共查询到20条相似文献,搜索用时 16 毫秒
1.
Michelle T.H. van Vliet Wietse H.P. Franssen John R. Yearsley Fulco Ludwig Ingjerd Haddeland Dennis P. Lettenmaier Pavel Kabat 《Global Environmental Change》2013,23(2):450-464
Climate change will affect hydrologic and thermal regimes of rivers, having a direct impact on freshwater ecosystems and human water use. Here we assess the impact of climate change on global river flows and river water temperatures, and identify regions that might become more critical for freshwater ecosystems and water use sectors. We used a global physically based hydrological-water temperature modelling framework forced with an ensemble of bias-corrected general circulation model (GCM) output for both the SRES A2 and B1 emissions scenario. This resulted in global projections of daily river discharge and water temperature under future climate. Our results show an increase in the seasonality of river discharge (both increase in high flow and decrease in low flow) for about one-third of the global land surface area for 2071–2100 relative to 1971–2000. Global mean and high (95th percentile) river water temperatures are projected to increase on average by 0.8–1.6 (1.0–2.2) °C for the SRES B1–A2 scenario for 2071–2100 relative to 1971–2000. The largest water temperature increases are projected for the United States, Europe, eastern China, and parts of southern Africa and Australia. In these regions, the sensitivities are exacerbated by projected decreases in low flows (resulting in a reduced thermal capacity). For strongly seasonal rivers with highest water temperatures during the low flow period, up to 26% of the increases in high (95th percentile) water temperature can be attributed indirectly to low flow changes, and the largest fraction is attributable directly to increased atmospheric energy input. A combination of large increases in river temperature and decreases in low flows are projected for the southeastern United States, Europe, eastern China, southern Africa and southern Australia. These regions could potentially be affected by increased deterioration of water quality and freshwater habitats, and reduced water available for human uses such as thermoelectric power and drinking water production. 相似文献
2.
This paper concerns the impact of human-induced global climate change on the River Rhine discharge. For this purpose a model for climate assessment, named ESCAPE, is coupled to a water balance model, named RHINEFLOW. From climate scenarios, changes in regional annual water availability and seasonal discharge in the River Rhine Basin are estimated. The climate scenarios are based on greenhouse gases emissions scenarios. An assessment is made for best guess seasonal discharge changes and for changes in frequencies of low and high discharges in the downstream reaches of the river. In addition, a quantitative estimation of the uncertainties associated with this guess is arrived at.The results show that the extent and range of uncertainty is large with respect to the best guess changes. The uncertainty range is 2–3 times larger for the Business-as-Usual than for the Accelerated Policies scenarios. This large range stems from the doubtful precipitation simulations from the present General Circulation Models. This scenario study showed the precipitation scenarios to be the key-elements within the present range of reliable climate change scenarios.For the River Rhine best guess changes for annual water availability are small according to both scenarios. The river changes from a present combined snow-melt-rain fed river to an almost entirely rain fed river. The difference between present-day large average discharge in winter and the small average discharge in autumn should increase for all scenarios. This trend is largest in the Alpine part of the basin. Here, winter discharges should increase even for scenarios forecasting annual precipitation decreases. Summer discharge should decrease. Best guess scenarios should lead to increased frequencies of both low and high flow events in the downstream (Dutch) part of the river. The results indicate changes could be larger than presently assumed in worst case scenarios used by the Dutch water management authorities. 相似文献
3.
4.
Christoph Hauer Günther Unfer Hubert Holzmann Stefan Schmutz Helmut Habersack 《Climatic change》2013,116(3-4):827-850
The impact of climate-induced discharge change on fish habitats, based on 1951–2008 time series, was investigated within the crystalline catchment of the Grosse Mühl River in Northern Austria. A significant trend change of air temperature, based on Mann–Whitney statistical testing, was recorded for spring 1989 (P?=?98.9 %) and summer 1990 (P?=?99.9 %). This led to a pronounced increase in summer low flow periods. Hydrodynamic-numerical (one-dimensional/two-dimensional) modelling was applied to simulate the changing habitat characteristics due to decreasing discharge in relation to various morphological patterns (riffle-pool/plane-bed reaches). Using bathymetric data, which were sampled on cross sectional measurements, we clearly determined that plane-bed reaches (featureless bed forms) are sensitive to climate-related, reduced discharge, whereas riffle-pool reaches continued to exhibit suitable physical fish habitats even under extreme low-flow conditions. The impact of the decreased summer discharge on instream habitats was strong for subadult and adult grayling which have been used as target fish species. In situ measurements in microhabitats (velocity/depth) revealed habitat suitabilities. These values were taken as biotic input for habitat evaluation on the micro scale. The findings clearly show that river morphology is a decisive parameter in terms of habitat preservation and restoration in the context of the future impacts of climate change (decreased discharge). 相似文献
5.
M. J. M. de Wit B. van den Hurk P. M. M. Warmerdam P. J. J. F. Torfs E. Roulin W. P. A. van Deursen 《Climatic change》2007,82(3-4):351-372
In this study observed precipitation, temperature, and discharge records from the Meuse basin for the period 1911–2003 are
analysed. The primary aim is to establish which meteorological conditions generate (critical) low-flows of the Meuse. This
is achieved by examining the relationships between observed seasonal precipitation and temperature anomalies, and low-flow
indices. Secondly, the possible impact of climate change on the (joint) occurrence of these low-flow generating meteorological
conditions is addressed. This is based on the outcomes of recently reported RCM climate simulations for Europe given a scenario
with increased atmospheric greenhouse-gas concentrations. The observed record (1911–2003) hints at the importance of multi-seasonal
droughts in the generation of critical low-flows of the river Meuse. The RCM simulations point to a future with wetter winters
and drier summers in Northwest Europe. No increase in the likelihood of multi-seasonal droughts is simulated. However, the
RCM scenario runs produce multi-seasonal precipitation and temperature anomalies that are out of the range of the observed
record for the period 1911–2003. The impact of climate change on low-flows has also been simulated with a hydrological model.
This simulation indicates that climate change will lead to a decrease in the average discharge of the Meuse during the low-flow
season. However, the model has difficulties to simulate critical low-flow conditions of the Meuse. 相似文献
6.
Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 1: baseline climate 总被引:1,自引:0,他引:1
Assessing future climate and its potential implications on river flows is a key challenge facing water resource planners. Sound, scientifically-based advice to decision makers also needs to incorporate information on the uncertainty in the results. Moreover, existing bias in the reproduction of the ‘current’ (or baseline) river flow regime is likely to transfer to the simulations of flow in future time horizons, and it is thus critical to undertake baseline flow assessment while undertaking future impacts studies. This paper investigates the three main sources of uncertainty surrounding climate change impact studies on river flows: uncertainty in GCMs, in downscaling techniques and in hydrological modelling. The study looked at four British catchments’ flow series simulated by a lumped conceptual rainfall–runoff model with observed and GCM-derived rainfall series representative of the baseline time horizon (1961–1990). A block-resample technique was used to assess climate variability, either from observed records (natural variability) or reproduced by GCMs. Variations in mean monthly flows due to hydrological model uncertainty from different model structures or model parameters were also evaluated. Three GCMs (HadCM3, CCGCM2, and CSIRO-mk2) and two downscaling techniques (SDSM and HadRM3) were considered. Results showed that for all four catchments, GCM uncertainty is generally larger than downscaling uncertainty, and both are consistently greater than uncertainty from hydrological modelling or natural variability. No GCM or downscaling technique was found to be significantly better or to have a systematic bias smaller than the others. This highlights the need to consider more than one GCM and downscaling technique in impact studies, and to assess the bias they introduce when modelling river flows. 相似文献
7.
Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 2: future climate 总被引:3,自引:0,他引:3
The first part of this paper demonstrated the existence of bias in GCM-derived precipitation series, downscaled using either a statistical technique (here the Statistical Downscaling Model) or dynamical method (here high resolution Regional Climate Model HadRM3) propagating to river flow estimated by a lumped hydrological model. This paper uses the same models and methods for a future time horizon (2080s) and analyses how significant these projected changes are compared to baseline natural variability in four British catchments. The UKCIP02 scenarios, which are widely used in the UK for climate change impact, are also considered. Results show that GCMs are the largest source of uncertainty in future flows. Uncertainties from downscaling techniques and emission scenarios are of similar magnitude, and generally smaller than GCM uncertainty. For catchments where hydrological modelling uncertainty is smaller than GCM variability for baseline flow, this uncertainty can be ignored for future projections, but might be significant otherwise. Predicted changes are not always significant compared to baseline variability, less than 50% of projections suggesting a significant change in monthly flow. Insignificant changes could occur due to climate variability alone and thus cannot be attributed to climate change, but are often ignored in climate change studies and could lead to misleading conclusions. Existing systematic bias in reproducing current climate does impact future projections and must, therefore, be considered when interpreting results. Changes in river flow variability, important for water management planning, can be easily assessed from simple resampling techniques applied to both baseline and future time horizons. Assessing future climate and its potential implication for river flows is a key challenge facing water resource planners. This two-part paper demonstrates that uncertainty due to hydrological and climate modelling must and can be accounted for to provide sound, scientifically-based advice to decision makers. 相似文献
8.
Climate Dynamics - A regional climate model, WRF (Weather Research and Forecasting model), was set-up and fine-tuned to simulate the possible impacts of climate change to the Mackenzie River Basin... 相似文献
9.
辽河流域属于气候变暖较为显著区域,增温幅度比全球和全国的增温幅度都要高。同时辽河流域也是水资源较为匮乏且需求量大的地区,因此气候变化对水资源影响问题也更值得关注。基于长期历史观测气象水文数据和未来不同情景下气候变化预估资料,建立评估气候变化与径流量的关系,预估未来气候变化对径流量的可能影响,为辽河流域应对气候变化决策提供科学依据。结果表明:1961—2020年,辽河流域气温为持续上升趋势,降水没有明显的增减趋势,但存在阶段性变化;辽河流域降水量与径流量有较好的相关关系,具有较为一致的长期变化趋势与特征,年降水量与径流量相关数达到0.6以上。日降水量与径流量相关分析表明,降水发生后次日且为大雨降水等级(即日降水量≥25 mm)时,两者相关系数可高达0.85;敏感性试验和模式模拟试验表明,径流量对气候变化有明显的响应,降水增加(减少)、气温降低(升高),则径流量增加(减少);在未来RCP8.5排放情景下气温升高趋势最为明显,未来径流量也为显著增加趋势;RCP2.6排放情景下气温增加的幅度最小,未来径流量也表现为无明显增减趋势;RCP4.5情景下,气温增加的幅度居中,未来径流量则为减少趋势。 相似文献
10.
Tobias Lung Alessandro Dosio William Becker Carlo Lavalle Laurens M. Bouwer 《Climatic change》2013,120(1-2):211-227
Despite an increasing understanding of potential climate change impacts in Europe, the associated uncertainties remain a key challenge. In many impact studies, the assessment of uncertainties is underemphasised, or is not performed quantitatively. A key source of uncertainty is the variability of climate change projections across different regional climate models (RCMs) forced by different global circulation models (GCMs). This study builds upon an indicator-based NUTS-2 level assessment that quantified potential changes for three climate-related hazards: heat stress, river flood risk, and forest fire risk, based on five GCM/RCM combinations, and non-climatic factors. First, a sensitivity analysis is performed to determine the fractional contribution of each single input factor to the spatial variance of the hazard indicators, followed by an evaluation of uncertainties in terms of spread in hazard indicator values due to inter-model climate variability, with respect to (changes in) impacts for the period 2041–70. The results show that different GCM/RCM combinations lead to substantially varying impact indicators across all three hazards. Furthermore, a strong influence of inter-model variability on the spatial patterns of uncertainties is revealed. For instance, for river flood risk, uncertainties appear to be particularly high in the Mediterranean, whereas model agreement is higher for central Europe. The findings allow for a hazard-specific identification of areas with low vs. high model agreement (and thus confidence of projected impacts) within Europe, which is of key importance for decision makers when prioritising adaptation options. 相似文献
11.
Jason C. Leppi Thomas H. DeLuca Solomon W. Harrar Steven W. Running 《Climatic change》2012,112(3-4):997-1014
In the snowmelt dominated hydrology of arid western US landscapes, late summer low streamflow is the most vulnerable period for aquatic ecosystem habitats and trout populations. This study analyzes mean August discharge at 153 streams throughout the Central Rocky Mountains of North America (CRMs) for changes in discharge from 1950–2008. The purpose of this study was to determine if: (1) Mean August stream discharge values have decreased over the last half-century; (2) Low discharge values are occurring more frequently; (3) Climatic variables are influencing August discharge trends. Here we use a strict selection process to characterize gauging stations based on amount of anthropogenic impact in order to identify heavily impacted rivers and understand the relationship between climatic variables and discharge trends. Using historic United States Geologic Survey discharge data, we analyzed data for trends of 40–59 years. Combining of these records along with aerial photos and water rights records we selected gauging stations based on the length and continuity of discharge records and categorized each based on the amount of diversion. Variables that could potentially influence discharge such as change in vegetation and Pacific Decadal Oscillation (PDO) were examined, but we found that that both did not significantly influence August discharge patterns. Our analyses indicate that non-regulated watersheds are experiencing substantial declines in stream discharge and we have found that 89% of all non-regulated stations exhibit a declining slope. Additionally our results here indicate a significant (α?≤?0.10) decline in discharge from 1951–2008 for the CRMs. Correlations results at our pristine sites show a negative relationship between air temperatures and discharge and these results coupled with increasing air temperature trends pose serious concern for aquatic ecosystems in CRMs. 相似文献
12.
Compared to other phytoplankton groups, nitrogen-fixing cyanobacteria generally prefer high water temperatures for growth and are therefore expected to benefit from global warming. We use a coupled biological-physical model with an advanced cyanobacteria life cycle model to compare the abundance of cyanobacteria in the Baltic Sea during two different time periods (1969–1998; 2069–2098). For the latter, we find prolonged growth and a more than twofold increase in the climatologically (30 years) averaged cyanobacteria biomass and nitrogen fixation. Additional sensitivity experiments indicate that the biological-physical feedback mechanism through light absorption becomes more important with global warming. In general, we find a nonlinear response of cyanobacteria to changes in the atmospheric forcing fields as a result of life-cycle related feedback mechanisms. Overall, the sensitivity of the cyanobacteria-driven system suggests that biological-physical and life-cycle related feedback mechanisms are important and must therefore be included in future projection studies. 相似文献
13.
14.
Claudio O. Stöckle Roger L. Nelson Stewart Higgins Jay Brunner Gary Grove Rick Boydston Mathew Whiting Chad Kruger 《Climatic change》2010,102(1-2):77-102
An assessment of the potential impact of climate change and the concurrent increase of atmospheric CO2 concentration on eastern Washington State agriculture was conducted. Climate projections from four selected general circulation models (GCM) were chosen, and the assessment included the crops with larger economic value for the state (apples, potatoes, and wheat). To evaluate crop performance, a cropping system simulation model (CropSyst) was utilized using historical and future climate sequences. Crops were assumed to receive adequate water (irrigated crops), nutrients, and control of weeds, pests and diseases. Results project that the impact of climate change on eastern Washington agriculture will be generally mild in the short term (i.e., next two decades), but increasingly detrimental with time (potential yield losses reaching 25% for some crops by the end of the century). However, CO2 elevation is expected to provide significant mitigation, and in fact result in yield gains for some crops. The combination of increased CO2 and adaptive management may result in yield benefits for all crops. One limitation of the study is that water supply was assumed sufficient for irrigated crops, but other studies suggest that it may decrease in many locations due to climate change. 相似文献
15.
Interest in the impacts of climate change is ever increasing. This is particularly true of the water sector where understanding potential changes in the occurrence of both floods and droughts is important for strategic planning. Climate variability has been shown to have a significant impact on UK climate and accounting for this in future climate change projections is essential to fully anticipate potential future impacts. In this paper a new resampling methodology is developed which includes the variability of both baseline and future precipitation. The resampling methodology is applied to 13 CMIP3 climate models for the 2080s, resulting in an ensemble of monthly precipitation change factors. The change factors are applied to the Eden catchment in eastern Scotland with analysis undertaken for the sensitivity of future river flows to the changes in precipitation. Climate variability is shown to influence the magnitude and direction of change of both precipitation and in turn river flow, which are not apparent without the use of the resampling methodology. The transformation of precipitation changes to river flow changes display a degree of non-linearity due to the catchment’s role in buffering the response. The resampling methodology developed in this paper provides a new technique for creating climate change scenarios which incorporate the important issue of climate variability. 相似文献
16.
气候变化对农业的影响研究进展 总被引:4,自引:0,他引:4
本文着重介绍了近几年气候变化对农业影响的最新研究进展,其中包括气象因子对农业生态环境的影响、二氧化碳浓度增加、气候变化对农作物光合作用、生长发育、产量、品质、种类、地理分布、种植制度、农业灾害以及农业成本等领域最新研究进展,最后指出了存在的问题以及研究展望。 相似文献
17.
18.
Understanding the impact of climate change on Northern Hemisphere extra-tropical cyclones 总被引:1,自引:2,他引:1
Ruth E. McDonald 《Climate Dynamics》2011,37(7-8):1399-1425
Extra-tropical cyclones strongly influence weather and climate in mid-latitudes and any future changes may have large impacts on the local scale. In this study Northern Hemisphere storms are analysed in ensembles of time-slice experiments carried out with an atmosphere only model with present day and future anthropogenic emissions. The present day experiment is forced by observed sea-surface temperature and sea-ice. The sea-surface temperatures and sea-ice for the future experiment are derived by adding anomalies, from parallel but lower resolution coupled model experiments, to the observed data. The storms in the present day simulation compare fairly well with observations in all seasons but some errors remain. In the future simulations there is some evidence of a poleward shift in the storm tracks in some seasons and regions. There are fewer cyclones in the Northern Hemisphere in winter and spring. The northeast end of the North Atlantic storm track is shifted south in winter giving more storms and increased frequency of strong winds over the British Isles. This shift is related to an increase in baroclinicity and a southward shift of the jet that occurs as a response to a minimum in ocean warming in the central North Atlantic. An increase in the frequency of storms over the UK is likely to cause enhanced levels of wind and flood damage. These results concur with those from some other models, however, large uncertainties remain. 相似文献
19.
杜华明 《高原山地气象研究》2005,25(4)
本文着重介绍了近几年气候变化对农业影响的最新研究进展,其中包括气象因子对农业生态环境的影响、二氧化碳浓度增加、气候变化对农作物光合作用、生长发育、产量、品质、种类、地理分布、种植制度、农业灾害以及农业成本等领域最新研究进展,最后指出了存在的问题以及研究展望. 相似文献
20.
This paper presents an assessment of the implications of climate change for global river flood risk. It is based on the estimation of flood frequency relationships at a grid resolution of 0.5?×?0.5°, using a global hydrological model with climate scenarios derived from 21 climate models, together with projections of future population. Four indicators of the flood hazard are calculated; change in the magnitude and return period of flood peaks, flood-prone population and cropland exposed to substantial change in flood frequency, and a generalised measure of regional flood risk based on combining frequency curves with generic flood damage functions. Under one climate model, emissions and socioeconomic scenario (HadCM3 and SRES A1b), in 2050 the current 100-year flood would occur at least twice as frequently across 40 % of the globe, approximately 450 million flood-prone people and 430 thousand km2 of flood-prone cropland would be exposed to a doubling of flood frequency, and global flood risk would increase by approximately 187 % over the risk in 2050 in the absence of climate change. There is strong regional variability (most adverse impacts would be in Asia), and considerable variability between climate models. In 2050, the range in increased exposure across 21 climate models under SRES A1b is 31–450 million people and 59 to 430 thousand km2 of cropland, and the change in risk varies between ?9 and +376 %. The paper presents impacts by region, and also presents relationships between change in global mean surface temperature and impacts on the global flood hazard. There are a number of caveats with the analysis; it is based on one global hydrological model only, the climate scenarios are constructed using pattern-scaling, and the precise impacts are sensitive to some of the assumptions in the definition and application. 相似文献