首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E. Bois  N. Rambaux   《Icarus》2007,192(2):308-317
Mercury's capture into the 3:2 spin–orbit resonance can be explained as a result of its chaotic orbital dynamics. One major objective of MESSENGER and BepiColombo spatial missions is to accurately measure Mercury's rotation and its obliquity in order to obtain constraints on internal structure of the planet. Analytical approaches at the first-order level using the Cassini state assumptions give the obliquity constant or quasi-constant. Which is the obliquity's dynamical behavior deriving from a complete spin–orbit motion of Mercury simultaneously integrated with planetary interactions? We have used our SONYR model (acronym of Spin–Orbit N-bodY Relativistic model) integrating the spin–orbit N-body problem applied to the Solar System (Sun and planets). For lack of current accurate observations or ephemerides of Mercury's rotation, and therefore for lack of valid initial conditions for a numerical integration, we have built an original method for finding the libration center of the spin–orbit system and, as a consequence, for avoiding arbitrary amplitudes in librations of the spin–orbit motion as well as in Mercury's obliquity. The method has been carried out in two cases: (1) the spin–orbit motion of Mercury in the 2-body problem case (Sun–Mercury) where an uniform precession of the Keplerian orbital plane is kinematically added at a fixed inclination (S2K case), (2) the spin–orbit motion of Mercury in the N-body problem case (Sun and planets) (Sn case). We find that the remaining amplitude of the oscillations in the Sn case is one order of magnitude larger than in the S2K case, namely 4 versus 0.4 arcseconds (peak-to-peak). The mean obliquity is also larger, namely 1.98 versus 1.80 arcminutes, for a difference of 10.8 arcseconds. These theoretical results are in a good agreement with recent radar observations but it is not excluded that it should be possible to push farther the convergence process by drawing nearer still more precisely to the libration center. We note that the dynamically driven spin precession, which occurs when the planetary interactions are included, is more complex than the purely kinematic case. Nevertheless, in such a N-body problem, we find that the 3:2 spin–orbit resonance is really combined to a synchronism where the spin and orbit poles on average precess at the same rate while the orbit inclination and the spin axis orientation on average decrease at the same rate. As a consequence and whether it would turn out that there exists an irreducible minimum of the oscillation amplitude, quasi-periodic oscillations found in Mercury's obliquity should be to geometrically understood as librations related to these synchronisms that both follow a Cassini state. Whatever the open question on the minimal amplitude in the obliquity's oscillations and in spite of the planetary interactions indirectly acting by the solar torque on Mercury's rotation, Mercury remains therefore in a stable equilibrium state that proceeds from a 2-body Cassini state.  相似文献   

2.
Here is a selection of applications of what is now called theory of dynamical systems in galactic dynamics and N-body systems. The study of chaotic motions in potentials used as a model for elliptical galaxies is a first example of these applications. The interest in this problem stems from the fact that there are now many theoretical and observational evidences that the overall potentials of galaxies are indeed non-integrable. There are classes of objects, for example small and intermediate luminosity elliptical galaxies, for which the presence of the famous third integral is not necessary or others in which we observe peculiarities in their photometry or kinematics. We address here some of these issues and their implications in modifying our current understanding of the structure and evolution of galaxies.More in general, there is the natural question of how the systems we see have settled to their present status and what would happen if some external cause perturbs it. This issue is related to the question of the stochasticity involved in the general N-body dynamics, especially when N is very large. An N-body dynamical system is definitely chaotic, as shown by several numerical investigations, at least for N not very large. However, this statement must be reconciled with the picture of non-collisional equilibrium of big systems. The second part of this review presents a survey of numerical experiments and an interpretation of the results obtained using standard chaoticity indicators.  相似文献   

3.
We present a new method for fast numerical integration of close binaries inN-body systems. The basic idea is to slow down the motion of the binary artificially, which makes a faster numerical integration possible but still maintains correct treatment of secular and long-period effects on the motion. We discuss the general principle, with application to close binaries inN-body codes and in the chain regularization.  相似文献   

4.
We present a new set of variables for the reduction of the planetary n-body problem, associated to the angular momentum integral, which can be of any use for perturbation theory. The construction of these variables is performed in two steps. A first reduction, called partial is based only on the fixed direction of the angular momentum. The reduction can then be completed using the norm of the angular momentum. In fact, the partial reduction presents many advantages. In particular, we keep some symmetries in the equations of motion (d'Alembert relations). Moreover, in the reduced secular system, we can construct a Birkhoff normal form at any order. Finally, the topology of this problem remains the same as for the non-reduced system, contrarily to Jacobi's reduction where a singularity is present for zero inclinations. For three bodies, these reductions can be done in a very simple way in Poincaré's rectangular variables. In the general n-body case, the reduction can be performed up to a fixed degree in eccentricities and inclinations, using computer algebra expansions. As an example, we provide the truncated expressions for the change of variable in the 4-body case, obtained using the computer algebra system TRIP.  相似文献   

5.
Since the first extrasolar planet was discovered about 10 years ago, a major point of dynamical investigations was the determination of stable regions in extrasolar planetary systems where additional planets may exist. Using numerical methods, we investigate the dynamical stability in known multiple planetary systems (HD74156, HD38529, HD168443, HD169830) with special interest on the region between the two known planets and on the mean motion resonances inside this region. As a dynamical model we take the restricted 4-body problem containing the host star, the two planets and massless test-planets. For our numerical integrations, we used the Lie-integrator and additionally the Fast Lyapunov Indicators as a tool for detecting chaotic motion. We also investigated the inner resonances with the outer planet and the outer resonances with the inner planet with test-planets located inside the resonances.  相似文献   

6.
Surfaces of planets and small bodies of our Solar System are often covered by a layer of granular material that can range from a fine regolith to a gravel-like structure of varying depths. Therefore, the dynamics of granular materials are involved in many events occurring during planetary and small-body evolution thus contributing to their geological properties.We demonstrate that the new adaptation of the parallel N-body hard-sphere code pkdgrav has the capability to model accurately the key features of the collective motion of bidisperse granular materials in a dense regime as a result of shaking. As a stringent test of the numerical code we investigate the complex collective ordering and motion of granular material by direct comparison with laboratory experiments. We demonstrate that, as experimentally observed, the scale of the collective motion increases with increasing small-particle additive concentration.We then extend our investigations to assess how self-gravity and external gravity affect collective motion. In our reduced-gravity simulations both the gravitational conditions and the frequency of the vibrations roughly match the conditions on asteroids subjected to seismic shaking, though real regolith is likely to be much more heterogeneous and less ordered than in our idealised simulations. We also show that collective motion can occur in a granular material under a wide range of inter-particle gravity conditions and in the absence of an external gravitational field. These investigations demonstrate the great interest of being able to simulate conditions that are to relevant planetary science yet unreachable by Earth-based laboratory experiments.  相似文献   

7.
The linear theory and N-body simulations are used to present a new, alternative model of the galaxy A0035-324 (the “Cartwheel”), which is the most striking example of the relatively small class of ring galaxies. The model is based on the gravitational Jeans-type instability of both axisymmetric (radial) and nonaxisymmetric (spiral) small-amplitude gravity perturbations (e.g., those produced by spontaneous disturbances) of a dynamically cold subsystem (identified as the gaseous component) of an isolated disk galaxy. The simplified model of a galaxy is used in which stars (and a dark matter, if it exists at all) do not participate in the disk collective oscillations and just form a background charge. In the theory presented here, a case for both purely radial solutions and purely spiral solutions to the equations of motion of an infinitesimally thin gaseous disk is made, which is associated with both a radial density wave and a dominant spiral density wave which propagate outwards creating a rough ring and a number of spiral arms. Through three-dimensional numerical simulation of a collisionless set of many particles, I associate these gravitationally unstable axisymmetric waves and nonaxisymmetric waves with growing clumps of matter which take on the appearance of a ring and spokes of mass blobs.  相似文献   

8.
An appropriate generalization of the Jacobi equation of motion for the polar moment of inertia I is considered in order to study the N-body problem with variable masses. Two coupled ordinary differential equations governing the evolution of I and the total energy E are obtained. A regularization scheme for this system of differential equations is provided. We compute some illustrative numerical examples, and discuss an average method for obtaining approximate analytical solutions to this pair of equations. For a particular law of mass loss we also obtain exact analytical solutions. The application of these ideas to other kind of perturbed gravitational N-body systems involving drag forces or a different type of mass variation is also considered. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The work of Aarseth and Zare (1974) is extended to provide aglobal regularisation of the classical gravitational three-body problem: by transformation of the variables in a way that does not depend on the particular configuration, we obtain equations of motion which are regular with respect to collisions between any pair of particles. The only cases excepted are those in which collisions between more than one pair occur simultaneously and those in which at least one of the masses vanishes. However, by means of the same principles the restricted problem is regularised globally if collisions between the two primaries are excluded. Results of numerical tests are summarised, and the theory is generalised to provide global regularisations, first, for perturbed three-body motion and, second, for theN-body problem. A way of increasing the number of degrees of freedom of a dynamical system is central to the method, and is the subject of an Appendix.  相似文献   

10.
The integration of the equations of motion in gravitational dynamical systems—either in our Solar System or for extra-solar planetary systems—being non integrable in the global case, is usually performed by means of numerical integration. Among the different numerical techniques available for solving ordinary differential equations, the numerical integration using Lie series has shown some advantages. In its original form (Hanslmeier and Dvorak, Astron Astrophys 132, 203 1984), it was limited to the N-body problem where only gravitational interactions are taken into account. We present in this paper a generalisation of the method by deriving an expression of the Lie terms when other major forces are considered. As a matter of fact, previous studies have been done but only for objects moving under gravitational attraction. If other perturbations are added, the Lie integrator has to be re-built. In the present work we consider two cases involving position and position-velocity dependent perturbations: relativistic acceleration in the framework of General Relativity and a simplified force for the Yarkovsky effect. A general iteration procedure is applied to derive the Lie series to any order and precision. We then give an application to the integration of the equation of motions for typical Near-Earth objects and planet Mercury.  相似文献   

11.
We present N-body simulations of planetary accretion beginning with 1 km radius planetesimals in orbit about a 1 M star at 0.4 AU. The initial disk of planetesimals contains too many bodies for any current N-body code to integrate; therefore, we model a sample patch of the disk. Although this greatly reduces the number of bodies, we still track in excess of 105 particles. We consider three initial velocity distributions and monitor the growth of the planetesimals. The masses of some particles increase by more than a factor of 100. Additionally, the escape speed of the largest particle grows considerably faster than the velocity dispersion of the particles, suggesting impending runaway growth, although no particle grows large enough to detach itself from the power law size-frequency distribution. These results are in general agreement with previous statistical and analytical results. We compute rotation rates by assuming conservation of angular momentum around the center of mass at impact and that merged planetesimals relax to spherical shapes. At the end of our simulations, the majority of bodies that have undergone at least one merger are rotating faster than the breakup frequency. This implies that the assumption of completely inelastic collisions (perfect accretion), which is made in most simulations of planetary growth at sizes 1 km and above, is inappropriate. Our simulations reveal that, subsequent to the number of particles in the patch having been decreased by mergers to half its initial value, the presence of larger bodies in neighboring regions of the disk may limit the validity of simulations employing the patch approximation.  相似文献   

12.
We developed a three-dimensional numerical model to investigate nonstationary processes in gravitating N-body systems with gas. We used efficient algorithms for solving the Vlasov and Poisson equations that included the evolutionary processes under consideration, which ensures rapid convergence at high accuracy. We give examples of the numerical solution of the problem on the growth of physical instability in the model of a flat rotating disk with a gaseous component and its three-dimensional dynamics under various initial conditions including a nonzero velocity dispersion along the rotation axis.  相似文献   

13.
We present a new particle-based (discrete element) numerical method for the simulation of granular dynamics, with application to motions of particles on small solar system body and planetary surfaces. The method employs the parallel N-body tree code pkdgrav to search for collisions and compute particle trajectories. Collisions are treated as instantaneous point-contact events between rigid spheres. Particle confinement is achieved by combining arbitrary combinations of four provided wall primitives, namely infinite plane, finite disk, infinite cylinder, and finite cylinder, and degenerate cases of these. Various wall movements, including translation, oscillation, and rotation, are supported. We provide full derivations of collision prediction and resolution equations for all geometries and motions. Several tests of the method are described, including a model granular “atmosphere” that achieves correct energy equipartition, and a series of tumbler simulations that show the expected transition from tumbling to centrifuging as a function of rotation rate.  相似文献   

14.
Periodic orbits     
Recent results on periodic orbits are presented. Planetary systems can be studied by the model of the general 3-body problem and also some satellite systems and asteroid orbits can be studied by the model of the restricted 3-body problem. Triple stellar systems and planetary systems with two Suns are close to periodic systems. Finally, the motion of stars in various types of galaxies can be studied by finding families of periodic orbits in several galactic models.  相似文献   

15.
16.
Massive planets form within the lifetime of protoplanetary disks, and therefore, they are subject to orbital migration due to planet–disk interactions. When the first planet reaches the inner edge of the disk, its migration stops and consequently the second planet ends up locked in resonance with the first one. We detail how the resonant trapping works comparing semi-analytical formulae and numerical simulations. We restrict to the case of two equal-mass coplanar planets trapped in first-order resonances, but the method can be easily generalized. We first describe the family of resonant stable equilibrium points (zero-amplitude libration orbits) using series expansions up to different orders in eccentricity as well as a non-expanded Hamiltonian. Then we show that during convergent migration the planets evolve along these families of equilibrium points. Eccentricity damping from the disk leads to a final equilibrium configuration that we predict precisely analytically. The fact that observed multi-exoplanetary systems are rarely seen in resonances suggests that in most cases the resonant configurations achieved by migration become unstable after the removal of the protoplanetary disk. Here we probe the stability of the resonances as a function of planetary mass. For this purpose, we fictitiously increase the masses of resonant planets, adiabatically maintaining the low-amplitude libration regime until instability occurs. We discuss two hypotheses for the instability, that of a low-order secondary resonance of the libration frequency with a fast synodic frequency of the system, and that of minimal approach distance between planets. We show that secondary resonances do not seem to impact resonant systems at low amplitude of libration. Resonant systems are more stable than non-resonant ones for a given minimal distance at close encounters, but we show that the latter nevertheless play the decisive role in the destabilization of resonant pairs. We show evidence that as the planetary mass increases and the minimal distance between planets gets smaller in terms of mutual Hill radius, the region of stability around the resonance center shrinks, until the equilibrium point itself becomes unstable.  相似文献   

17.
By generalizing the restricted three-body problem, we introduce the restricted four-body problem. We present a numerical study of this problem which includes a study of equilibrium points, regions of possible motion and periodic orbits. Our main motivation for introducing this problem is that it can be used as an intermediate step for a systematic exploration of the genral four-body problem. In an analogous way, one may introduce the restrictedN-body problem.  相似文献   

18.
We perform numerical simulations to explore the dynamical evolution of the HD 82943 planetary system. By simulating diverse planetary configurations, we find two mechanisms of stabilizing the system: the 2:1 mean motion resonance (MMR) between the two planets can act as the first mechanism for all stable orbits. The second mechanism is a dynamical antialignment of the apsidal lines of the orbiting planets, which implies that the difference of the periastron longitudes 3 librates about 180° in the simulations. We also use a semi-analytical model to explain the numerical results for the system under study.  相似文献   

19.
Adrián Brunini 《Icarus》2005,177(1):264-268
The sample of known exoplanets is strongly biased to masses larger than the ones of the giant gaseous planets of the Solar System. Recently, the discovery of two extrasolar planets of considerably lower masses around the nearby Stars GJ 436 and ρ Cancri was reported. They are like our outermost icy giants, Uranus and Neptune, but in contrast, these new planets are orbiting at only some hundredth of the Earth-Sun distance from their host stars, raising several new questions about their origin and constitution. Here we report numerical simulations of planetary accretion that show, for the first time through N-body integrations that the formation of compact systems of Neptune-like planets close to the hosts stars could be a common by-product of planetary formation. We found a regime of planetary accretion, in which orbital migration accumulates protoplanets in a narrow region around the inner edge of the nebula, where they collide each other giving rise to Neptune-like planets. Our results suggest that, if a protoplanetary solar environment is common in the Galaxy, the discovery of a vast population of this sort of ‘hot cores’ should be expected in the near future.  相似文献   

20.
The chain regularization method (Mikkola and Aarseth 1990) for high accuracy computation of particle motions in smallN-body systems has been reformulated. We discuss the transformation formulae, equations of motion and selection of a chain of interparticle vectors such that the critical interactions requiring regularization are included in the chain. The Kustaanheimo-Stiefel (KS) coordinate transformation and a time transformation is used to regularize the dominant terms of the equations of motion. The method has been implemented for an arbitrary number of bodies, with the option of external perturbations. This formulation has been succesfully tested in a generalN-body program for strongly interacting subsystems. An easy to use computer program, written inFortran, is available on request.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号