首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The CUTLASS Finland HF radar has been operational since February 1995. The radar frequently observes backscatter during the midnight sector from a latitude range 70–75° geographic, latitudes often associated with the polar cap. These intervals of backscatter occur during intervals of substorm activity, predominantly in periods of relatively quiet magnetospheric activity, with Kp during the interval under study being 2-and KP for the day being only 8-. During August 1995 the radar ran in a high time resolution mode, allowing measurements of line-of-sight convection velocities along a single beam with a temporal resolution of 14s, and measurement of a full spatial scan of line-of-sight convection velocities every four minutes. Data from such scans reveal the radar to be measuring return flow convection during the interval of substorm activity. For three intervals during the period under study, a reduction in the spatial extent of radar backscatter occurred. This is a consequence of D region HF absorption and its limited extent in the present study is probably a consequence of the high latitude of the substorm activity, with the electrojet centre lying between 67° and 71° geomagnetic latitude. The high time resolution beam of the radar additionally demonstrates that the convection is highly time dependent. Pulses of equatorward flow exceeding 600 m s–1 are observed with a duration of 5 min and a repetition period of 8 min. Their spatial extent in the CUTLASS field of view was 400–500 km in longitude, and 300–400 km in latitude. Each pulse of enhanced equatorward flow was preceded by an interval of suppressed flow and enhanced ionospheric Hall conductance. The transient features are interpreted as being due to ionospheric current vortices associated with field aligned current pairs. The relationship between these observations and substorm phenomena in the magnetotail is discussed.  相似文献   

2.
HF radar measurements were performed near the magnetic equator in Africa (Korhogo 9°2463N–5°3738W) during the International Equatorial Electrojet Year (1993–1994). The HF radar is a high–resolution zenithal radar. It gives ionograms, Doppler spectra and echo parameters at several frequencies simultaneously. This paper presents a comparative study of the daytime ionospheric structures observed during 3 days selected as representative of different magnetic conditions, given by magnetometer measurements. Broad Doppler spectra, large echo width, and amplitude fluctuations revealed small-scale instability processes up to the F-region peak. The height variations measured at different altitudes showed gravity waves and larger-scale disturbances related to solar daytime influence and equatorial electric fields. The possibility of retrieving the ionospheric electric fields from these Doppler or height variation measurements in the presence of the other possible equatorial ionospheric disturbances is discussed.  相似文献   

3.
Summary The estimate of the tidal long-term decrease in the angular velocity of the Earth's rotation due to the Sun is given as –(0.8±0.3)×10 –22 rad s –2. It was computed on the basis of the observed total long-term decrease in , of the observed tidal deceleration of the Moon and the observed decrease in the second-degree zonal Stokes geopotential harmonic term. Adopting the estimate given, the product of the Love number and the tidal phase lag angle due to the Sun (in degrees) comes out as 0.53±0.20.
am a z nuuu u z mu au u, az : –(0,8±0,3) 10 –22 a¶rt; –2 . ¶rt; ua n a¶rt;a u , n a¶rt;a nuu u ¶rt;z ¶rt;uu u n a¶rt;a u mz az znmuaz naama ma. u num n au, m nu¶rt;u ua a a z u ( za¶rt;a) a z nuua a (0,53±0,20).
  相似文献   

4.
Summary The algorithm of iterative geophysical tomography is presented. The medium is approximated smoothly by means of B-splines. The tww-point problem of ray computation is solved with the aid of paraxial approximation. The parameters of the medium are obtained from the iterative algorithm of minimizing the quadratic form. Two numerical 2-D examples are given.
u¶rt; au umamuuu mauu. ¶rt;a annuuaa n nu nu -na. ma na aa a nu nu naaua annuauu. aam ¶rt; n a umamu aua uuauauu a¶rt;amu . am nu¶rt; ¶rt;a 2-D u nua.
  相似文献   

5.
m amamu n¶rt;ma au ¶rt; nmuaa mu n ma a, ¶rt;a ¶rt;¶rt; maua mu n ¶rt; nmam ¶rt;um n¶rt; nnmmu n. u m umau n aa mau a, m m nmmu ma nu ¶rt;¶rt; n naa u umuu n. maa a¶rt;aa a u um ¶rt;uam. a u nu¶rt;m um ua u au, nu u n a auu mam, n¶rt;ma [5, 6]. m um nu num m amamu au ¶rt; nmuaa mu n, n¶rt;mau u¶rt; ¶rt;a nu a¶rt;a.  相似文献   

6.
The dynamics of the cusp region and post-noon sector for an interval of predominantly IMF By, Bz < 0 nT are studied with the CUTLASS Finland coherent HF radar, a meridian-scanning photometer located at Ny Ålesund, Svalbard, and a meridional network of magnetometers. The scanning mode of the radar is such that one beam is sampled every 14 s, and a 30° azimuthal sweep is completed every 2 minutes, all at 15 km range resolution. Both the radar backscatter and red line (630 nm) optical observations are closely co-located, especially at their equatorward boundary. The optical and radar aurora reveal three different behaviours which can interchange on the scale of minutes, and which are believed to be related to the dynamic nature of energy and momentum transfer from the solar wind to the magnetosphere through transient dayside reconnection. Two interpretations of the observations are presented, based upon the assumed location of the open/closed field line boundary (OCFLB). In the first, the OCFLB is co-located with equatorward boundary of the optical and radar aurora, placing most of the observations on open field lines. In the second, the observed aurora are interpreted as the ionospheric footprint of the region 1 current system, and the OCFLB is placed near the poleward edge of the radar backscatter and visible aurora; in this interpretation, most of the observations are placed on closed field lines, though transient brightenings of the optical aurora occur on open field lines. The observations reveal several transient features, including poleward and equatorward steps in the observed boundaries, braiding of the backscatter power, and 2 minute quasi-periodic enhancements of the plasma drift and optical intensity, predominantly on closed field lines.  相似文献   

7.
High time resolution data from the CUTLASS Finland radar during the interval 01:30–03:30 UT on 11 May, 1998, are employed to characterise the ionospheric electric field due to a series of omega bands extending 5° in latitude at a resolution of 45 km in the meridional direction and 50 km in the azimuthal direction. E-region observations from the STARE Norway VHF radar operating at a resolution of 15 km over a comparable region are also incorporated. These data are combined with ground magnetometer observations from several stations. This allows the study of the ionospheric equivalent current signatures and height integrated ionospheric conductances associated with omega bands as they propagate through the field-of-view of the CUTLASS and STARE radars. The high-time resolution and multi-point nature of the observations leads to a refinement of the previous models of omega band structure. The omega bands observed during this interval have scale sizes 500 km and an eastward propagation velocity 0.75 km s–1. They occur in the morning sector (05 MLT), simultaneously with the onset/intensification of a substorm to the west during the recovery phase of a previous substorm in the Scandinavian sector. A possible mechanism for omega band formation and their relationship to the substorm phase is discussed.  相似文献   

8.
Previous work has shown that ionospheric HF radar backscatter in the noon sector can be used to locate the footprint of the magnetospheric cusp particle precipitation. This has enabled the radar data to be used as a proxy for the location of the polar cap boundary, and hence measure the flow of plasma across it to derive the reconnection electric field in the ionosphere. This work used only single radar data sets with a field of view limited to 2 h of local time. In this case study using four of the SuperDARN radars, we examine the boundary determined over 6 h of magnetic local time around the noon sector and its relationship to the convection pattern. The variation with longitude of the latitude of the radar scatter with cusp characteristics shows a bay-like feature. It is shown that this feature is shaped by the variation with longitude of the poleward flow component of the ionospheric plasma and may be understood in terms of cusp ion time-of-flight effects. Using this interpretation, we derive the time-of-flight of the cusp ions and find that it is consistent with approximately 1 keV ions injected from a subsolar reconnection site. A method for deriving a more accurate estimate of the location of the open-closed field line boundary from HF radar data is described.  相似文献   

9.
Interhemispheric contrasts in the ionospheric convection response to variations of the interplanetary magnetic field (IMF) and substorm activity are examined, for an interval observed by the Polar Anglo-American Conjugate Experiment (PACE) radar system between 1600 and 2100 MLT on 4 March 1992. Representations of the ionospheric convection pattern associated with different orientations and magnitudes of the IMF and nightside driven enhancements of the auroral electrojet are employed to illustrate a possible explanation for the contrast in convection flow response observed in radar data at nominally conjugate points. Ion drift measurements from the Defence Meteorological Satellite Program (DMSP) confirm these ionospheric convection flows to be representative for the prevailing IMF orientation and magnitude. The location of the fields of view of the PACE radars with respect to these patterns suggest that the radar backscatter observed in each hemisphere is critically influenced by the position of the ionospheric convection reversal boundary (CRB) within the radar field of view and the influence it has on the generation of the irregularities required as scattering targets by high-frequency coherent radar systems. The position of the CRB in each hemisphere is strongly controlled by the relative magnitudes of the IMF Bz and By components, and hence so is the interhemispheric contrast in the radar observations.  相似文献   

10.
ama nm u nmam nuau aamumuuaum nau muna Pc4 n ¶rt;a u mauu m, a¶rt; a m m anam ¶rt;u amu u¶rt;a umu. n¶rt;a auum nu¶rt;a u anum¶rt; nau u u nuau aamumu mu ¶rt; u m aum amumu, u au uu m¶rt; naam. mam auam mamau amu nau Pc3 u Pi2 n ¶rt;a u mau ¶rt; u u.  相似文献   

11.
SPEAR is a new polar cap HF radar facility which is to be deployed on Svalbard. The principal capabilities of SPEAR will include the generation of artificial plasma irregularities, operation as an all-sky HF radar, the excitation of ULF waves, and remote sounding of the magnetosphere. Operation of SPEAR in conjunction with the multitude of other instruments on Svalbard, including the EISCAT Svalbard radar, and the overlap of its extensive field-of-view with that of several of the HF radars in the SuperDARN network, will enable in-depth diagnosis of many geophysical and plasma phenomena associated with the cusp region and the substorm expansion phase. Moreover, its ability to produce artificial radar aurora will provide a means for the other instruments to undertake polar cap plasma physics experiments in a controlled manner. Another potential use of the facility is in field-line tagging experiments, for coordinated ground-satellite experiments. Here the scientific objectives of SPEAR are detailed, along with the proposed technical specifications of the system.  相似文献   

12.
n ¶rt;a, n¶rt;mau 531 au ¶rt; u aum m u¶rt;uu n mumu ana¶rt;, ¶rt; u -m n, aauum ¶rt;um u u amuaa n¶rt;naa ma ua aama. uu nmam an¶rt;u ¶rt; u aum aam ¶rt;au cuu uP n m , n¶rt;am mn n=1, 2, 3 u 5 (m n). u uua ¶rt;a¶rt;amu uu n¶rt;mauu uum au (a. 1) u u n aumam uu nmu, m n¶rt;mam u¶rt; am uuu ¶rt; u aum (u. 1–4). annuau 2 u 5 mn nm ma am mmmu m (u. 5, 6). ama uuu u m aam amu uu uma.  相似文献   

13.
Summary The dependence between Pn-wave velocities and the surface heat flow, temperature at the core-mantl boundary and thickness of the Earth's crust for continents (Europe, Asia, North America and Australia) was investigated statistically in connection with the problem of lateral inhomogeneities in the upper mantle. The relations obtained were compared with those determined under laboratory conditions. The conclusion is that temperature and pressure effects may provide additional explanations of the regional variations of Pn-wave velocities observed in most continents.
auum ¶rt;auu mu n¶rt; a nmu uua(Pn ), nm mn nm, mnam a u m mum a u¶rt;aa u n uuuma ¶rt;¶rt;m mu Pn. nua ¶rt;a mama aam u¶rt;au nu m n¶rt; amuu u u ¶rt;au u mnam a¶rt;um mmmuu mamau n¶rt;aa am. am ¶rt;, m ua uu m Pn- ¶rt; amu muma n¶rt;m auu m¶rt;uauu u a nmu muua.
  相似文献   

14.
¶rt;m nmaumuu uma a nuu amma. aa, m ua u ua um ¶rt; nm am ¶rt;au u nuu uma. aumaa mu ¶rt; u a au nu u mau. aa ua u ua . n¶rt; nnau anum¶rt; aamumu aa nuu . aa, m nm a¶rt; u um a aau a amm 56°/h, ma aa a au mau. aamuam au u m u.

Presented at the meeting of Working Group 3.3. of the KAPG (Prague, November 1975).  相似文献   

15.
m¶rt; amamu ¶rt;uau nma nauua ¶rt; a n amu . n ¶rt;a uu u¶rt;au,aumuu u mn nma. mam maa auum ¶rt; m u nmm u¶rt;ua n¶rt;a u a maa a umua a nam . ¶rt; nmm amuu n¶rt;m uu 3,3/ 3 , n¶rt; ¶rt;uuuau u na¶rt;uau mu a anma ¶rt; 3,2/ 3 . ¶rt; n¶rt;uu a¶rt;u aau mum nm, maumaa ¶rt;¶rt;m aama u ¶rt; amu .

Presented at the KAPG Symposium Problems of Interpretation and Construction of Physical Models of Litosphere, Liblice (CSSR), March 6–10, 1978.  相似文献   

16.
Marked wavelike variations of the lower stratospheric wind observed on 7–10 May, 1985 by an MST radar in Japan (by the MU radar) are analyzed assuming that they are induced by monochromatic internal inertio-gravity waves. These variations are mainly composed of two modes (periods: 22 and 24 hours), both of which have zonal phase velocities (C X ) slower than the mean westerly wind (). A statistical analysis of the zonal phase velocity shows thatC X above andC X below the tropopause jet stream, which is considered to be a vivid proof of wave selection due to the tropospheric mean flow and upward wave emission from the tropopause jet. A comparison between the MU radar results and routine meteorological observations leads to the conclusion that the marked waves appear when the jet stream takes a maximum wind speed.  相似文献   

17.
Summary The accuracy of wave field extrapolation is studied with respect to the discretization of field data and integral extrapolator. Assuming a far-field approximation of the Rayleigh-Sommerfeld solution for a two-dimensional scalar wave equation, the minimum and the maximum transmitted frequency are expressed as functions of the sampling intervals t, x, and the half-width x0 and angle a of the migration aperture. The theoretical limitation of the transmitted frequency band is tested on numerical examples.
aamuam mm manuu auumu m ¶rt;umuauu n u uma manu nama. ¶rt; u uma u -¶rt;a ¶rt; ¶rt; a au, ¶rt; nuuuu ¶rt;a n mu ¶rt; uua u aua n¶rt;aa amm a uu m a -nmam ¶rt;umuauu t u , nuu 0 u a a uau anm. mu n¶rt;u amm ¶rt;uanaa mmua a u nua.
  相似文献   

18.
Summary A procedure of fast computation of body-wave ray synthetic seismograms in vertically inhomogeneous media is suggested. The procedure uses a special approximation of the velocitydepth distribution which guarantees continuity of the first and second derivatives of velocity and does not generate false low-velocity layers (oscillations in the velocity-depth function). The ZESY82 program package, which is based on the suggested procedure, is described. The point source with an arbitrary radiation pattern may be situated at any points of the model, the receivers are situated regularly or irregularly along any profile on the Earth's surface, containing the epicentre. Numerical examples of the synthetic record sections for a model of the Earth's crust and the uppermost mantle are given.
¶rt;aam m¶rt; m ama ummuu a mua ¶rt;¶rt; ¶rt;, u¶rt; u nua annuauu m aa, ma nuam nm mu u n u m nu¶rt; u nu¶rt;um aau um nu mu. am nua aumn na ZESY82, a a m m¶rt;. umu aamumu uu an m ¶rt;u; nuuu ¶rt; m an¶rt; ¶rt; nu, ¶rt;a num. u¶rt; nu ummuu a ¶rt; ¶rt; ¶rt;u u amuu.
  相似文献   

19.
Normal density earth models   总被引:1,自引:0,他引:1  
Summary Models of the Earth's density, close to thePREM model, have been derived, they reproduce the external normal gravitational field of the Earth and its dynamic flattening, and are referred to as normal density models. The Earth's surface is approximated by an ellipsoid of the order of the flattening, or of its square. Of the group of normal models sgtisfying the solution of the inverse problem, the normal density modelHME2 is recommended. The spherically symmetric density modelPREM, which was corrected in the course of solving the inverse problem, thus creating the modifiedPREM-E2 model, was used as the a priori information.
¶rt; ¶rt;u an¶rt;u nmmu uu ¶rt;uPREM (m. a. a ¶rt;u nmmu), aumau n m u¶rt;mu na¶rt;am auaumau n u. m u annuum am unu¶rt; au. uau amu a ¶rt; mam H==0.003 273 994. ma ¶rt; a ¶rt; ¶rt;m ¶rt;HME2. am anu u a ¶rt; nmmu a unaa ¶rt; a¶rt;ua umua ¶rt;PREM. ¶rt;aam ¶rt;uuau m ¶rt;u n¶rt; aauPREM-E2.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号