首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years mineral exploration has concentrated on concealed deposits in regolith-covered terrains. In China, the regolith-covered landscapes mainly include desert windblown sand basins, desert peneplains, semi-arid grassland, loess plateaus, forestry land, alluvial plains and laterite terrains. These diverse regolith-covered areas represent geochemical challenges for mineral exploration in China. This paper provides an overview of recent progress on mechanisms of metal dispersion from the buried ore deposits through the transported cover to the surface and penetrating geochemical methods to detect the anomalies. Case studies show that, in arid and semi-arid desert sand-covered terrains, sampling of fine-fraction (− 120 mesh, < 0.125 mm) clay-rich horizon soil is cost-effective for regional geochemical surveys for sandstone-type uranium, gold, and base metal deposits. Fine-fraction sampling, selective-leaching and overburden drilling geochemical methods can effectively indicate the 210 gold ore body at Jinwozi goldfield. In alluvium-covered terrains, fine-grained soil sampling (− 200 mesh, < 0.074 mm) combined with selective leaching geochemistry shows clear ring-shaped anomalies of Cu and Ni over the Zhouan concealed Cu–Ni deposit. In laterite-covered terrains, the anomalies determined by the fine-fraction soils and selective leaching of absorbed metals on coatings of Fe–Mn oxides coincide well with the concealed deposit over the Yueyang ore deposits at the Zijin Au–Cu–Ag field. Nanoparticles of hexagonal crystals mainly native copper, gold and alloys of Cu–Fe, Cu–Fe–Mn, Cu–Ti, and Cu–Au were observed in gases, soils and ores using a transmission electron microscope (TEM). The findings imply that nanoparticles of gold and copper may migrate through the transported cover to the surface. Uranium is converted to uranyl ions [UO22 +] under oxidizing conditions when migrating from ore bodies to the surface. The uranyl ions are absorbed on clay minerals, because clay layers have a net negative charge, which needs to be balanced by interlayer cations. Nanoparticles of Au and Cu and ion complexes of U are more readily absorbed onto fine fractions of soils containing clays, colloids, oxides and organic matters. Thus, fine-grained soils enriched with clays, oxides and colloids are useful media for regional geochemical surveys in regolith-covered terrains and in sedimentary basins. Fine-fraction soil sampling combined with selective leaching geochemistry is effective for finding concealed ore bodies in detailed surveys. Penetrating geochemistry at surface sampling provides cost-effective mineral exploration methods for delineation of regional and local targets in transported cover terrains.  相似文献   

2.
《Applied Geochemistry》2006,21(8):1301-1321
Low-quality pore waters containing high concentrations of dissolved H+, SO4, and metals have been generated in the East Tailings Management Area at Lynn Lake, Manitoba, as a result of sulfide-mineral oxidation. To assess the abundance, distribution, and solid-phase associations of S, Fe, and trace metals, the tailings pore water was analyzed, and investigations of the geochemical and mineralogical characteristics of the tailings solids were completed. The results were used to delineate the mechanisms that control acid neutralization, metal release, and metal attenuation. Migration of the low-pH conditions through the vadose zone is limited by acid-neutralization reactions, resulting in the development of distinct pore-water pH zones at depth; the neutralization reactions involve carbonate (pH  5.7), Al-hydroxide (pH  4.0), and aluminosilicate solids. As the zone of low-pH pore water expands, the pH will then be primarily controlled by less soluble solids, such as Fe(III) oxyhydroxides (pH < 3.5) and the relatively more recalcitrant aluminosilicates (pH  1.3). Precipitation/dissolution reactions involving secondary Fe(III) oxyhydroxides and hydroxysulfates control the concentrations of dissolved Fe(III). Concentrations of dissolved SO4 are principally controlled by the formation of gypsum and jarosite. Geochemical extractions indicate that the solid-phase concentrations of Ni, Co, and Zn are associated predominantly with reducible and acid-soluble fractions. The concentrations of dissolved trace metals are therefore primarily controlled by adsorption/complexation and (or) co-precipitation/dissolution reactions involving secondary Fe(III) oxyhydroxide and hydroxysulfate minerals. Concentrations of dissolved metals with relatively low mobility, such as Cu, are also controlled by the precipitation of discrete minerals. Because the major proportion of metals is sequestered through adsorption and (or) co-precipitation, the metals are susceptible to remobilization if low-pH or reducing conditions develop within the tailings.  相似文献   

3.
Heavy metals having both natural and anthropogenic origin are common contaminants in soils and sediments, and can be transferred and bioaccumulated at all levels of the food chain, posing serious environmental concern to the local population. In this paper, agricultural soils from the Province of Ferrara (easternmost part of the Padanian Plain, northern Italy) were investigated to assess the levels of potentially toxic metals in relation to their phytoavailability. Agricultural soils have been sampled in order to identify the origin, mobility and bioavailability of heavy metals, collecting superficial and deeper (depths of 20–30 and 100–120 cm, respectively) horizons. The “total” XRF analyses properly elaborated with a statistical approach reveal that soils evolved from two distinct types of alluvial sediments, in turn related to the Po and Reno rivers; the former type is distinctively enriched in heavy metals (particularly Cr and Ni), reflecting the presence of femic and ultrafemic rocks in the hydrological basin of River Po. The absence of Top Enrichment Factors for Ni, Co, Cr, V, and Pb suggests that the content of these elements is natural and unaffected by contamination, whereas superficial enrichments of Cu (and Zn) is ascribed to anthropogenic inputs related to agricultural activities. Multiple extraction tests using variously aggressive reactants (aqua regia, DTPA, EDTA, NH4NO3, and H2O) analyzed by ICP gave insights on the specific mobility of the distinct elements, which decreases in the following order: Pb > Cu > Cd > Co > >Ni > Cr. Taking into consideration the elements that are inducing the main concerns, Cr appears scarcely mobile, whereas Ni could be more phytoavailable and has to be monitored in the local agricultural products. Cd although scarcely abundant has to be monitored for its mobility and toxicity, whereas Cu although abundant and extremely mobile doesn’t induce concerns as it is not hazardous for the living receptors.  相似文献   

4.
This study was conducted to assess the anthropogenic impact on metal concentrations in the bottom sediments of the Juam reservoir, Korea, and in stream sediments in its catchment, and to estimate the potential mobility of selected metals (Fe, Mn, Cu, Ni, Pb and Zn) using sequential extraction. A comparison of the metal concentrations in the stream sediments with mean background values in sediments collected from first- or second-order creeks shows that Pb, Cu and Ni are the most affected by anthropogenic inputs. The 206Pb/207Pb ratios of the bottom and core sediments (means: 1.2320 ± 0.0502 and 1.2212 ± 0.0040, respectively) suggest that Pb contamination is mainly due to the waste discharge of abandoned coal and metal mines rather than industrial and airborne sources. Considering the proportion of metals bound to the exchangeable, carbonate and reducible fractions, the comparative mobility of metals is suggested to decrease in the order Mn > Pb > Zn > Ni > Fe  Cu.  相似文献   

5.
《Applied Geochemistry》2006,21(11):1969-1985
Gossan Creek, a headwater stream in the SE Upsalquitch River watershed in New Brunswick, Canada, contains elevated concentrations of total Hg (HgT up to 60 μg/L). Aqueous geochemical investigations of the shallow groundwater at the headwaters of the creek confirm that the source of Hg is a contaminated groundwater plume (neutral pH with Hg and Cl concentrations up to 150 μg/L and 20 mg/L, respectively), originating from the Murray Brook mine tailings, that discharges at the headwaters of the creek. The discharge area of the contaminant plume was partially delineated based on elevated pH and Cl concentrations in the groundwater. The local groundwater outside of the plume contains much lower concentrations of Hg and Cl (<0.1 μg/L and 3.8 mg/L, respectively) and displays the chemical characteristics of an acid-sulfate weathering system, with low pH (4.1–5.5) and elevated concentrations of Cu, Zn, Pb and SO4 (up to 5400 μg Cu/L, 8700 μg Zn/L, 70 μg Pb/L and 330 mg SO4/L), derived from oxidation of sulfide minerals in the Murray Brook volcanogenic massive sulfide deposit and surrounding bedrock. The HgT mass loads measured at various hydrologic control points along the stream system indicate that 95–99% of the dissolved HgT is attenuated in the first 3–4 km from the source. Analyses of creek bed sediments for Au, Ag, Cu, Zn, Pb and Hg indicate that these metals have partitioned strongly to the sediments. Mineralogical investigations of the contaminated sediments using analytical scanning electron microscopy (SEM), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM), reveal discrete particles (<1–2 μm) of metacinnabar (HgS), mixed Au–Ag–Hg amalgam, Cu sulfide and Ag sulfide.  相似文献   

6.
《Applied Geochemistry》2006,21(9):1593-1612
Sediments, mosses and algae, collected from lake catchments of the Larsemann Hills, East Antarctica, were analysed to establish baseline levels of trace metals (Ag, As, Cd, Co, Cr, Cu, Ni, Sb, Pb, Se, V and Zn), and to quantify the extent of trace metal pollution in the area. Both impacted and non-impacted sites were included in the study. Four different leaching solutions (1 M MgCl2, 1 M CH3COONH4, 1 M NH4NO3, and 0.3 N HCl) were tested on the fine fraction (<63 μm) of the sediments to extract the mobile fraction of trace metals derived from human impact and from weathering of basement lithologies. Results of these tests indicate that dilute HCl partly dissolves primary minerals present in the sediment, thus leading to an overestimate of the mobile trace metal fraction. Concentrations of trace metals released using the other 3 procedures indicate negligible levels of anthropogenic contribution to the trace metal budget. Data derived from this study and a thorough characterisation of the site allowed the authors to define natural baseline levels of trace metals in sediments, mosses and algae, and their spatial variability across the area. The results show that, with a few notable exceptions, human activities at the research stations have contributed negligible levels (lower than natural variability) of trace metals to the Larsemann Hills ecosystem. This study further demonstrates that anthropogenic sources of trace metals can be correctly identified and quantified only if natural baselines, their variability, and processes controlling the mobility of trace metals in the ecosystem, have been fully characterised.  相似文献   

7.
The surface properties of enargite as a function of pH were investigated. The zeta potential values increased from − 10 mV (pH = 3) to − 45 mV (pH = 12) and no isoelectric point (iep) was detected. The zeta potential of enargite was highly sensitive to pH and interesting peaks/valleys, unusual in common sulfide minerals, were observed. In the present study, these results were interpreted on the basis of the chemistry of enargite, which is a tetra-thioasenate of Cu(I). A thermodynamic approach, including the Eh–pH diagram for enargite, and the hydrolysis diagrams for arsenic, thioarsenic, and oxo-thioarsenic acids was employed. An interpretation based on the simultaneous ionization and dissociation reactions of the hydrolysis products of arsenic and thioarsenic acids on the enargite surface was discussed. On the other hand, covellite (CuS), under low concentrations of arsenate ions, showed similar zeta potential peaks. Additionally, enargite's zeta potential showed sign reversal for a certain pH range, with the addition of low concentrations of Cu(I) and Cu(II) ions, suggesting that other hydrolysis and precipitation reactions may also be involved.  相似文献   

8.
《Applied Geochemistry》2006,21(8):1335-1346
The chemical speciation of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) in marine sediments from two coastal regions of Singapore (Kranji in the NW, and Pulau Tekong in the NE) was determined using the latest version of the 3-step sequential extraction procedure, as described by the European Community Bureau of Reference (1999). To obtain a mass balance, a fourth step, i.e., digestion and analysis of the residue was undertaken using a microwave-assisted acid digestion procedure. The total content of all metals except for Pb in sediments was greater in Kranji than in Pulau Tekong. All metals, except Cd were more mobile and bio-available in Kranji, where metals were present at higher percentages in the acid-soluble fractions (the most labile fraction). In sediments from Kranji, the mobility order of the heavy metals studied was Cd > Ni > Zn > Cu > Pb > Cr, whereas sediments from Pulau Tekong showed the same order for Cd, Ni, Pb and Cr, but had a reverse order for Cu and Zn (Cu > Zn). The highest percentages of Cr, Ni and Pb were found in the residual fractions in both Kranji (78.9%, 54.7%, 55.9%, respectively) and Pulau Tekong (82.8%, 77.3%, 62.2%, respectively), meaning that these metals were strongly bound to the sediments. Results are consistent with findings from Barcelona, Spain where similar results for Cr and Ni have also been reported for marine sediments. The sum of the 4 steps (acid-soluble + reducible + oxidizable + residual) was in good agreement with the total content, which implies that the accuracy of the microwave extraction procedure in conjunction with the GFAAS analytical method is assured.  相似文献   

9.
《Applied Geochemistry》2006,21(6):1044-1063
A suite of trace metals was analyzed in water and sediment samples from the Blesbokspruit, a Ramsar certified riparian wetland, to assess the impact of mining on the sediment quality and the fate of trace metals in the environment. Limited mobility of trace metals was observed primarily because of their high partition coefficient in alkaline waters. Nickel was most mobile with a mean Kd of 103.28 L kg−1 whereas Zr was least mobile with a mean Kd of 105.47 L kg−1. The overall trace metal mobility sequence, derived for the Blesbokspruit, in increasing order, is: Zr < Cr < Pb < Ba < V < Cu < Zn < Sr < Mn < U < Mo < Co < Ni. Once removed from the solution, most trace metals were preferentially associated with the carbonate and Fe–Mn oxide fraction followed by the exchangeable fraction of the sediments. Organic C played a limited role in trace metal uptake. Only Cu was primarily associated with the organic fraction whereas Ti and Zr were mostly found in the residual fraction. Compared to their regional background, Au and Ag were most enriched, at times by a factor of 20–400, in the sediments. Significant enrichment of U, Hg, V, Cr, Co, Cu and Zn was also observed in the sediments.The calculated geoaccumulation indices suggest that the sediments are very lightly to lightly polluted with respect to most trace metals and highly polluted with respect to Au and Ag. The metal pollution index (MPI) for the 20 sampled sites varied between 2.9 and 45.7. The highest MPI values were found at sites that were close to tailings dams. Sediment eco-toxicity was quantified by calculating the sediment quality guideline index (SQG-I). The calculated SQG-I values (0.09–0.69) suggest that the sediments at the study area have low to moderate potential for eco-toxicity.  相似文献   

10.
Karstic bauxites in western Guangxi, China, comprise two subtypes: Permian bauxite and Quaternary bauxite. The Quaternary bauxite originated from the breaking up, rolling, and accumulating of Permian bauxite in karstic depressions in Quaternary. Various types of rare earth element (REE) minerals were discovered during the formation of the Permian and Quaternary bauxites from the Xinxu, Longhe, and Tianyang bauxite deposits in this study. Five types of REE minerals, including bastnäsite, parisite, cerianite, rhabdophane, and churchite, were identified. Bastnäsite and parisite are the most abundant, and they are widely developed in the Permian ore and also present in the Quaternary ore. Obvious variations in bastnäsite and parisite REE compositions were observed, which is ascribed to distinctions in the source materials in the primary weathering profile from different areas. The mode of occurrence of bastnäsite and parisite suggests they were mainly precipitated under alkaline and reducing conditions during the Permian bauxite-forming stage and underwent intensive corrosion in the Quaternary. Churchite was formed during the Permian weathering stage under acidic condition. Both cerianite and rhabdophane occur in fractures within the Permian bauxite ore, indicating that both formed during the Quaternary weathering stage. It is considered that the rhabdophane enriched in Ce have formed locally, in the process of that the Ce3 +, released from bastnäsite rapidly, entered the rhabdophane lattice before being oxidized to Ce4 +. Cerianite was mainly found in association with Mn–Al hydroxides, suggesting that the released Ce3 + was oxidized into Ce4 + and precipitated cerianite in fractures within the Permian bauxite ore. Mass balance equations reveal a depletion in nearly all REEs during the transformation from the Permian to the Quaternary bauxite ore, mainly caused by the dissolution of bastnäsite and parisite. The genesis of the REE minerals, together with the occurrence of other minerals, indicates that intensively acidic and oxidizing conditions developed before the formation of the Permian bauxite ore. Towards the end of the Permian, the conditions became reducing and alkaline, favorable for the large-scale bauxitization. The Quaternary bauxite-forming stage was characterized by variable pH and Eh conditions, with acidic (pH = 4–6) and oxidizing (Eh > 2) conditions at the surface of the exposed Permian bauxite ore.  相似文献   

11.
The pollution and deterioration of most important vital rivers in the Katanga region, Democratic Republic of Congo (DRC) are mainly due to the discharge of untreated industrial effluents as well as to the mining and artisanal mineral exploitation activities. In this study, the concentrations of metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, and Pb) and major elements (Na, Mg, and K) in mining effluents, water and sediment samples of two main rivers of the district of Kolwezi (Katanga, DRC) were subjected to analysis by Inductive Coupled Plasma-Mass Spectroscopy (ICP-MS). The results showed that, in general, the metal concentrations in the sampling sites from the mining effluent and river waters exceed largely the World Health Organization and the Aquatic Quality Guidelines for the Protection of Aquatic Life recommendation limits. The highest metal concentrations in water and sediment samples were detected surrounding the mining effluents discharge. In the surface sediments of Luilu River, the values of 47,468 and 13,199 mg kg−1 were observed for Cu and Co, respectively. For the sediment samples from Musonoie River, the maximum values of 370.8 and 240.6 mg kg−1 for Cu and Co, respectively were observed. The results of this study suggest that the mining effluents being discharged into the rivers and the accumulation of pollutants in sediments might represent a source of toxicity for aquatic living organisms and could pose significant human health risks. The measures to establish a monitoring program and the application of wastewater treatment techniques to the mining effluents prior to discharge are recommended to reduce the load of contaminants into the receiving systems.  相似文献   

12.
Model experiments were performed on the solubility of sulfide ores from the Kyzyl-Tashtyg deposit in distilled water and fulvic-acid (FA) solutions of different concentrations. It has been established that the oxidation of sulfide minerals in ores under atmospheric conditions might produce acid drainage waters with toxic heavy metals (Cu, Zn, Cd). The influence of natural organic acids depends on the capability of ore and host rock to neutralize the acidity of solutions. If carbonate content is enough at the first stage, a considerable increase in the pH value of FA-free solutions ensures Fe and Cu removal into the solid phase, whereas the formation of metal fulvate complexes hinders this process. However, when the rocks exhaust their neutralizing potential, all the solutions remain acidic for > 100 days of leaching. In this case, FAs, on the contrary, inhibit the oxidation of the surface of sulfide minerals and reduce the removal of heavy metals into the solution.  相似文献   

13.
《Applied Geochemistry》2005,20(5):973-987
Due to liming of acid mine drainage, a calcite–gypsum sludge with high concentrations of Zn (24,400 ± 6900 μg g−1), Cu (2840 ± 680 μg g−1) and Cd (59 ± 20 μg g−1) has formed in a flooded tailings impoundment at the Kristineberg mine site. The potential metal release from the sludge during resuspension events and in a long-term perspective was investigated by performing a shake flask test and sequential extraction of the sludge. The sequentially extracted carbonate and oxide fractions together contained ⩾97% of the total amount of Cd, Co, Cu, Ni, Pb and Zn in the sludge. The association of these metals with carbonates and oxides appears to result from sorption and/or coprecipitation reactions at the surfaces of calcite and Fe, Al and Mn oxyhydroxides forming in the impoundment. If stream water is diverted into the flooded impoundment, dissolution of calcite, gypsum and presumably also Al oxyhydroxides can be expected during resuspension events. In the shake flask test (performed at a pH of 7–9), remobilisation of Zn, Cu, Cd and Co from the sludge resulted in dissolved concentrations of these metals that were significantly lower than those predicted to result from dissolution of the carbonate fraction of the sludge. This may suggest that cationic Zn, Cu, Cd and Co remobilised from dissolving calcite, gypsum and Al oxyhydroxides were readsorbed onto Fe oxyhydroxides remaining stable under oxic conditions. In a long-term perspective (≳102 a), ⩾97% of the Cd, Co, Cu, Ni, Pb and Zn content of the sludge potentially is available for release by dissolution of calcite and reductive dissolution of Fe oxyhydroxides if the sludge is subject to a soil environment with lower dissolved Ca concentrations, pH and redox than in the impoundment.  相似文献   

14.
We collected groundwaters in and around a large (313 Mt at 1.08% Cu and 0.3% cutoff) undisturbed porphyry copper deposit (Spence) in the hyperarid Atacama Desert of northern Chile, which is buried beneath 30–180 m of Miocene piedmont gravels. Groundwaters within and down-flow of the Spence deposit have elevated Se (up to 800 μg/l), Re (up to 31 μg/l), Mo (up to 475 μg/l) and As (up to 278 μg/l) concentrations compared to up-flow waters (interpreted to represent regional groundwater flow). In contrast, Cu is only elevated (up to 2036 μg/l) in groundwaters recovered from within the deposit; Cu concentrations are low down gradient of the deposit. The differential behavior of the metals/metalloids occurs because the former group dissolves as anions, enhancing their mobility, whereas the base metals dissolve as cations and are lost from solution most likely through adsorption to clay surface exchange sites and through formation of secondary copper chlorides, carbonates, and oxides. Most groundwaters within and down-flow of the deposit have Eh–pH values around the FeII/FeIII phase boundary, limiting the impact of Fe-oxyhydroxides on oxyanions mobility. Se, Re, Mo, and As are all mobile (with filtered/unfiltered samples ~ 1) to the limit of sampling 2 km down gradient from the deposit. The increase in ore-related metals, metalloids, and sulfate and decrease in sulfate–S isotope ratios (from values similar to regional salars, + 4 to + 8‰ δ34SCDT to lower values closer to hypogene sulfides, + 1 to + 4‰ δ34SCDT) is consistent with active water–rock reactions between saline groundwaters and the Spence deposit. It is likely that hypogene and/or supergene sulfides are being oxidized under the present groundwater conditions and mineral saturation calculations suggest that secondary copper minerals (antlerite, atacamite, malachite) may also be actively forming, suggesting that supergene and exotic copper mineralization is possible even under the present hyperarid climate of the Atacama Desert.  相似文献   

15.
This study reports on the seepage of metals, metalloids and radionuclides from the Mary Kathleen uranium mill tailings repository. Since rehabilitation in the 1980s, the capped tailings have developed a stratified hydrochemistry, with acid (pH 3.7), saline, metal-rich (Fe, Mn, Ni, U ± As, Pb, Zn), oxygenated (1.05 mg L−1 DO), radioactive waters in the upper tailings pile and near-neutral pH (pH 7.57), metal-poor, reduced (0.08 mg L−1 DO) waters at depth. Seepage (∼0.5 L s−1) of acid (pH 5.5), metal-rich (Fe, Mn ± Ni, U, Zn), radioactive (U-235, U-238, Ra-226, Ra-228, Ac-227) waters occurs from the base of the tailings dam retaining wall into the former evaporation pond and local drainage system. Oxygenation of the seepage waters causes the precipitation of Fe and coprecipitation and adsorption of other metals (U, Y), metalloids (As), rare earth elements (Ce, La) and radionuclides (U-235, U-238). By contrast, alkalis and alkaline–earth elements (Ca, K, Mg, Na, Sr), Mn, sulfate and to some degree metals (U, Zn, Ni), rare earth elements (Ce, La) and radionuclides (U-235, U-238, Ra-226, Ra-228) remain in solution until pH neutralisation and evaporation lead to their precipitation in efflorescences and sulfate-rich evaporative sediments. While the release of contaminant loads from the waste repository through seepage is insignificant (e.g. ∼5 kg of U per year), surface waters downstream of the tailings impoundment possess TDS, U and SO4 concentrations that exceed Australian water quality guideline values in livestock drinking water. Thus, in areas with a semi-arid climate, even insignificant load releases of contaminants from capped tailings repositories can still cause the deterioration of water quality in ephemeral creek systems.  相似文献   

16.
The Mombi bauxite deposit is located in 165 km northwest of Dehdasht city, southwestern Iran. The deposit is situated in the Zagros Simply Fold Belt and developed as discontinuous stratified layers in Upper Cretaceous carbonates (Sarvak Formation). Outcrops of the bauxitic horizons occur in NW-SE trending Bangestan anticline and are situated between the marine neritic limestones of the Ilam and Sarvak Formations. From the bottom to top, the deposit is generally consisting of brown, gray, pink, pisolitic, red, and yellow bauxite horizons. Boehmite, diaspore, kaolinite, and hematite are the major mineral components, while gibbsite, goethite, anatase, rutile, pyrite, chlorite, quartz, as well as feldspar occur to a lesser extent. The Eh–pH conditions during bauxitization in the Mombi bauxite deposit show oxidizing to reducing conditions during the Upper Cretaceous. This feature seems to be general and had a significant effect on the mineral composition of Cretaceous bauxite deposits in the Zagros fold belt. Geochemical data show that Al2O3, SiO2, Fe2O3 and TiO2 are the main components in the bauxite ores at Mombi and immobile elements like Al, Ti, Nb, Zr, Hf, Cr, Ta, Y, and Th were enriched while Rb, Ba, K, Sr, and P were depleted during the bauxitization process. Chondrite-normalized REE pattern in the bauxite ores indicate REE enrichment (ΣREE = 162.8–755.28 ppm, ave. ∼399.36 ppm) relative to argillic limestone (ΣREE = 76.26–84.03 ppm, ave. ∼80.145 ppm) and Sarvak Formation (ΣREE = 40.15 ppm). The REE patterns also reflect enrichment in LREE relative to HREE. Both positive and negative Ce anomalies (0.48–2.0) are observed in the Mombi bauxite horizons. These anomalies are related to the change of oxidation state of Ce (from Ce3+ to Ce4+), ionic potential, and complexation of Ce4+ with carbonate compounds in the studied horizons. It seems that the variations in the chemistry of ore-forming solutions (e.g., Eh and pH), function of carbonate host rock as a geochemical barrier, and leaching degree of lanthanide-bearing minerals are the most important controlling factors in the distribution and concentration of REEs. Several lines of evidences such as Zr/Hf and Nb/Ta ratios as well as similarity in REE patterns indicate that the underlying marly limestone (Sarvak Formation) could be considered as the source of bauxite horizons. Based on mineralogical and geochemical data, it could be inferred that the Mombi deposit has been formed in a karstic environment during karstification and weathering of the Sarvak limy Formation.  相似文献   

17.
《Applied Geochemistry》1998,13(3):359-368
Studies on the speciation (particulate, colloidal, anionic and cationic forms) of trace metals (Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Zn) in the water column and in pore waters of the Gotland Deep following the 1993/94 salt-water inflows showed dramatic changes in the total “dissolved” metal concentrations and in the ratios between different metal species in the freshly re-oxygenated waters below 125 m. Changes in concentrations were greatest for those metals for which the solubility differs with the redox state (Fe, Mn, Co) but were also noted for those metals which form insoluble sulphides (Cd, Pb, Cu, Zn) and/or stable complexes with natural ligands (Cu). Pore water data from segmented surface muds (0–200 mm) indicated that significant redox and related metal speciation changes took place in the surface sediments only a few weeks after the inflow of the oxygenated sea water into the Gotland Deep.  相似文献   

18.
Active and abandoned mine activities constitute the sources of deterioration of water and soil quality in many parts of the world, particularly in the African Copperbelt regions. The accumulation in soils and the release of toxic substances into the aquatic ecosystem can lead to water resources pollution and may place aquatic organisms and human health at risk. In this study, the impact of past mining activity (i.e., abandoned mine) on aquatic ecosystems has been studied using ICP-MS analysis for trace metals and Rare Earth Elements (REE) in sediment samples from Lubumbashi River (RL) and Tshamilemba Canal (CT), Katanga, Democratic Republic of the Congo (DRC). Soil samples from surrounding CT were collected to evaluate trace metal and REE concentrations and their spatial distribution. The extent of trace metal contamination compared to the background area was assessed by Enrichment Factor (EF) and Geoaccumulation Index (Igeo). Additionally, the trace metal concentrations probable effect levels (PELs) for their potential environmental impact was achieved by comparing the trace metal concentrations in the sediment/soil samples with the Sediment Quality Guidelines (SQGs). Spearman's Rank-order correlation was used to identify the source and origin of contaminants. The results highlighted high concentrations of trace metals in surface sediments of CT reaching the values of 40152, 15586, 610, 10322, 60704 and 15152 mg kg−1 for Cu, Co, Zn, Pb, Fe and Mn, respectively. In the RL, the concentrations reached the values of 24093, 2046, 5463, 3340, 68290 and 769 mg kg−1 for Cu, Co, Zn, Pb, Fe and Mn, respectively. The ΣREE varied from 66 to 218 and 142–331 mg kg−1 for CT and RL, respectively. The soil samples are characterized by variable levels of trace metals. The EF analysis showed “extremely severe enrichment” for Cu and Co. However, no enrichment was observed for REE. Except for Mo, Th, U, Eu, Mo, Ho and Tm for which Igeo is classified as “moderately polluted and/or unpolluted”, all elements in different sites are classified in the class 6, “extremely polluted”. The trace metal concentrations in all sampling sites largely exceeded the SQGs and the PELs for the Protection of Aquatic Life recommendation. Cu and Co had positive correlation coefficient values (r = 0.741, P < 0.05, n = 14). This research presents useful tools for the evaluation of water contamination in abandoned and active mining areas.  相似文献   

19.
The leaching behaviour of electrostatic precipitator dust from the Mufulira Cu smelter (Copperbelt, Zambia) was studied using a 48-h pH-static leaching experiment (CEN/TS 14997). The release of metals (Cd, Co, Cu, Ni, Pb and Zn) and changes in mineralogical composition using X-ray diffraction and PHREEQC-2 modelling were investigated in the pH range of 3–7. The highest concentrations of metals were released at pH 3–4.5, which encompasses the natural pH of the dust suspension (~4.3). About 40% of the total Cu was leached at pH 3, yielding 107 g/kg. Chalcanthite (CuSO4·5H2O), magnetite (Fe3O4) and delafossite (CuFeO2) represented the principal phases of the studied dust. In contact with water, chalcanthite was dissolved and hydrated Cu sulphates precipitated at pH 4–7. Gypsum (CaSO4·2H2O) and secondary Fe or Al phases were observed in the leached residues. Serious environmental impact due to leaching may occur in dust-contaminated soil systems in the vicinity of the smelting plants.  相似文献   

20.
At San Roque in Patagonia's Rio Negro Province, Argentina, an In–Au–Cu–Zn–Pb–Ag mineralization (< 0.24 wt.% In, < 7 ppm Au, < 0.45 wt.% Cu, < 14.1 wt.% Zn, < 0.55 wt.% Pb, < 60 ppm Ag) is bound to lava, and volcaniclastics of Triassic through Jurassic age. The polymetallic sulfidic and non-sulfidic indium mineralization is attributed to the low-sulfidation (LS) to intermediate sulfidation (IS) epithermal type of mineralization. Its vein-type and stockwork mineralization developed at 39.2 bars under hydrostatic conditions, corresponding to a depth of 400 m below the water level of the paleoaquifer. In the redox-controlled hypogene mineralization, the temperature increased from 130 °C up to as much as 250 °C at depth, while the pH regime changed from slightly acidic near surface to more alkaline conditions around pH 8 at a depth of approximately 150 m. The monophase mineral associations composed of sphalerite, Ag–Bi-enriched and inclusion-free galena (< 1.7 wt.% Ag, < 3.7 wt.% Bi), chalcopyrite, pyrite, gold, silver, digenite, various In–Cu- and Pb–Zn–Ag “intermediate products”, wittichenite, roquesite, sakuraiite, dzhalindite, brochantite, antlerite, cerussite, and “manganomelane” in a quartz and muscovite-rich gangue have been subdivided into three different stages: (1) Stockwork mineralization of LS to IS epithermal type (hypogene), (2) quartz vein mineralization (hypogene), and (3) salar mineralization (supergene–hypogene).Salt–mud flats controlled the youngest mineralization with Mn, Li, Ca, Mg, V, Sr, Cu, Ag and In bound to oxides, hydroxides, sulfates and subordinate carbonates. The quartz vein mineralization is made up of oxides, hydroxides prevailing over sulfides and containing W, Fe, Au, As, Pb, In, and Cu. It formed at the passage from the vadose into the phreatic zones under oxidizing to slightly reducing conditions. The level marks the boiling level of the hydrothermal solutions involved in the mineralizing process. The hypogene stockwork mineralization is exclusively made up of sulfides containing Zn, Pb, Cu, In, Ag and Bi in the phreatic zones. It developed under reducing conditions. Indium is present at all levels within the volcanic rocks and has been derived from sphalerite rich in Cd (< 1.6 wt.% Cd), In (< 7.3 wt.% In) and Cu (< 7.2 wt.% Cu) while the Fe contents are moderate in sphalerite (< 6.8 wt.% Fe). Indium reached economic grade only through the segregation of a Cu–In–S phase in the “indium window” which is defined by a Cd content of sphalerite in the range 0.2–0.6 wt.% Cd. This concentration of In is controlled by the crystal morphology and the lattice parameters of the minerals involved. It is described as a two-stage process with interdiffusion processes in an Fe-enriched system (stage I) and zoned replacement in an Fe-poor system enriched in indium (stage II). Cu-bearing sphalerite decomposed into sphalerite poor in trace elements and into Cu–In-bearing sphalerite. Further indium concentration took place, when roquesite and sakuraiite decomposed along with an increase in oxygen pressure under hypogene and supergene conditions into dzhalindite. The physical–chemical conditions of the mineralogy and chemical changes in the system In–Cu–Zn–Cd observed in nature have been approximated based upon the results obtained during laboratory studies in material sciences that were focused on solar energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号