首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We present the results of a deep optical–near-infrared (optical–NIR) multi-epoch survey covering 2.5 deg2 of the Pleiades open star cluster to search for new very low-mass brown dwarf members. A significant (∼5 yr) epoch difference exists between the optical (CFH12k I -, Z -band) and NIR (UKIRT WFCAM J -band) observations. We construct I , I − Z and Z , Z − J colour–magnitude diagrams to select candidate cluster members. Proper motions are computed for all candidate members and compared to the background field objects to further refine the sample. We recover all known cluster members within the area of our survey. In addition, we have discovered nine new candidate brown dwarf cluster members. The seven faintest candidates have red Z − J colours and show blue NIR colours. These are consistent with being L- and T-type Pleiads. Theoretical models predict their masses to be around 11 M Jup.  相似文献   

2.
UBVRI CCD photometry in a wide field around two young open clusters, NGC 663 and 654, has been carried out. Hα and polarimetric observations for the cluster NGC 654 have also been obtained. We use the photometric data to construct colour–colour and colour–magnitude diagrams, from which we can investigate the reddening, age, mass and evolutionary states of the stellar contents of the these clusters. The reddening across the cluster regions is found to be variable. There is evidence for anomalous reddening law in both clusters; however, more infrared and polarimetric data are needed to conclude about the reddening law. Both clusters are situated at about a distance of 2.4 kpc. Star formation in both clusters is found to be a continuous process. In the case of NGC 663, star formation seems to have taken place sequentially, in the sense that formation of low-mass stars precedes the formation of most massive stars. Whereas, in the case of NGC 654, formation of low-mass stars did not cease after the formation of most massive stars in the cluster.  相似文献   

3.
NGC 6633 is a young, open cluster with a similar age to the Hyades and Praesepe, but probably a lower metallicity. We present the results of ROSAT High Resolution Imager observations of an optically selected catalogue of likely members of NGC 6633. 8 out of 51 NGC 6633 members have been detected, with main-sequence spectral types A to G, above a threshold X-ray luminosity of ≈6–12×1028 erg s−1. We find that NGC 6633 does not contain cool stars that are as X-ray luminous as the most active objects in the Hyades and that the median X-ray luminosity of F-G stars in NGC 6633 is less than that in the Hyades, but probably greater than in Praesepe. However, when X-ray activity is expressed as the X-ray to bolometric flux ratio we find that NGC 6633 and the Hyades are very similar and display similar peak levels of coronal activity. We attribute this discrepancy to a number of possible wide binary systems with higher X-ray (and bolometric) luminosities in the Hyades sample and either a low metallicity in NGC 6633, which makes its cool stars both X-ray and bolometrically less luminous at the same colour, or a distance to NGC 6633 that has been underestimated, which would decrease stellar X-ray luminosities without changing X-ray to bolometric flux ratios.  相似文献   

4.
Intermediate resolution spectroscopy from the European Southern Observatory Very Large Telescope is analysed for 63 photometrically selected low-mass  (0.08–0.30 M)  candidates of the open cluster NGC 2547. We have confirmed membership for most of these stars using radial velocities, and found that lithium remains undepleted for cluster stars with   I > 17.54 ± 0.14  and   Ks > 14.86 ± 0.12  . From these results, several pre–main-sequence evolutionary models give almost model independent ages of 34–36 Myr, with a precision of 10 per cent. These ages are only slightly larger than the ages of 25–35(±5) Myr obtained using the same models to fit isochrones to higher mass stars descending towards the zero-age main-sequence, both in empirically calibrated and theoretical colour–magnitude diagrams. This agreement between age determinations in different mass ranges is an excellent test of the current generation of low-mass pre–main-sequence stellar models and lends confidence to ages determined with either method between 30 and 120 Myr.  相似文献   

5.
NGC 6611 is the massive young cluster (2–3 Myr) that ionizes the Eagle Nebula. We present very deep photometric observations of the central region of NGC 6611 obtained with the Hubble Space Telescope and the following filters: ACS/WFC F775W and F850LP and NIC2 F110W and F160W, loosely equivalent to ground-based IZJH filters. This survey reaches down to   I ∼ 26 mag  . We construct the initial mass function (IMF) from  ∼1.5 M  well into the brown dwarf regime (down to  ∼0.02 M  ). We have detected 30–35 brown dwarf candidates in this sample. The low-mass IMF is combined with a higher-mass IMF constructed from the ground-based catalogue from Oliveira et al. We compare the final IMF with those of well-studied star-forming regions: we find that the IMF of NGC 6611 more closely resembles that of the low-mass star-forming region in Taurus than that of the more massive Orion Nebula Cluster. We conclude that there seems to be no severe environmental effect in the IMF due to the proximity of the massive stars in NGC 6611.  相似文献   

6.
The purpose of this work is to explore the evolution of helium-core white dwarf stars in a self-consistent way with the predictions of detailed non-grey model atmospheres and element diffusion. To this end, we consider helium-core white dwarf models with stellar masses of 0.406, 0.360, 0.327, 0.292, 0.242, 0.196 and 0.169 M and follow their evolution from the end of mass-loss episodes, during their pre-white dwarf evolution, down to very low surface luminosities.
We find that when the effective temperature decreases below 4000 K, the emergent spectrum of these stars becomes bluer within time-scales of astrophysical interest. In particular, we analyse the evolution of our models in the colour–colour and in the colour–magnitude diagrams and find that helium-core white dwarfs with masses ranging from ∼0.18 to 0.3 M can reach the turn-off in their colours and become blue again within cooling times much less than 15 Gyr and then remain brighter than M V ≈16.5 . In view of these results, many low-mass helium white dwarfs could have had enough time to evolve to the domain of collision-induced absorption from molecular hydrogen, showing blue colours.  相似文献   

7.
We present radial velocities for 38 low-mass candidate members of the σ Orionis young group. We have measured their radial velocities by cross-correlation of high-resolution  ( R ≈ 6000) AF2/Wide  Field Fibre Optical Spectrograph (WYFFOS) spectra of the gravity-sensitive Na  i doublet at 8183, 8195 Å. The total sample contained 117 objects, of which 54 have sufficient signal-to-noise ratio to detect Na  i at an equivalent width of 3 Å; however, we only detect Na  i in 38 of these. This implies that very low-mass members of this young group display weaker Na  i absorption than similarly aged objects in the Upper Scorpius OB association. We develop a technique to assess membership using radial velocities with a range of uncertainties that does not bias the selection when large uncertainties are present. The resulting membership probabilities are used to assess the issue of exclusion in photometric selections, and we find that very few members are likely to be excluded by such techniques. We also assess the level of contamination in the expected pre-main-sequence region of colour–magnitude space brighter than   I = 17  . We find that contamination by non-members in the expected pre-main-sequence region of the colour–magnitude diagram is small. We conclude that although radial velocity alone is insufficient to confirm membership, high signal-to-noise ratio observations of the Na  i doublet provide the opportunity to use the strength of Na  i absorption in concert with radial velocities to asses membership down to the lowest masses, where lithium absorption no longer distinguishes youth.  相似文献   

8.
The UK Infrared Telescope Infrared Deep Sky Survey (UKIDSS) is the first of a new generation of infrared surveys. Here, we combine the data from two UKIDSS components, the Large Area Survey (LAS) and the Galactic Cluster Survey (GCS), with Two-Micron All-Sky Survey (2MASS) data to produce an infrared proper motion survey for low-mass stars and brown dwarfs. In total, we detect 267 low-mass stars and brown dwarfs with significant proper motions. We recover all 10 known single L dwarfs and the one known T dwarf above the 2MASS detection limit in our LAS survey area and identify eight additional new candidate L dwarfs. We also find one new candidate L dwarf in our GCS sample. Our sample also contains objects from 11 potential common proper motion binaries. Finally, we test our proper motions and find that while the LAS objects have proper motions consistent with absolute proper motions, the GCS stars may have proper motions which are significantly underestimated. This is possibly due to the bulk motion of some of the local astrometric reference stars used in the proper motion determination.  相似文献   

9.
We make use of the 'Next Generation' model atmospheres of Allard et al. and Hauschildt, Allard & Baron to compute theoretical models for low- and very-low-mass stars for selected metallicities in the range Z =0.0002 to 0.002. On this basis, we present theoretical predictions covering the sequence of H-burning stars as observed in Galactic globulars from the faint end of the main sequence up to, and beyond, the cluster turn-off. The role played by the new model atmospheres is discussed, showing that present models appear in excellent agreement with models by Baraffe et al. as computed on a quite similar physical basis. One finds that the theoretical mass–luminosity relations based on this updated set of models are in good agreement with the empirical data provided by Henry & McCarthy. Comparison with HST observation discloses that the location on the colour–magnitude diagram of the lower main sequence in Galactic globular clusters appears again in good agreement with the predicted sensitive dependence of these sequences on the cluster metallicity.  相似文献   

10.
The knowledge of mass loss rates due to thermal winds in cool dwarfs is of crucial importance for modeling the evolution of physical parameters of main sequence single and binary stars. Very few, sometimes contradictory, measurements of such mass loss rates exist up to now. We present a new, independent method of measuring an amount of mass lost by a star during its past life. It is based on the comparison of the present mass distribution of solar type stars in an open cluster with the calculated distribution under an assumption that stars with masses lower than Mlim have lost an amount of mass equal to ΔM. The actual value of ΔM or its upper limit is found from the best fit. Analysis of four clusters: Pleiades, NGC 6996, Hyades and Praesepe gave upper limits for ΔM in three of them and the inconclusive result for Pleiades. The most restrictive limit was obtained for Praesepe indicating that the average mass loss rate of cool dwarfs in this cluster was lower than 6 × 10–11 M/yr. With more accurate mass determinations of the solar type members of selected open clusters, including those of spectral type K, the method will provide more stringent limits for mass loss of cool dwarfs. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
12.
We report the outcome of the deep optical/infrared photometric survey of the central region (33 × 33 arcmin2 or 0.9 pc2) of the η Chamaeleontis (η Cha) pre-main sequence star cluster. The completeness limits of the photometry are I = 19.1, J = 18.2 and H = 17.6, faint enough to reveal low-mass members down to the brown dwarf and planet boundary of ≈13 MJup. We found no such low-mass members in this region. Our result combined with a previous shallower ( I = 17) but larger area survey indicates that low-mass objects  (0.013 < M /M < 0.075)  were either not created in the η Cha cluster or lost due to the early dynamical history of the cluster and ejected to outside the surveyed areas.  相似文献   

13.
We analyse the angular momentum evolution from the red giant branch (RGB) to the horizontal branch (HB) and along the HB. Using rotation velocities for stars in the globular cluster M13, we find that the required angular momentum for the fast rotators is up to 1–3 orders of magnitude (depending on some assumptions) larger than that of the Sun. Planets of masses up to 5 times Jupiter's mass and up to an initial orbital separation of ~2 au are sufficient to spin-up the RGB progenitors of most of these fast rotators. Other stars have been spun-up by brown dwarfs or low-mass main-sequence stars. Our results show that the fast rotating HB stars have been probably spun-up by planets, brown dwarfs or low-mass main-sequence stars while they evolved on the RGB. We argue that the angular momentum considerations presented in this paper further support the 'planet second parameter' model. In this model, the 'second parameter' process, which determines the distribution of stars on the HB, is interaction with low-mass companions, in most cases with gas-giant planets, and in a minority of cases with brown dwarfs or low-mass main-sequence stars. The masses and initial orbital separations of the planets (or brown dwarfs or low-mass main-sequence stars) form a rich spectrum of different physical parameters, which manifests itself in the rich varieties of HB morphologies observed in the different globular clusters.  相似文献   

14.
In this paper we report the first results from a survey for low-mass stars and brown dwarfs, based on a photographic stack of around 100 Schmidt plates. This survey extends photographic searches by about 2 mag, and covers an area of 25 deg2. Some 30 faint objects with large R − I colours were selected for further study, and were found to have very strong molecular absorption in their spectra, but only moderately red infrared colours. Five of these stars were selected for a parallax programme; three of these were found to be at a distance of around 45 pc, implying a very low luminosity. On the basis of their luminosity alone it is clear that these stars are field brown dwarfs, and we discuss their likely evolutionary status in the context of current models of low-mass stellar evolution.  相似文献   

15.
Star clusters are born in a highly compact configuration, typically with radii of less than about 1 pc roughly independently of mass. Since the star formation efficiency is less than 50 per cent by observation and because the residual gas is removed from the embedded cluster, the cluster must expand. In the process of doing so it only retains a fraction f st of its stars. To date there are no observational constraints for f st, although N -body calculations by Kroupa, Aarseth & Hurley suggest it to be about 20–30 per cent for Orion-type clusters. Here we use the data compiled by Testi et al., Testi, Palla & Natta and Testi, Palla & Natta for clusters around young Ae/Be stars and by de Wit et al. and de Wit et al. around young O stars and the study of de Zeeuw et al. of OB associations and combine these measurements with the expected number of stars in clusters with primary Ae/Be and O stars, respectively, using the empirical correlation between maximal stellar mass and star cluster mass of Weidner & Kroupa. We find that   f st < 50  per cent with a decrease to higher cluster masses/more massive primaries. The interpretation would be that cluster formation is very disruptive. It appears that clusters with a birth stellar mass in the range  10–103 M  keep at most 50 per cent of their stars.  相似文献   

16.
We present a study of a sample of Large Magellanic Cloud red giants exhibiting Long Secondary Periods (LSPs). We use radial velocities obtained from VLT spectral observations and MACHO and OGLE light curves to examine properties of the stars and to evaluate models for the cause of LSPs. This sample is much larger than the combined previous studies of Hinkle et al. and Wood, Olivier & Kawaler.
Binary and pulsation models have enjoyed much support in recent years. Assuming stellar pulsation, we calculate from the velocity curves that the typical fractional radius change over an LSP cycle is greater than 30 per cent. This should lead to large changes in T eff that are not observed. Also, the small light amplitude of these stars seems inconsistent with the radius amplitude. We conclude that pulsation is not a likely explanation for the LSPs. The main alternative, physical movement of the star – binary motion – also has severe problems. If the velocity variations are due to binary motion, the distribution of the angle of periastron in our large sample of stars has a probability of  1.4 × 10−3  that it comes from randomly aligned binary orbits. In addition, we calculate a typical companion mass of  0.09 M  . Less than 1 per cent of low-mass main-sequence stars have companions near this mass  (0.06–0.12 M)  whereas ∼25–50 per cent of low-mass red giants end up with LSPs. We are unable to find a suitable model for the LSPs and conclude by listing their known properties.  相似文献   

17.
We have started a spectroscopic survey to identify new chromospherically active components and low-mass pre-main sequence (PMS) stars in recently discovered All Sky Automated Survey (ASAS) eclipsing binaries. In this paper, we briefly describe our scientific motivation, the observing tools and the results obtained from the first phase of this survey. Using the available observing facilities in India, the spectroscopic observations of a sample of 180 candidate eclipsing binary stars selected from ASAS-I&II releases were carried out during 2004–2006. The strength of Hα emission was used to characterize the level of chromospheric activity. Our spectroscopic survey reveals that out of 180 stars about 36 binary systems show excess Hα emission. One of the objects in our sample, ASAS 081700-4243.8, displays very strong Hα emission. Follow-up high-resolution spectroscopic observations reveal that this object is indeed very interesting and most likely a classical Be-type system with K0III companion.  相似文献   

18.
We present the results of high-resolution (1–0.4 Å) optical spectroscopy of a sample of very low-mass stars. These data are used to examine the kinematics of the stars at the bottom of the hydrogen-burning main sequence. No evidence is found for a significant difference between the kinematics of the stars in our sample with I  −  K  > 3.5 ( M bol ≳ 12.8) and those of more massive M dwarfs ( M bol ≈ 7–10). A spectral atlas at high (0.4-Å) resolution for M8–M9+ stars is provided, and the equivalent widths of Cs  I , Rb  I and Hα lines present in our spectra are examined. We analyse our data to search for the presence of rapid rotation, and find that the brown dwarf LP 944-20 is a member of the class of 'inactive, rapid rotators'. Such objects seem to be common at and below the hydrogen-burning main sequence. It seems that in low-mass/low-temperature dwarf objects either the mechanism that heats the chromosphere, or the mechanism that generates magnetic fields, is greatly suppressed.  相似文献   

19.
A membership catalogue for Praesepe was compiled and split into four mass bins. A contour plot indicates the presence of a subcluster some 3 pc from the centre of the cluster, of approximately 30 M. A tidally truncated King profile was fitted to the remainder of the cluster and the tidal radius is found to be 12.1 pc; the mass of the cluster (excluding the subcluster) is 630 M. From the calculated velocity dispersions we find that the cluster appears to have too much kinetic energy and should be rapidly disintegrating. X-ray data suggest that there may be an age spread between the main core stars and the subcluster stars. This leads us to the conclusion that Praesepe is two merging clusters.  相似文献   

20.
The masses and temperatures of young low-mass stars and brown dwarfs in star-forming regions are not yet well established because of uncertainties in the age of individual objects and the spectral type–temperature scale appropriate for objects with ages of only a few Myr. Using multi-object optical spectroscopy, 45 low-mass stars and brown dwarfs in the Trapezium Cluster in Orion have been classified and 44 of these confirmed as bona fide cluster members. The spectral types obtained have been converted to effective temperatures using a temperature scale intermediate between those of dwarfs and giants, which is suitable for young pre-main-sequence objects. The objects have been placed on a Hertzsprung–Russell (HR) diagram overlaid with theoretical isochrones. The low-mass stars and the higher mass substellar objects are found to be clustered around the 1 Myr isochrone, while many of the lower mass substellar objects are located well above this isochrone. An average age of 1 Myr is found for the majority of the objects. Assuming coevality of the sources and an average age of 1 Myr, the masses of the objects have been estimated and range from  0.018 to 0.44 M  . The spectra also allow an investigation of the surface gravity of the objects by measurement of the sodium doublet equivalent width. With one possible exception, all objects have low gravities, in line with young ages, and the Na indices for the Trapezium objects lie systematically below those of young stars and brown dwarfs in Chamaeleon, suggesting that the 820 nm Na index may provide a sensitive means of estimating ages in young clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号