首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The infaunal bivalve Soletellina alba is susceptible to mass mortalities during annual winter flooding in the Hopkins River Estuary, southern Australia. Periods of low salinity (≤1) are the likely cause of these mass mortality events, which can occur in seasonally-closed estuaries when high winter flows are sufficient to flush all salt water from the estuary. Core samples of S. alba were collected from two water depths across four times and at three sites near the mouth of the estuary. Minimal to zero abundances of large S. alba (>1 mm) were expected to be sampled, particularly at the shallower water depth, during a typical winter flood event. However, the present study occurred during a period of drought, which led to the absence of winter flooding. This absence of winter flooding prevented the occurrence of lethal salinities (i.e. ≤1) in the estuary during this period and a greater number of living S. alba adults were sampled. Abundances of juvenile and adult S. alba were still variable, even in the absence of winter flooding, and reflected an interaction between date, site and water depth. However, no mass mortalities of adults were observed during the drought conditions in contrast to what occurs during typical winter flood events and provides support for the hypothesis that winter flooding is responsible for past mass mortalities.  相似文献   

2.
This paper describes the age structure, growth, diet and aspects of gonadal development in the cobbler, Cnidoglanis macrocephalus (Valenciennes), in the large Swan estuary in south-western Australia between August 1982 and June 1984. Analysis of otolith annuli showed that while the 0+ to 3+ age classes were regularly represented in monthly samples, the 4+ and more particularly the 5+ and 6+ were much less abundant. The weighted means for the back calculated lengths at the end of the first to fourth years of life were 181 mm (≡ 26 g), 314 mm (≡ 156 g), 418 mm (≡ 410 g) and 518 mm (≡ 833 g) respectively. The mean length at the end of the second year of life was similar to the minimum legal size for capture by commercial fishermen (320 mm). The von Bertlanffy growth curve calculated from the back calculated lengths was Lt = 917 [1 − e−0·20(t + 0·11)]. The relative weight of mulluscs, crustaceans and polychaetes in the intestine varied markedly between small and large fish, apparently reflecting differences in the size of these prey. The large mean diameter of mature eggs ( ) was correlated with a low mean absolute fecundity (2078). Trends shown by egg size, gonadosomatic index and time of appearance of spent females indicate that spawning takes place between October and December. The attainment of sexual maturity is both age- and size-dependent. Although sexually maturing and occasionally spent fish were found in the lower estuary, meristic values, commercial catch statistics and other data indicate that the cobbler found in the Swan estuary are part of a population which typically spawns at sea.  相似文献   

3.
Fatty acids and hydrocarbons of sedimenting particles were investigated in the northeastern Adriatic Sea from November 1988 to December 1989. Particles were collected at approximately monthly intervals, using sediment traps deployed at 30 m depth (2 m above bottom). Seasonal changes in sedimentation of particulate matter were very pronounced. Hydrocarbon fluxes and concentrations were found to vary significantly depending on the season. They averaged 2.69 ± 1.44 mg m−2 day−1 and 232.4 ± 90.93 μg g−1 in winter, respectively. In late spring-early summer the corresponding values amounted to 0.045 ± 0.015 mg m−2 day−1 and 13.72 ± 5.56 μg g−1, and they increased towards autumn, when mean values of 0.517 ± 0.228 mg m−2 day−1 and 98.86 ± 48.72 μg g−1 were obtained. In contrast, fatty acid fluxes and concentrations were low during winter (0.26 ± 0.08 mg m−2 day−1 and 21.95 ± 3.35 μg g−1), increased slightly towards the summer (0.48 ± 0.12 mg m−2 day−1 and 139.9 ± 44.6 μ g−1) and reached maximum rate and concentration in autumn, when average values were 1.98 ± 1.30 mg m2 day−1 and 489.1 ± 186.7 μg g−1, respectively. The differences in composition, concentrations and fluxes of the fatty acids and hydrocarbons were related to the sources of sedimenting material, reflecting the influence of resuspension of bottom sediments during winter and the appearance of mucus aggregates during summer and their subsequent deposition in autumn.  相似文献   

4.
Concentrations of Hg0 in surface waters and atmosphere of the Scheldt estuary and the North Sea are presented and their relationship with biological processes is discussed. Hg0 concentrations in the Scheldt estuary range from 0.1 to 0.38 pmol·l−1 in the winter and from 0.24 to 0.65 pmol·l−1 in the summer and show a positive relationship with phytoplankton pigments. In the North Sea Hg0 concentrations range from 0.06 to 0.8 pmol·l−1 and are higher in coastal stations. Transfer velocities across the air–sea interface were calculated using a classical shear turbulence model. Volatilization fluxes of Hg0 were calculated for the Scheldt estuary and the North Sea. For the Scheldt estuary the fluxes range from 226–284 pmol·m−2·d−1 in winter and 500–701 pmol·m−2·d−1 in summer and for the North Sea the fluxes range from 59–1110 pmol·m−2·d−1 for an average windspeed of 8.1 m·s−1. These fluxes are comparable to the wet and dry depositional fluxes to the North Sea. Hg0 formation rates necessary to balance the volatilization fluxes vary from 0.2 to 4% d−1.  相似文献   

5.
Concentrations of bacteria, chlorophyll a, and several dissolved organic compounds were determined during 11 tidal cycles throughout the year in a high and a low elevation marsh of a brackish tidal estuary. Mean bacterial concentrations were slightly higher in flooding (7·1 × 106 cells ml−1) than in ebbing waters (6·5 × 106 cells ml−1), and there were no differences between marshes. Mean chlorophyll a concentrations were 36·7 μg l−1 in the low marsh and 20·4 μg l−1 in the high marsh. Flux calculations, based on tidal records and measured concentrations, suggested a small net import of bacterial and algal biomass into both marshes. Over the course of individual tidal cycles, concentrations of all parameters were variable and not related to tidal stage. Heterotrophic activity measured by the uptake of 3H-thymidine, was found predominantly in the smallest particle size fractions (< 1·0 μm). Thymidine uptake was correlated with temperature (r = 0·48, P < 0·01), and bacterial productivity was estimated to be 7 to 42 μg Cl−1 day−1.  相似文献   

6.
Macroalgae biomass and concentrations of nitrogen, phosphorus and chlorophyll a were determined weekly or biweekly in water and sediments, during the spring-summer of 1985 in a hypertrophic area of the lagoon of Venice. Remarkable biomass production (up to 286 g m−2 day−1, wet weight), was interrupted during three periods of anoxia, when macroalgal decomposition (rate: up to 1000 g m−2 day−1) released extraordinary amounts of nutrients. Depending on the macroalgae distribution in the water column, the nutrients released in water varied from 3·3 to 19·1 μg-at litre−1 for total inorganic nitrogen and from 1·8 to 2·7 μg-at litre−1 for reactive phosphorus. Most nutrients, however, accumulated in the surficial sediment (up to 0·640 and to 3·06 mg g−1 for P and N respectively) redoubling the amounts already stored under aerobic conditions, Phytoplankton, systematically below 5 mg m−3 as Chl. a, sharply increased up to 100 mg m−3 only after the release of nutrients in water by anaerobic macroalgal decomposition. During the algal growth periods, the N:P atomic ratio in water decreased to 0·7, suggesting that nitrogen is a growth-limiting factor. This ratio for surficial sediment was between 6·6 and 13·1, similar to that of macroalgae (8·6–12·0).  相似文献   

7.
Coastal upwelling systems are regions with highly variable physical processes and very high rates of primary production and very little is known about the effect of these factors on the short-term variations of CO2 fugacity in seawater (fCO2w). This paper presents the effect of short-term variability (<1 week) of upwelling–downwelling events on CO2 fugacity in seawater (fCO2w), oxygen, temperature and salinity fields in the Ría de Vigo (a coastal upwelling ecosystem). The magnitude of fCO2w values is physically and biologically modulated and ranges from 285 μatm in July to 615 μatm in October. There is a sharp gradient in fCO2w between the inner and the outer zone of the Ría during almost all the sampling dates, with a landward increase in fCO2w.CO2 fluxes calculated from local wind speed and air–sea fCO2 differences indicate that the inner zone is a sink for atmospheric CO2 in December only (−0.30 mmol m−2 day−1). The middle zone absorbs CO2 in December and July (−0.05 and −0.27 mmol·m−2 day−1, respectively). The oceanic zone only emits CO2 in October (0.36 mmol·m−2 day−1) and absorbs at the highest rate in December (−1.53 mmol·m−2 day−1).  相似文献   

8.
The supply of detritus is an important food source for many soft-sediment invertebrates, but its importance for their growth and condition is rarely, if ever, tested directly using manipulative field experiments. Therefore, we designed such a study to: (1) test the importance of fine particulate organic matter for the growth and condition of the infaunal bivalve Soletellina alba; (2) indirectly test the feeding mode of S. alba, which has been assumed to be a deposit feeder like other members of the same superfamily (Tellinoidea); (3) compare growth rates across two summers with contrasting patterns of estuary mouth opening/closing; and (4) compare the condition of individuals used in two field studies (i.e. present versus past) and a past laboratory study. Neither growth nor condition differed when organic content of the sediments was varied, which suggests that S. alba is either a suspension feeder or capable of switching modes of feeding. There was considerable interannual variation in growth with greater growth occurring during the summer with a longer period of mouth opening. This suggests that periods of mouth closure may reduce secondary production within seasonally-closed estuaries. Potential artefacts associated with laboratory trials were also identified, with laboratory bivalves exhibiting poorer condition than those used in two field trials. The present study provides no evidence that variable quantities and qualities of organic matter within the sediments influence the growth and condition of S. alba, but future studies should focus on food supplied via the water column when the estuary is open versus closed.  相似文献   

9.
In situ measurements of ammonium and carbon dioxide fluxes were performed using benthic chambers at the end of spring and the end of summer in two soft-bottom Abra alba communities of the western English Channel (North Brittany): the muddy sand community (5 m, about 10% of surface irradiance) and the fine-sand community (19 m, about 1% of surface irradiance). High rates of ammonium regeneration were measured in the two communities at the end of summer (296.03±40.07 and 201.7±62.74 μmolN m−2 h−1, respectively) as well as high respiration rates (2.60±0.94 and 2.23±0.59 mmolC m−2 h−1, respectively). Significant benthic gross primary production (up to 6.11 mmolC m−2 h−1) was measured in the muddy sand community but no benthic primary production was measured in the fine-sand community. It suggests that microphytobenthic production values used in simulations previously published for these two communities were overestimated while values of community respiration were underestimated. The study confirms that this benthic system is heterotrophic and strengthens the idea that an important pelagic-benthic coupling is required for the functioning in such coastal ecosystems.  相似文献   

10.
This paper reports on a study of the toxicity of copper to three species of bivalve of commercial food value, Anadara granosa (Linnaeus), Meretrix casta, Deshayes and Crassostrea madrasensis (Preston) inhibiting the Vellar estuary at Porto Novo (southern India). The LC50 values were estimated as 60 μg Cu/litre for A. granosa, 72 μg Cu/litre for M. casta and 88 μg Cu/litre for C. madrasensis subjected to 96-h static bioassay tests after acclimation for a period of four days in the laboratory. The animals selected for study ranged in length from 29 to 44 mm in A. granosa, from 25 to 42 mm in M. casta and from 31 to 115 mm in C. madrasensis. The experiments were conducted at 25% salinity with pH 8·0 ± 0·1 at a temperature of 27°C ± 0·5°C. The revival rates of bivalves which survived exposure to the LC50 concentrations for the 96-h period (when marked and released in the natural environment) were 67% for A. granosa, and C. madrasensis and 83% for M. casta. The LT50 values for the three bivalves at different concentrations of the metal were also calculated.  相似文献   

11.
Exposure to a mercury-equilibrated algal suspension containing 0·25, 0·42 and 1 μg Hg litre−1 as mercuric chloride in solution reduced the growth and condition of pairs of adults of the slipper limpet Crepidula fornicata in a 16-week period. Reproduction rates and larval survival to settlement were also reduced over the first three spawnings when the exposed pairs reached sexual maturity. The adult and larval 96-h LC50s were 330 and 60 μg Hg litre−1, respectively, as mercuric chloride in solution, indicating that a ‘safety factor’ of 10−1 needs to be applied to adult data to protect the most sensitive stage in the life cycle. However, the chronic exposure of the maturing adults showed that levels of inorganic mercury below the ‘safe’ concentration derived from the adult 96 h LC50 affected growth and reproductive success.  相似文献   

12.
Phytoplankton community composition, productivity and biomass characteristics of the mesohaline lower Neuse River estuary were assessed monthly from May 1988 to February 1990. An incubation method which considered water-column mixing and variable light exposure was used to determine phytoplankton primary productivity. The summer productivity peaks in this shallow estuary were stimulated by increases in irradiance and temperature. However, dissolved inorganic nitrogen loading was the major factor controlling ultimate yearly production. Dynamic, unpredictable rainfall events determined magnitudes of seasonal production pulses through nitrogen loading, and helped determine phytoplankton species composition. Dinoflagellates occasionally bloomed but were otherwise present in moderate numbers; rainfall events produced large pulses of cryptomonads, and dry seasons and subsequent higher salinity led to dominance by small centric diatoms. Daily production was strongly correlated (r = 0·82) with nitrate concentration and inversely correlated (r = −0·73) with salinity, while nitrate and salinity were inversely correlated (r = −0·71), emphasizing the importance of freshwater input as a nutrient-loading source to the lower estuary. During 1989 mean daily areal phytoplankton production was 938 mgC m−2, mean chlorophyll a was 11·8 mg m−3, and mean phytoplankton density was 1·56 × 103 cells ml−1. Estimated 1989 annual areal phytoplankton production for the lower estuary was 343 gC m−2.  相似文献   

13.
Concentrations of total recoverable inorganic tin (TRISn), monomethyltin (MeSn3+), dimethyltin (Me2Sn2+), trimethyltin (Me3Sn+) and (3-dimethylsulphonio)propionate (DMSP) were determined in leaves of Spartina alterniflora from three sites in the Great Bay estuary (NH) from 8 May to 15 September 1989. Total methyltin concentration increased from 8·9 ng g−1 (fresh weight) on 8 May to 472 ng g−1 on 23 May, decreased to 52 ng g−1 on 7 June and 16ng g−1 on 20 June, and remained low until the last sample on 18 September. Statistical calculations showed that methyltin concentrations varied significantly with sampling week, but not with site. DMSP concentrations showed very different behaviour. During the same sampling period DMSP concentrations varied only from 7·5 to 26 μmol g−1 (fresh weight). DMSP concentrations varied significantly for site, but not sampling week.  相似文献   

14.
Uptake of inorganic carbon and ammonium by the plankton community of three North Carolina estuaries was measured using 14C and 15N isotope methods. At 0% light, C appeared to be lost via respiration, and at increasing light levels uptake of inorganic carbon increased linearly, saturated (mean Ik = 358±30 μEin m−2 s−1), and frequently showed inhibition at the highest light intensities. At 0% light NH4+ uptake was significantly greater than zero and was frequently equivalent to uptake in the light (light independent); at increasing light levels NH4+ uptake saturated (mean Ik = 172±44 μEin m−2 s−1) and frequently indicated strong inhibition. Light-saturated uptake rates of inorganic carbon and NH4+ were a function of chlorophyll a (r2 = 0·7−0·9); average assimilation numbers were 625 nmol CO2 (μg chl. a)−1 h−1 and 12·9 nmol NH4+ (μg chl. a)−1 h−1 and were positively correlated with temperature (r2 = 0·3−0·7). The ratio of dark to light-saturated NH4+ uptake tended to be near 1·0 for large algal populations at low NH4+ concentrations, indicating near light independence of uptake; whereas the ratio was lower for the opposite conditions. These data are interpreted as indicative of nitrogen stress, and it is suggested that uptake of NH4+ deep in the euphotic zone and at night are mechanisms for balancing the C:N of cellular pools. A 24-h study using summed short-term incubations confirmed this; the cumulative C:N of CO2 and NH4+ uptake during the daylight period was 10–20, whereas over the 24-h period the ratio was 6 due to dark NH4+ uptake. Annual carbon and nitrogen primary productivity were respectively estimated as 24 and 4·0 mol m−2 year−1 for the South River estuary, 42 and 7·3 mol m−2 year−1 for the Neuse River estuary, and 9·6 and 1·6 mol m−2 year−1 for the Newport River estuary.  相似文献   

15.
The Upper Gulf of California is the shallow (depth <30 m), tidal area at the head of the Gulf of California. It is an inverse estuary, due to the high evaporation rate (E1·1 m year−1) and almost nil freshwater input from rainfall and the Colorado River. Historical and recent hydrographic data show that the area is almost vertically well-mixed throughout the year, that the horizontal distribution of properties follows the bathymetry, and that the hydrography has a strong annual modulation. As in other negative estuaries, the year-round salinity increase toward the head causes the density to do likewise, despite the seasonally reversing temperature gradient. The pressure gradient thus formed leads to water-mass formation and gravity currents (speed 0·1 ms−1), both in winter and in summer. In winter, the high salinity water sinks beyond 200 m, while in summer it only reaches a depth of 20–30 m. The gravity currents appear to be modulated by the fortnightly tidal cycle, with events in neap tides. This phenomenon causes the presence, at least during neap tides, of slight stratification (Δσt≈−0·2).  相似文献   

16.
The magnitude of the exchange flux at the water–sediment interface was determined on the basis of the ammonia concentration gradient at the near-bottom water–interstitial interface and Fick's first law. It was established that in Puck Bay, ammonia almost always passes from the sediment to water. Ammonia flux varied from 5 to 1434 μmol NH4-N m−2 day−1. In total,c. 138·2 tonneammonia year−1pass from sediments of Internal Puck Bay to near-bottom water, the equivalent value for External Puck Bay being 686·9 tonne year−1. In total, about 825 tonne ammonia year−1passes from the sediment to near-bottom water of Puck Bay. In interstitial waters, ammonia occurred in concentrations varying over a wide range (3–1084 μmol NH4-N dm−3).The basic factors affecting the magnitude of ammonia concentration in interstitial waters included: oxidation of organic matter, type of sediment, and inflow of fresh underground waters to the region examined.This paper involves preliminary studies only and constitutes a continuation of the studies on ionic macrocomponents and phosphorus in interstitial waters of Puck Bay undertaken previously.  相似文献   

17.
Mesoscale eddies may enhance primary production (PP) in the open ocean by bringing nutrient-rich deep waters into the euphotic zone, potentially leading to increased transport of particles to depth. This hypothesis remains controversial, however, due to a paucity of direct particle export measurements. In this study, we investigated particle dynamics using 234Th–238U disequilibria within a mesoscale cold-core eddy, Cyclone Opal, which formed in the lee of the Hawaiian Islands. 234Th samples were collected along two transects across Cyclone Opal as well as during a time-series within the eddy core during a decaying diatom bloom. Particulate carbon (PC), particulate nitrogen (PN) and biogenic silica (bSiO2) fluxes at 150 m varied spatially and temporally within the eddy and strongly depended on the 234Th model formulation used (e.g., steady state versus non-steady state, inclusion of upwelling, etc.). Particle fluxes estimated from a steady state model assuming an upwelling rate of 2 m day−1 yielded the best fit to sediment-trap data. These 234Th-derived particle fluxes ranged from 332±14 to 1719±53 μmol C m−2 day−1, 27±3 to 114±12 μmol N m−2 day−1, and 33±20 to 309±73 μmol Si m−2 day−1. Although PP rates within Cyclone Opal were elevated by a factor of 2–3, PC and PN fluxes were the same, within error, inside and outside of Cyclone Opal. The ratio of PC export to PP remained surprisingly low at <0.03 and similar to those measured in surrounding waters. In contrast, bSiO2 fluxes within the eddy core were three times higher. Detailed analyses of 234Th depth profiles consistently showed excess 234Th at 100–175 m, associated with the remineralization and possible accumulation of suspended and dissolved organic matter from the surface. We suggest that strong microzooplankton grazing facilitated particulate organic matter recycling and resulted in the export of empty diatom frustules. Thus, while eddies may increase PP, they do not necessarily increase PC and PN export to deep waters. This may be a general characteristic of wind-driven cyclonic eddies of the North Pacific Subtropical Gyre and suggests that eddies may preferentially act as a silica pump, thereby playing an important role in promoting silicic-acid limitation in the region.  相似文献   

18.
A coupled physical–biological model was developed to simulate the low-silicate, high-nitrate, and low-chlorophyll (LSHNLC) conditions in the equatorial Pacific Ocean and used to compute a detailed budget in the Wyrtki box (5°N–5°S, 180–90°W) for the major sources and cycling of nitrogen and silicon in the equatorial Pacific. With the incorporation of biogenic silicon dissolution, NH4 regeneration from organic nitrogen and nitrification of ammonia in the model, we show that silicon recycling in the upper ocean is less efficient than nitrogen. As the major source of nutrients to the equatorial Pacific, the Equatorial Undercurrent provides slightly less Si(OH)4 than NO3 to the upwelling zone, which is defined as 2.5°N–2.5°S. As a result, the equatorial upwelling supplies less Si(OH)4 than NO3 into the euphotic zone in the Wyrtki box, having a Si/N supply ratio of about 0.85 (2.5 vs. 2.96 mmolm−2 day−1). More Si(OH)4 than NO3 is taken up with a Si/N ratio of 1.17 (2.72 vs. 2.33 mmolm−2 day−1) within the euphotic zone. The difference between upwelling supply and biological uptake is balanced by nutrient regeneration and horizontal advection. Excluding regeneration, the net silicate and nitrate uptakes are nearly equal (1.76 vs. 1.84 mmolm−2 day−1). However, biogenic silica export production is slightly higher than organic nitrogen (1.74 vs. 1.59 mmolm−2 day−1) following a 1.1 Si/N ratio. In the central equatorial Pacific, low silicate concentrations limit diatom growth; therefore non-diatom new production accounts for most of the new production. Higher silicate supply in the east maintains elevated diatom growth rates and new production associated with diatoms dominate upwelling zone. In contrast, the new production associated with small phytoplankton is nearly constant or decreases eastward along the equator. The total new production has a higher rate in the east than in the west, following the pattern of surface silicate. This suggests that silicate regulates the diatom production, total new production, and thereby carbon cycle in this area. The modeled mean primary production is 48.4 mmolCm−2 day−1, representing the lower end of direct field measurements, while new production is 15.0 mmolCm−2 day−1, which compares well with previous estimates.  相似文献   

19.
Due to the lack of knowledge regarding annual bioaccumulation rates in estuarine and marine fauna, the main aim of this work was to study the annual mercury bioaccumulation in the well-documented bivalve species Scrobicularia plana along a human induced mercury gradient in the Ria de Aveiro coastal lagoon (Portugal) and in a nearby, non-polluted system (Mondego estuary), parallel to the risks associated with its consumption by humans.Minimum total mercury concentration was as low as 0.019 mg kg−1 (wwt) in 4+ year old organisms in the reference site, where a significant negative correlation (p < 0.05) was found between total mercury concentrations and size, resulting in negative bioaccumulation rates (detoxification). On the other hand, values reached 1.8 mg kg−1 (wwt) in 3+ year old bivalves from the most contaminated area, where a strong positive correlation with size was found (p < 0.01) and annual bioaccumulation rates were as high as 0.25 mg kg−1 yr−1. Annual bioaccumulation rates were highly correlated with suspended particulate matter mercury concentrations. Even though the levels of organic mercury contents increased parallel to the contamination gradient, at each sampling station, no increment was found with age, which corresponded to a decrease in organic mercury percentage with age.In terms of ecological management and public health, the ratio of 0.01 consistently found between Scrobicularia plana annual mercury accumulation rates and SPM mercury levels for most sites may permit to roughly estimate S. plana contamination of commercial sized individuals (>2.5 cm) and, if verified and confirmed in other systems, be used as a simple management tool.  相似文献   

20.
Sediment accumulation rates were determined at several sites throughout Nauset Marsh (Massachusetts, U.S.A.), a back-barrier lagoonal system, using feldspar marker horizons to evaluate short-term rates (1 to 2 year scales) and radiometric techniques to estimate rates over longer time scales (137Cs,210Pb,14C). The barrier spit fronting theSpartina-dominated study site has a complex geomorphic history of inlet migration and overwash events. This study evaluates sediment accumulation rates in relation to inlet migration, storm events and sea-level rise. The marker horizon technique displayed strong temporal and spatial variability in response to storm events and proximity to the inlet. Sediment accumulation rates of up to 24 mm year−1were recorded in the immediate vicinity of the inlet during a period that included several major coastal storms, while feldspar sites remote from the inlet had substantially lower rates (trace accumulation to 2·2 mm year−1). During storm-free periods, accumulation rates did not exceed 6·7 mm year−1, but remained quite variable among sites. Based on137Cs (3·8 to 4·5 mm year−1) and210Pb (2·6 to 4·2 mm year−1) radiometric techniques, integrating sediment accumulation over decadal time scales, the marsh appeared to be keeping pace with the relative rate of sea-level rise from 1921 to 1993 of 2·4 mm year−1. At one site, the210Pb-based sedimentation rate and rate of relative sea-level rise were nearly similar and peat rhizome analysis revealed thatDistichlis spicatarecently replaced this onceS. patenssite, suggesting that this portion of Nauset Marsh may be getting wetter, thus representing an initial response to wetland submergence. Horizon markers are useful in evaluating the role of short-term events, such as storms or inlet migration, influencing marsh sedimentation processes. However, sampling methods that integrate marsh sedimentation over decadal time scales are preferable when evaluating a systems response to sea-level rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号