首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seismic quality factor (Q c) and the attenuation coefficient (δ) in the earth’s crust in southwest (SW) Anatolia are estimated by using the coda wave method based on the decrease of coda wave amplitude by time on the seismogram. The quality factor Q o, the value of Q c at 1 Hz, and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves. δ is determined from the observations of amplitude variations of seismic waves. In applying the coda wave method, firstly, a type curve representing the average pattern of the individual coda decay curves for 0.75, 1.5, 3.0, 6.0, 12.0, and 24.0 Hz values was estimated. Secondly, lateral variation of coda Q and the attenuation coefficients for three main tectonic patterns are estimated. The shape of the type curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The Q o and η values vary from 30 to 180 and from 0.55 to 1.25, respectively for SW Anatolia. In SW Anatolia, coda Qf relation is described by and δ = 0.008 km−1. These results are expected to help in understanding the degree of tectonic complexity of the crust in SW Anatolia.  相似文献   

2.
Coda wave data from California microearthquakes were studied in order to delineate regional fluctuations of apparent crustal attenuation in the band 1.5 to 24 Hz. Apparent attenuation was estimated using a single back scattering model of coda waves. The coda wave data were restricted to 30 s following the origin time; this insures that crustal effects dominate the results as the backscattered shear waves thought to form the coda would not have had time to penetrate much deeper. Results indicate a strong variation in apparent crustal attenuation at high frequencies between the Franciscan and Salinian regions of central California and the Long Valley area of the Sierra Nevada. Although the codaQ measurements coincide at 1.5 Hz (Q c =100), at 24 Hz there is a factor of four difference between the measurements made in Franciscan (Q c =525) and Long Valley (Q c =2100) with the Salinian midway between (Q c =900). These are extremely large variations compared to measures of seismic velocities of comparable resolution, demonstrating the exceptional sensitivity of the high frequency codaQ measurement to regional geology. In addition, the frequency trend of the results is opposite to that seen in a compilation of codaQ measurements made worldwide by other authors which tend to converge at high and diverge at low frequencies, however, the worldwide results generally were obtained without limiting the coda lengths and probably reflect upper mantle rather than crustal properties. Our results match those expected due to scattering in random media represented by Von Karman autocorrelation functions of orders 1/2 to 1/3. The Von Karman medium of order 1/3 corresponding to the Franciscan codaQ measurement contains greater amounts of high wavenumber fluctuations. This indicates relatively large medium fluctuations with wavelengths on the order of 100 m in the highly deformed crust associated with the Franciscan, however, the influence of scattering on the codaQ measurement is currently a matter of controversy.  相似文献   

3.
v--vThe phenomenon of "Lg blockage," where Lg is strongly attenuated by crustal heterogeneities, poses a serious problem to CTBT monitoring because Lg is an important seismic phase for discrimination. This paper examines blockage in three continental regions where the Lg blockages may be caused by large, enclosed sedimentary basins along the propagation path. The Barents Sea Basin blocks Lg propagation across the Barents Sea from the Russian nuclear test sites at Novaya Zemlya to Scandinavian stations. Also, "early Lg" waves are observed in Sn codas on NORSAR, NORESS, and ARCESS recordings of Novaya Zemlya explosions where direct Lg is blocked. Early Lg waves may have resulted from Sn-to-Lg mode conversion at the contact between the Barents Basin and the Kola Peninsula. The Northern and Southern Caspian Sea Basins also block Lg waves from PNEs and earthquakes, perhaps due to thick, low-velocity, low-Q sediments replacing the granitic layer rocks in the crust. Lg blockage has also been observed in the Western Mediterranean/Levantine Basin due to low-Q sediments and crustal thinning. A "basin capture" model is proposed to explain Lg blockage in sedimentary basins. In this model, shear waves that reverberate in the crust and constitute the Lg wave train are captured, delayed, and attenuated by thick, low-velocity sediments that replace the "granitic" layer rocks of the upper crust along part of the propagation path. Sn waves, which propagate below the basin, would not be blocked and in fact, the blocked Lg waves may be diverted downward into Sn waves by the low velocity sediments in the basin.  相似文献   

4.
Numerical modelling ofSH wave seismograms in media whose material properties are prescribed by a random distribution of many perfectly elastic cavities and by intrinsic absorption of seismic energy (anelasticity) demonstrates that the main characteristics of the coda waves, namely amplitude decay and duration, are well described by singly scattered waves in anelastic media rather than by multiply scattered waves in either elastic or anelastic media. We use the Boundary Integral scheme developed byBenites et al. (1992) to compute the complete wave field and measure the values of the direct waveQ and coda wavesQ in a wide range of frequencies, determining the spatial decay of the direct wave log-amplitude relation and the temporal decay of the coda envelope, respectively. The effects of both intrinsic absorption and pure scattering on the overall attenuation can be quantified separately by computing theQ values for corresponding models with (anelastic) and without (elastic) absorption. For the models considered in this study, the values of codaQ –1 in anelastic media are in good agreement with the sum of the corresponding scatteringQ –1 and intrinsicQ –1 values, as established by the single-scattering model ofAki andChouet (1975). Also, for the same random model with intrinsic absorption it appears that the singly scattered waves propagate without significant loss of energy as compared with the multiply scattered waves, which are strongly affected by absorption, suggesting its dominant role in the attenuation of coda waves.  相似文献   

5.
Strong and weak motion data from the Mississippi Embayment Seismic Excitation Experiment (ESEE) were analyzed for signatures of nonlinear site responses. This experiment was performed jointly by the University of Memphis and U. S. Geological Survey in October 2002, by detonating two explosions of 2500 and 5000 lbs. Intrinsic and scattering Q estimates (QI and QS) from the coda of the strong motion data were found to be very low compared to previously determined Q values of P- and Rayleigh waves of weak motion data from the same explosions. The QI estimates from P-wave late coda of the strong motion data are less by more than 100 at 3 Hz and by more than 200 at 10 Hz, compared to the P-wave Q values determined from the weak motion data by Langston et al (2005). Also, QI determined from the late coda of strong motion Rayleigh-wave data is less by more than 200 at 0.5 Hz and by more than 50 at 3.0 Hz, compared to Q values determined from Rayleigh-wave weak motion data. A resonance peak spectral amplitude of the early part of a strong motion seismogram is shifted to lower frequencies compared to that from a later part of the same seismogram. Spectral amplitude ratios between transverse and vertical components of the strong motion data are degraded between frequencies 2 and 10 Hz for P waves, and less than 4 Hz for Rayleigh waves compared to the weak motion transverse to vertical spectral ratio. All these are signatures of nonlinear site responses during strong ground motion. This study proves the non-transportability of weak motion attenuation results to estimate ground motion from a future large earthquake that may take place in areas like the New Madrid Seismic zone.  相似文献   

6.
The mechanisms contributing to the attenuation of earthquake ground motion in the distance range of 10 to 200 km are studied with the aid of laboratory data, coda wavesRg attenuation, strong motion attenuation measurements in the northeast United States and Canada, and theoretical models. The frequency range 1–10 Hz has been studied. The relative contributions to attenuation of anelasticity of crustal rocks (constantQ), fluid flow and scattering are evaluated. Scattering is found to be strong with an albedoB 0=0.8–0.9 and a scattering extinction length of 17–32 km. The albedo is defined as the ratio of the total extinction length to the scattering extinction length. TheRg results indicate thatQ increases with depth in the upper kilometer or two of the crust, at least in New England. CodaQ appears to be equivalent to intrinsic (anelastic)Q and indicates that thisQ increases with frequency asQ=Q o f n , wheren is in the range of 0.2–0.9. The intrinsic attenuation in the crust can be explained by a high constantQ (500Q o2000) and a frequency dependent mechanism most likely due to fluid effects in rocks and cracks. A fluid-flow attenuation model gives a frequency dependence (QQ o f 0.5) similar to those determined from the analysis of coda waves of regional seismograms.Q is low near the surface and high in the body of the crust.  相似文献   

7.
The attenuation of coda waves in the earth’s crust in southwest (SW) Anatolia is estimated by using the coda wave method, which is based on the decrease of coda wave amplitude in time and distance. A total of 159 earthquakes were recorded between 1997 and 2010 by 11 stations belonging to the KOERI array. The coda quality factor Q c is determined from the properties of scattered coda waves in a heterogeneous medium. Firstly, the quality factor Q 0 (the value of Q c at 1 Hz.) and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves for frequencies of 1.5, 3.0, 6.0, 8.0, 12 and 20 Hz. Secondly, the attenuation coefficients (δ) are estimated. The shape of the curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The average Q c values vary from 110 ± 15 to 1,436 ± 202 for the frequencies above. The Q 0 and η values vary from 63 ± 7 to 95 ± 10 and from 0.87 ± 0.03 to 1.04 ± 0.09, respectively, for SW Anatolia. In this region, the average coda Qf relation is described by Q c = (78 ± 9)f 0.98±0.07 and δ = 0.012 km?1. The low Q 0 and high η are consistent with a region characterized by high tectonic activity. The Q c values were correlated with the tectonic pattern in SW Anatolia.  相似文献   

8.
Empirical scaling equations for Fourier amplitude spectra of strong ground motion are used to describe A0 and τ in the assumed (high-frequency) shape of strong motion amplitudes: FS(φ) = A0e-πτφ. The res of computed A0 and τ with other related estimates of spectral amplitudes; (2) smooth decay of strong motion spectral amplitudes up to φ = 25 Hz, without an abrupt low-pass filtering of high frequecies; and (3) good agreement with other estimates of the regionally specific attenuation of high-frequncy seismic waves.As the recorded strong earthquake shaking in the western United States typically samples only the shallow (10 km) and local (100km) characteristics of wave attenuation, the processed strong motion accelerograms can be used as the most direct means of describing the nature of the high-frequency attenuation of the entire strong motion signal for use in earthquake engineering applications. Seismological body wave, Lg and coda wave estimates of Q sample different volumes of the crust surrounding the station, and involve different paths of the waves. These differences must be carefully documented and understood before the results can be used in earthquake engineering characterization of strong motion amplitudes.  相似文献   

9.
The aim of this study is to improve our knowledge of the attenuation structure in the Southern Apennines using a new amplitude ratio tomography method (Phillips et al., Geophys Res Lett 32(21):L21301, 2005) applied on both direct and coda envelope measurements derived from 150 events recorded by 47 stations of the Istituto Nazionale di Geofisica e Vulcanologia National Seismic Network (Rete Sismica Nazionale Centralizzata). The two-dimensional (2-D) analysis allows us to take into account lateral crustal variations and heterogeneities of this region. Using the same event and station distribution, we also applied a simple 1-D methodology, and the performance of the 1-D and 2-D path assumptions is tested by comparing the average interstation variance for the path-corrected amplitudes using coda and direct waves. In general, coda measurement results are more stable than using direct waves when the same methodology is applied. Using the 2-D approach, we observe more stable results for both waves. However, the improvement is quite small, probably because the crustal heterogeneity is weak. This means that, for this region, the 1-D path assumption is a good approximation of the attenuation characteristics of the region. A comparison between Q tomography images obtained using direct and coda amplitudes shows similar results, consistent with the geology of the region. In fact, we observe low Q along the Apennine chain toward the Tyrrhenian Sea and higher values to the east, in correspondence with the Gargano zone that is related to the Apulia Carbonate Platform. Finally, we compared our results with the coda Q values proposed by Bianco et al. (Geophys J Int 150:10–22, 2002) for the same region. The good agreement validates our results as the authors used a completely independent methodology.  相似文献   

10.
The study of coda waves has recently attracted increasing attention from seismologists. This is due to the fact that it is viewed as a new means by which the stress accumulation stage preceding a large earthquake can be measured, since the scattering paths nearly uniformly cover a fairly large region around the focus and observation stations, compared with the direct ray paths. To date, we have had many reports on the temporal variation of the relation between coda duration and amplitude magnitude, and that of the coda attenuationQ c –1 which is estimated from coda amplitude decay. Some of these have shown a precursor-like behavior; however, others seem to have shown a coseismic change. We have critically reviewed these reports, and discussed what these observational facts tell us about the change in the heterogeneous crust. We found significant temporal variations, not only in the mean but also in the scatter ofQ c –1 , associated with the mainshock occurrence. The formation of new cracks, the reopening and growing of existing cracks, the interaction of these cracks, and the pore water movement through these cracks might correspond to such variations. In addition, we may expect an inhomogeneous distribution of crack clusters in a fairly large region, compared with the aftershock region. The gradual appearance of such crack clusters seems to be the most plausible mechanism by which coda decay gradients are caused to largely scatter in the stress accumulation stage.  相似文献   

11.
The physical implication of coda amplitude ratio is discussed in term of energy ratio. The digitized data recorded at the station of Beijing Telemetered Seismograph Network between 1989 and 1990 are used to calculate amplitude ratios of coda to direct S wave, and energy ratios. The spectral energy ratios are used to estimate the coda Q and mean free path l in the Beijing area, as well as the two quality factors Q i and Q S separately due to intrinsic absorption and scattering attenuation. The decay of seismic waves in their propagation seems mainly resulted from the intrinsic absorption in Beijing region. The temporal variations of amplitude ratio and energy ratio at Changli station during the above two years are inspected; some of them largely depart from their mean value. It may reflect the seismogenic process, but using the data lasting longer time with more case histories needs further study. This study is sponsored by the Key Project of State Science and Technology of China, No. 96-918.  相似文献   

12.
Attenuation characteristics in the New Madrid Seismic Zone (NMSZ) are estimated from 157 local seismograph recordings out of 46 earthquakes of 2.6?≤?M?≤?4.1 with hypocentral distances up to 60 km and focal depths down to 25 km. Digital waveform seismograms were obtained from local earthquakes in the NMSZ recorded by the Center for Earthquake Research and Information (CERI) at the University of Memphis. Using the coda normalization method, we tried to determine Q values and geometrical spreading exponents at 13 center frequencies. The scatter of the data and trade-off between the geometrical spreading and the quality factor did not allow us to simultaneously derive both these parameters from inversion. Assuming 1/R 1.0 as the geometrical spreading function in the NMSZ, the Q P and Q S estimates increase with increasing frequency from 354 and 426 at 4 Hz to 729 and 1091 at 24 Hz, respectively. Fitting a power law equation to the Q estimates, we found the attenuation models for the P waves and S waves in the frequency range of 4 to 24 Hz as Q P?=?(115.80?±?1.36) f (0.495?±?0.129) and Q S?=?(161.34?±?1.73) f (0.613?±?0.067), respectively. We did not consider Q estimates from the coda normalization method for frequencies less than 4 Hz in the regression analysis since the decay of coda amplitude was not observed at most bandpass filtered seismograms for these frequencies. Q S/Q P?>?1, for 4?≤?f?≤?24 Hz as well as strong intrinsic attenuation, suggest that the crust beneath the NMSZ is partially fluid-saturated. Further, high scattering attenuation indicates the presence of a high level of small-scale heterogeneities inside the crust in this region.  相似文献   

13.
Three types of seismic data recorded near Coalinga, California were analyzed to study the behavior of scattered waves: 1) aftershocks of the May 2, 1983 earthquake, recorded on verticalcomponent seismometers deployed by the USGS; 2) regional refraction profiles using large explosive sources recorded on essentially the same arrays above; 3) three common-midpoint (CMP) reflection surveys recorded with vibrator sources over the same area. Records from each data set were bandpassed filtered into 5 Hz wide passbands (over the range of 1–25 Hz), corrected for geometric spreading, and fit with an exponential model of amplitude decay. Decay rates were expressed in terms of inverse codaQ (Q c –1 ).Q c –1 values for earthquake and refraction data are generally comparable and show a slight decrease with increasing frequency. Decay rates for different source types recorded on proximate receivers show similar results, with one notable exception. One set of aftershocks shows an increase ofQ c –1 with frequency.Where the amplitude decay rates of surface and buried sources are similar, the coda decay results are consistent with other studies suggesting the importance of upper crustal scattering in the formation of coda. Differences in the variation ofQ c –1 with frequency can be correlated with differences in geologic structure near the source region, as revealed by CMP-stacked reflection data. A more detailed assessment of effects such as the depth dependence of scattered contributions to the coda and the role of intrinsic attenuation requires precise control of source-receiver field geometry and the study of synthetic seismic data calculated for velocity models developed from CMP reflection data.  相似文献   

14.
Digital recordings of three component microearthquake codas from shallow seismic events in the volcanic region of Campi Flegrei — Southern Italy — were used with an automatic technique to calculate the attenuation factorQ c (codaQ) in the hypothesis of singleS toS backscattering.Results show the same value ofQ for each of the three components. This result is interpreted as due to isotropicS wave radiation pattern.A check of the coda method was performed using a single station method based on simple assumptions on the direct SH wave spectrum. Single stationQ was averaged over the stations and over the earthquakes. Results show that the two methods lead to comparable results.A frequency dependence quite different from that evaluated in active tectonic regions was found for coda attenuation, comparable to other volcanic areas throughout the world. This is interpreted as due to the presence of magma that affects anelasticity and scattering.  相似文献   

15.
Body-wave Attenuation in the Region of Garda, Italy   总被引:1,自引:0,他引:1  
We analyzed the spectral amplitude decay with hypocentral distance of P and S waves generated by 76 small magnitude earthquakes (ML 0.9–3.8) located in the Garda region, Central-Eastern Alps, Italy. These events were recorded by 18 stations with velocity sensors, in a distance range between 8 and 120 km. We calculated nonparametric attenuation functions (NAF) and estimated the quality factor Q of both body waves at 17 different frequencies between 2 and 25 Hz. Assuming a homogeneous model we found that the Q frequency dependence of P and S can be approximated with the functions Q P = 65 f 0.9 and Q S = 160 f 0.6 , respectively. At 2 Hz the Q S /Q P ratio reaches the highest value of 2.8. At higher frequencies Q S /Q P varies between 0.7 and 1.7, suggesting that for this frequency band scattering may be an important attenuation mechanism in the region of Garda. To explore the variation of Q in depth, we estimated Q at short (r ≤ 30 km) and intermediate (35–90 km) distance paths. We found that in the shallow crust P waves attenuate more than S (1.3 < Q S /Q P < 2.5). Moreover, P waves traveling along paths in the lower crust (depths approximately greater than 30 km) attenuate more than S waves. To quantify the observed variability of Q in depth we considered a three-layer model and inverted the NAF to estimate Q in each layer. We found that in the crust Q increases with depth. However, in the upper mantle (~40–50 km depth) Q decreases and in particular the high frequency Q S (f > 9 Hz) has values similar to those estimated for the shallow layer of the crust.  相似文献   

16.
The quality factors of coda and shear waves have been estimated for the SE Sabalan Mountain, geothermal region in northwestern Iran. We have analyzed 65 local earthquakes with magnitude of 2.8 to 6.1 and 2.8 to 5 for shear and coda wave quality factor estimation, respectively. These events were recorded on five stations installed by Building and Housing Research Center Network. Coda normalization and Spectral decay methods have been used to estimate the frequency dependence attenuation relation for shear wave, and single back-scattering method for coda waves. We have observed that the coda normalization method has supplied significantly higher Q S values as compared to the spectral method. The results show that, in general, Q values are significantly smaller for the entire frequency range as compared to tectonically active areas and are close to the values for volcanic areas.  相似文献   

17.
This article summarizes work on multiple scattering based on models of media with randomly distributed scatterers. The scatterers are isotropic and statistically uniform. Measuring distance in terms of mean-free pathL s and time in terms of the mean-free timesL s/V, whereV is the velocity of scattered waves, we have more convenient dimensionless distance and time. It can be shown that after the dimensionless time equals 0.65 energy contributed from multiple scattering becomes predominant. Thus the later coda reflects the effect of multiple scattering rather than single scattering. Treating the seismic record, including starting and tail parts, as a whole, the diffusion theory predicts that at a dense distribution of scatterers and a small distance between source and receiver, codas reflect mainly intrinsicQ i. Of course, this conclusion is coincident with the presumption of the diffusion theory,Q s>Q i. However, from a new integral equation of multiple scattering, which deals with the scattered waves and primary waves separately, the conclusion is similar but clearer. This article quotes the new expression for coda energy in two-dimensional space. It shows that if the receiver is close to the source, the coda decay reflects only intrinsicQ i, then as the distance increases, effects of scatteringQ s, are involved in the decay feature. The theoretical plots of coda decay show that it seems in most cases in the earthQ i should not be smaller than one tenth ofQ s.Project Sponsored by the Joint Earthquake Science Foundation of China.  相似文献   

18.
—?In this paper we describe a technique for mapping the lateral variation of Lg characteristics such as Lg blockage, efficient Lg propagation, and regions of very high attenuation in the Middle East, North Africa, Europe and the Mediterranean regions. Lg is used in a variety of seismological applications from magnitude estimation to identification of nuclear explosions for monitoring compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). These applications can give significantly biased results if the Lg phase is reduced or blocked by discontinuous structure or thin crust. Mapping these structures using quantitative techniques for determining Lg amplitude attenuation can break down when the phase is below background noise. In such cases Lg blockage and inefficient propagation zones are often mapped out by hand. With our approach, we attempt to visually simplify this information by imaging crustal structure anomalies that significantly diminish the amplitude of Lg. The visualization of such anomalies is achieved by defining a grid of cells that covers the entire region of interest. We trace Lg rays for each event/station pair, which is simply the great circle path, and attribute to each cell a value equal to the maximum value of the Lg/P-coda amplitude ratio for all paths traversing that particular cell. The resulting map, from this empirical approach, is easily interpreted in terms of crustal structure and can successfully image small blockage features often missed by analysis of raypaths alone. This map can then be used to screen out events with blocked Lg prior to performing Q tomography, and to avoid using Lg-based methods of event identification for the CTBT in regions where they cannot work.¶For this study we applied our technique to one of the most tectonically complex regions on the earth. Nearly 9000 earthquake/station raypaths, traversing the vast region comprised of the Middle East, Mediterranean, Southern Europe and Northern Africa, have been analyzed. We measured the amplitude of Lg relative to the P-coda and mapped the lateral variation of Lg propagation efficiency. With the relatively dense coverage provided by the numerous crossing paths we are able to map out the pattern of crustal heterogeneity that gives rise to the observed character of Lg propagation. We observe that the propagation characteristics of Lg within the region of interest are very complicated but are readily correlated with the different tectonic environments within the region. For example, clear strong Lg arrivals are observed for paths crossing the stable continental interiors of Northern Africa and the Arabian Shield. In contrast, weakened to absent Lg is observed for paths crossing much of the Middle East, and Lg is absent for paths traversing the Mediterranean. Regions that block Lg transmission within the Middle East are very localized and include the Caspian Sea, the Iranian Plateau and the Red Sea. Resolution is variable throughout the region and strongly depends on the distribution of seismicity and recording stations. Lg propagation is best resolved within the Middle East where regions of crustal heterogeneity on the order of 100?km are imaged (e.g., South Caspian Sea and Red Sea). Crustal heterogeneity is resolvable but is poorest in seismically quiescent Northern Africa.  相似文献   

19.
Records of deep-focus Hindu Kush earthquakes in the depth ranges 70–110 and 190–230 km made by 45 digital and analogue seismic stations were analyzed to study the attenuation field of short period seismic waves in the lithosphere of central Tien Shan. The dynamic characteristics studied include the ratio of peak amplitudes in S and P waves (S/P) and the ratio of the S-wave maximum to the coda level in the range t = 400 ± 5 s, where t is the lapse time (S/c400) for 1.25 Hz. Comparatively high values of S/P are shown to prevail in most of the area, corresponding to lower S-wave attenuation. Upon this background is a band of high and intermediate attenuation in the west of the area extending along the Talas-Fergana fault in the south and afterwards turning north-northeast. The rupture areas of the two largest (M ≥ 7.0) earthquakes which have occurred in Tien Shan during the last 25 years are confined to this band. Abnormally high values of S/c400 were obtained for stations situated in the rupture zone of the August 19, 1992, magnitude 7.3 Suusamyr earthquake and around it. For two of the stations we found considerable time variations in the coda envelope before the earthquake. The effective Q was derived from compressional and shear wave data for the entire area, as well as for the band of high attenuation. Comparison with previous data shows that the attenuation field in the area has changed appreciably during 20–25 years, which can only be due to a rearrangement of the fluid field in the crust and uppermost mantle. It is hypothesized that a large earthquake is very likely to occur in the northern part of the attenuating band.  相似文献   

20.
When the quality factorQ is taken into account in attenuation studies, it is necessary to know the relative losses of wave energy due to scattering and to anelastic absorption. The coda is the most important phenomenon now known which is related to elastic scattering of seismic waves. Utilizing coda, this study presents relationships which give theQ factors of the medium around the recording station and discriminate between attenuations arising from elastic scattering (under the assumption of isotropic scattering) and those arising from anelastic absorption. This work proposes a technique for separately determining the attenuation due to isotropic scattering and that due to absorption from the observed envelope of coda waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号