflectance spectroscopy in the case of laboratory or natural rock spectra. We consider all the mixture possibilities involving orthopyroxene, clinopyroxene and olivine, and use accordingly for each configuration different numbers of Gaussians, depending on the potential complexity of the mixture. A key issue is to initialize the MGM procedure with a proper setting for the Gaussians parameters. An automatic analysis of the shape of the spectrum is first performed. The continuum is handled with a second order polynomial adjusted on the local maxima along the spectrum and Gaussians parameters initial settings are made on the basis of laboratory results available in the literature in the case of simple mixtures of mafic minerals. The returned MGM solutions are then assessed on spectroscopic grounds and either validated or discarded, on the basis of a mineralogical sorting.The results presented in this paper are a first quantitative step to characterize both modal and chemical compositions of pyroxenes and olivines. A demonstration of the methodology on specific examples of binary and ternary olivine-pyroxenes mixtures has been made, which shows that the different non-linear effects which affect the Gaussian parameters (center and strength) can be successfully handled. Of note is the fact that the band center positions associated with the different mafic minerals are not set here in the inverse problem, and thus the MGM outputs are truly informative of the chemical composition of pyroxenes and olivines. With the consideration of some limits on the detection thresholds, these results are quite promising for increasing the operational use of the Modified Gaussian Model with large hyperspectral data sets in view of establishing detailed mineralogical mappings of magmatic units.  相似文献   

17.
John K. Harmon 《Icarus》2008,196(1):298-301
Radar imagery from July 2005 Arecibo observations has provided new information on surface relief over the southern portion of Caloris Basin and the smooth plains to the south of the basin. A lobe of smooth plains has been identified in the Mariner-unimaged region southwest of Mozart Crater that coincides precisely with topographically down-bowed terrain seen in earlier Arecibo radar altimetry. A 105-km-diameter crater has been found at 193.6° W, 25.6° N that appears to be the largest crater in the Caloris basin floor.  相似文献   

18.
We apply a multivariate statistical method to Titan data acquired by different instruments onboard the Cassini spacecraft. We have searched through Cassini/VIMS hyperspectral cubes, selecting those data with convenient viewing geometry and that overlap with Cassini/RADAR scatterometry footprints with a comparable spatial resolution. We look for correlations between the infrared and microwave ranges the two instruments cover. Where found, the normalized backscatter cross-section obtained from the scatterometer measurement, corrected for incidence angle, and the calibrated antenna temperature measured along with the scatterometry echoes, are combined with the infrared reflectances, with estimated errors, to produce an aggregate data set, that we process using a multivariate classification method to identify homogeneous taxonomic units in the multivariate space of the samples.In medium resolution data (from 20 to 100 km/pixel), sampling relatively large portions of the satellite’s surface, we find regional geophysical units matching both the major dark and bright features seen in the optical mosaic. Given the VIMS cubes and RADAR scatterometer passes considered in this work, the largest homogeneous type is associated with the dark equatorial basins, showing similar characteristics as each other on the basis of all the considered parameters.On the other hand, the major bright features seen in these data generally do not show the same characteristics as each other. Xanadu, the largest continental feature, is as bright as the other equatorial bright features, while showing the highest backscattering coefficient of the entire satellite. Tsegihi is very bright at 5 μm but it shows a low backscattering coefficient, so it could have a low roughness on a regional scale and/or a different composition. Another well-defined region, located southwest of Xanadu beyond the Tui Regio, seems to be detached from the surrounding terrains, being bright at 2.69, 2.78 and 5 μm but having a low radar brightness. In this way, other units can be found that show correlations or anti-correlations between the scatterometric response and the spectrophotometric behavior, not evident from the optical remote sensing data.  相似文献   

19.
Neptune was observed by the Infrared Space Observatory (ISO) Long-Wavelength Spectrometer (LWS) between 46 and 185 μm. At wavelengths between 50 and 110 μm the accuracy of these measurements is ?0.3 K. Observations of this planet made by the ISO Short-Wavelength Spectrometer between 28 and 44 μm were combined with the LWS data to determine a disk-averaged temperature profile and derive several physical quantities. The combined spectra are matched best by a He/(H2+He) mass ratio of 26.4+2.6−3.5%, reflecting a He molar fraction of 14.9+1.7−2.2%, assuming the molar fraction of CH4 to be 2% in the troposphere. This He abundance is consistent with one derived from analysis of joint Voyager-2 IRIS and radio occultation experiment data, a technique whose accuracy has recently been called into question. For a disk average, the para-H2 fraction is found to be no more than ∼1.5% different from its equilibrium value, and the N2 mixing ratio is probably less than 0.7%. The composite spectrum is best fit by invoking a CH4 ice condensate cloud. Using a Mie approximation to particle scattering and absorption, best-fit particle sizes lie between 15 and 40 μm. The composite spectra are relatively insensitive to the vertical distribution of the cloud, but the particle scale height must be greater than 5% of the gas scale height. The best models are consistent with an effective temperature for Neptune that is 59.5±0.6 K, a value slightly lower than derived by the Voyager IRIS experiment—possibly Neptune's mid- and far-infrared emission has changed during the seven years that lie between its encounter with Voyager 2 and the first spectra taken of this planet with ISO. The model spectra are also ostensibly lower than ground-based observations in the spectral range of 17-24 μm, but this discrepancy can be relieved by perturbing the temperature of the lower stratosphere where the LWS spectrum is not particularly sensitive, combined with the uncertainty in the absolute calibration of the ground-based measurements.  相似文献   

20.
Igor V. Holin 《Icarus》2010,207(2):545-548
Current data reveal that Mercury is a dynamic system with a core which has not yet solidified completely and is at least partially decoupled from the mantle. Radar speckle displacement experiments have demonstrated that the accuracy in spin-dynamics determination for Earth-like planets can approach 10−5. The extended analysis of space-time correlation properties of radar echoes shows that the behavior of speckles does not prevent estimation of Mercury’s instantaneous spin-vector components to accuracy of a few parts in 107. This limit can be reached with more powerful radar facilities and leads to constraining the interior in more detail from effects of spin dynamics, e.g., from observation of the core-mantle interplay through high precision monitoring of the 88-day spin-variation of Mercury’s crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号