首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat transfer due to groundwater flow can significantly affect closed geothermal systems. Here, a screening method is developed, based on Peclet numbers for these systems and Darcy's law. Conduction‐only conditions should not be expected where specific discharges exceed 10?8 m/s. Constraints on hydraulic gradients allow for preliminary screening for advection based on rock or soil types. Identification of materials with very low hydraulic conductivity, such as shale and intact igneous and metamorphic rock, allow for analysis with considering conduction only. Variability in known hydraulic conductivity allows for the possibility of advection in most other rocks and soil types. Further screening relies on refinement of estimates of hydraulic gradients and hydraulic conductivity through site investigations and modeling until the presence or absence of conduction can be confirmed.  相似文献   

2.
Oscillatory pumping tests—in which flow is varied in a periodic fashion—provide a method for understanding aquifer heterogeneity that is complementary to strategies such as slug testing and constant‐rate pumping tests. During oscillatory testing, pressure data collected at non‐pumping wells can be processed to extract metrics, such as signal amplitude and phase lag, from a time series. These metrics are robust against common sensor problems (including drift and noise) and have been shown to provide information about aquifer heterogeneity. Field implementations of oscillatory pumping tests for characterization, however, are not common and thus there are few guidelines for their design and implementation. Here, we use available analytical solutions from the literature to develop design guidelines for oscillatory pumping tests, while considering practical field constraints. We present two key analytical results for design and analysis of oscillatory pumping tests. First, we provide methods for choosing testing frequencies and flow rates which maximize the signal amplitude that can be expected at a distance from an oscillating pumping well, given design constraints such as maximum/minimum oscillator frequency and maximum volume cycled. Preliminary data from field testing helps to validate the methodology. Second, we develop a semi‐analytical method for computing the sensitivity of oscillatory signals to spatially distributed aquifer flow parameters. This method can be quickly applied to understand the “sensed” extent of an aquifer at a given testing frequency. Both results can be applied given only bulk aquifer parameter estimates, and can help to optimize design of oscillatory pumping test campaigns.  相似文献   

3.
Forecasters need climatological forecasting tools because of limitations of numerical weather prediction models. In this article, using Finnish SYNOP observations and ERA-40 model reanalysis data, low visibility cases are studied using subjective and objective analysis techniques. For the objective analysis, we used an AutoClass clustering algorithm, concentrating on three Finnish airports, namely, the Rovaniemi in northern Finland, Kauhava in western Finland, and Maarianhamina in southwest Finland. These airports represent different climatological conditions. Results suggested that combining of subjective analysis with an objective analysis, e.g., clustering algorithms such as the AutoClass method, can be used to construct climatological guides for forecasters. Some higher level subjective “meta-clustering” was used to make the results physically more reasonable and easier to interpret by the forecasters.  相似文献   

4.
Monitoring networks are expensive to establish and to maintain. In this paper, we extend an existing data‐worth estimation method from the suite of PEST utilities with a global optimization method for optimal sensor placement (called optimal design) in groundwater monitoring networks. Design optimization can include multiple simultaneous sensor locations and multiple sensor types. Both location and sensor type are treated simultaneously as decision variables. Our method combines linear uncertainty quantification and a modified genetic algorithm for discrete multilocation, multitype search. The efficiency of the global optimization is enhanced by an archive of past samples and parallel computing. We demonstrate our methodology for a groundwater monitoring network at the Steinlach experimental site, south‐western Germany, which has been established to monitor river—groundwater exchange processes. The target of optimization is the best possible exploration for minimum variance in predicting the mean travel time of the hyporheic exchange. Our results demonstrate that the information gain of monitoring network designs can be explored efficiently and with easily accessible tools prior to taking new field measurements or installing additional measurement points. The proposed methods proved to be efficient and can be applied for model‐based optimal design of any type of monitoring network in approximately linear systems. Our key contributions are (1) the use of easy‐to‐implement tools for an otherwise complex task and (2) yet to consider data‐worth interdependencies in simultaneous optimization of multiple sensor locations and sensor types.  相似文献   

5.
Groundwater model predictions are often uncertain due to inherent uncertainties in model input data. Monitored field data are commonly used to assess the performance of a model and reduce its prediction uncertainty. Given the high cost of data collection, it is imperative to identify the minimum number of required observation wells and to define the optimal locations of sampling points in space and depth. This study proposes a design methodology to optimize the number and location of additional observation wells that will effectively measure multiple hydrogeological parameters at different depths. For this purpose, we incorporated Bayesian model averaging and genetic algorithms into a linear data-worth analysis in order to conduct a three-dimensional location search for new sampling locations. We evaluated the methodology by applying it along a heterogeneous coastal aquifer with limited hydrogeological data that is experiencing salt water intrusion (SWI). The aim of the model was to identify the best locations for sampling head and salinity data, while reducing uncertainty when predicting multiple variables of SWI. The resulting optimal locations for new observation wells varied with the defined design constraints. The optimal design (OD) depended on the ratio of the start-up cost of the monitoring program and the installation cost of the first observation well. The proposed methodology can contribute toward reducing the uncertainties associated with predicting multiple variables in a groundwater system.  相似文献   

6.
Optimization of large‐scale injection‐based remedial systems requires engineering to intentionally capitalize on the biological, chemical, and physical mechanisms that occur within and between the zones of reagent application. These types of systems can be called hybrid designs as they employ multiple processes to achieve remediation endpoints ( Figure 1 ), resulting in optimized system performance and a reduction in the overall life‐cycle cost. While all remedial applications incorporate these mechanisms to some extent, the importance of each of these processes is magnified in large‐scale applications. This column discusses the dominant mechanisms responsible for mass reduction within both source and distal plume footprints, with a focus on the application of “Hybridized Design” for enhanced reductive dechlorination (ERD) systems.
Figure 1 Open in figure viewer PowerPoint Diagram showing the hybrid design approach which encompasses physical (sorption, advection, diffusion), chemical (mass flux, abiotic degradation) and biological (metabolic and cometabolic degradation) processes.  相似文献   

7.
This study presents a new multiobjective evolutionary algorithm (MOEA), the elitist multiobjective tabu search (EMOTS), and incorporates it with MODFLOW/MT3DMS to develop a groundwater simulation‐optimization (SO) framework based on modular design for optimal design of groundwater remediation systems using pump‐and‐treat (PAT) technique. The most notable improvement of EMOTS over the original multiple objective tabu search (MOTS) lies in the elitist strategy, selection strategy, and neighborhood move rule. The elitist strategy is to maintain all nondominated solutions within later search process for better converging to the true Pareto front. The elitism‐based selection operator is modified to choose two most remote solutions from current candidate list as seed solutions to increase the diversity of searching space. Moreover, neighborhood solutions are uniformly generated using the Latin hypercube sampling (LHS) in the bounded neighborhood space around each seed solution. To demonstrate the performance of the EMOTS, we consider a synthetic groundwater remediation example. Problem formulations consist of two objective functions with continuous decision variables of pumping rates while meeting water quality requirements. Especially, sensitivity analysis is evaluated through the synthetic case for determination of optimal combination of the heuristic parameters. Furthermore, the EMOTS is successfully applied to evaluate remediation options at the field site of the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts. With both the hypothetical and the large‐scale field remediation sites, the EMOTS‐based SO framework is demonstrated to outperform the original MOTS in achieving the performance metrics of optimality and diversity of nondominated frontiers with desirable stability and robustness.  相似文献   

8.
9.
Zhou  Changjiang  Xia  Jianghai  Cheng  Feng  Pang  Jingyin  Chen  Xinhua  Xing  Huaixue  Chang  Xiaojun 《Surveys in Geophysics》2022,43(3):853-881
Surveys in Geophysics - Reliable dispersion measurement between two seismic stations is an essential basis of surface wave imaging. Noise source directivity has become an inescapable obstacle and a...  相似文献   

10.
A comparison of tools for measuring discharge rates in a sandy streambed was conducted along a transect near the north bank of the Grindsted Å (stream), Denmark. Four tools were evaluated at six locations spaced 3 m apart in the stream: mini-piezometers, streambed point velocity probes (SBPVPs), temperature profilers, and seepage meters. Comparison of the methods showed that all identified a similar trend of low to high groundwater discharges moving westward along the transect. Furthermore, it was found that the differences between discharges estimated from Darcy calculations (using the mini-pizometers), and SBPVPs were not statistically different from zero, at the 90% confidence level. Seepage meter estimates were consistently lower than those of the other two methods, but compared more reasonably with the application of a correction factor of 1.7, taken from the literature. In contrast, discharges estimated from temperature profiling (to a depth of 40 cm) were found to be about an order of magnitude less than those determined with the other methods, possibly due to interferences from horizontal hyporheic flow. Where the various methods produced statistically different discharge estimations at the same location, it is hypothesized that the differences arose from method-specific sources of bias, including installation depths. On the basis of this work, practitioners interested in measuring flow across the groundwater-surface water interface achieve the least variability with seepage meters and the SBPVP. However the accuracy of the seepage meter depended on a calibrated correction factor while that of the SBPVP did not.  相似文献   

11.
This article provides details of applying the method developed by the authors ( Rubin et al. 2008b ) for screening one-well hydraulic barrier design alternatives. The present article with its supporting information (manual and electronic spreadsheets with a case history example) provides the reader complete details and examples of solving the set of nonlinear equations developed by Rubin et al. (2008b) . It allows proper use of the analytical solutions and also depicting the various charts given by Rubin et al. (2008b) . The final outputs of the calculations are the required position and the discharge of the pumping well. If the contaminant source is nonaqueous phase liquid (NAPL) entrapped within the aquifer, then the method provides an estimate of the aquifer remediation progress (which is a by-product) due to operating the hydraulic barrier.  相似文献   

12.
13.
Orthoimage maps have become very popular and frequently produced cartographical outputs in geosciences during recent years. However, the unambiguous terminology, definitions, content and appearance specifications have not been widely researched. This paper deals with the new definition of the orthoimage map, its component delineation, and basic classification. The authors present aspects of topographic and thematic orthoimage maps. The main theoretical achievement of the authors’ research is the determining of the image component and the symbol component of orthoimage map content. The presented orthoimage map concept is applicable in geophysics practise which is demonstrated by three presented topographic and thematic orthoimage maps. They differ according to the relationship between topographic background and thematic content, and between image and symbol component. The image component can be a carrier of thematic geophysical information, or it can be used as topographic background for geophysics-oriented symbol component. All prototypes give examples of how to design, complete and use image-based cartographical products. Those variants might be used as guidelines for future orthoimage map production, especially for the geophysics community.  相似文献   

14.
We present a set of river management tools based on a recently developed method for estimating the amount of salmon spawning habitat in coarse‐bedded rivers. The method, which was developed from a mechanistic model of redd building by female salmon, combines empirical relationships between fish length, redd area, and the sizes of particles moved by fish during spawning. Model inputs are the grain‐size indices D50 and D84 and an estimate of female fish length, which is used to predict the size of the redd that they will build and the size of the largest particle that they can move on the bed. Outputs include predictions of the fraction of the bed that the fish can use for redd building and the number of redds that they can build within the useable area. We cast the model into easy‐to‐use look‐up tables, charts, an Excel worksheet, a JavaScript web applet, and a MATLAB user interface. We explain how these tools can be used in a new, mechanistic approach to assessing spawning substrates and optimizing gravel augmentation projects in coarse‐bedded rivers. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

15.
Analytical studies for well design adjacent to river banks are the most significant practical task in cases involving the efficiency of riverbank filtration systems. In times when high pollution of river water is joined with increasing water demand, it is necessary to design pumping wells near the river that provide acceptable amounts of river water with minimum contaminant concentrations. This will guarantee the quality and safety of drinking water supplies. This article develops an analytical solution based on the Green's function approach to solve an inverse problem: based on the required level of contaminant concentration and planned pumping time period, the shortest distance to the riverbank that has the maximum percentage of river water is determined. This model is developed in a confined and homogenous aquifer that is partially penetrated by the stream due to the existence of clogging layers. Initially, the analytical results obtained at different pumping times, rates and with different values of initial concentration are checked numerically using the MODFLOW software. Generally, the distance results obtained from the proposed model are acceptable. Then, the model is validated by data related to two pumping wells located at the first riverbank filtration pilot project conducted in Malaysia.  相似文献   

16.
17.
Bacteriophages have been used in soil column studies for the last several decades as surrogates to study the fate and transport behavior of enteric viruses in groundwater. However, recent studies have shown that the transport behavior of bacteriophages and enteric viruses in porous media can be very different. The next generation of virus transport science must therefore provide more data on mobility of enteric viruses and the relationship between transport behaviors of enteric viruses and bacteriophages. To achieve this new paradigm, labor intensity devoted to enteric virus quantification method must be reduced. Recent studies applied quantitative polymerase chain reaction (qPCR) to column filtration experiments to study the transport behavior of human adenovirus (HAdV) in porous media under a variety of conditions. A similar approach can be used to study the transport of other enteric viruses such as norovirus. Analyzing the column samples with both qPCR and culture assays and applying multiplex qPCR to study cotransport behavior of more than one virus will provide information to under‐explored areas in virus transport science. Both nucleic acid extraction kits and one‐step lysis protocols have been used in these column studies to extract viral nucleic acid for qPCR quantification. The pros and cons of both methods are compared herein and solutions for overcoming problems are suggested. As better understanding of the transport behavior of enteric viruses is clearly needed, we strongly advocate for application of rapid molecular tools in future studies as well as optimization of protocols to overcome their current limitations.  相似文献   

18.
19.
20.
A nested workflow of multiple‐point geostatistics (MPG) and sequential Gaussian simulation (SGS) was tested on a study area of 6 km2 located about 20 km northwest of Quebec City, Canada. In order to assess its geological and hydrogeological parameter heterogeneity and to provide tools to evaluate uncertainties in aquifer management, direct and indirect field measurements are used as inputs in the geostatistical simulations to reproduce large and small‐scale heterogeneities. To do so, the lithological information is first associated to equivalent hydrogeological facies (hydrofacies) according to hydraulic properties measured at several wells. Then, heterogeneous hydrofacies (HF) realizations are generated using a prior geological model as training image (TI) with the MPG algorithm. The hydraulic conductivity (K) heterogeneity modeling within each HF is finally computed using SGS algorithm. Different K models are integrated in a finite‐element hydrogeological model to calculate multiple transport simulations. Different scenarios exhibit variations in mass transport path and dispersion associated with the large‐ and small‐scale heterogeneity respectively. Three‐dimensional maps showing the probability of overpassing different thresholds are presented as examples of management tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号