首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sediment production, transport and yield were quantified over various timescales in response to rainfall and runoff within an alluvial gully (7 · 8 ha), which erodes into dispersible sodic soils of a small floodplain catchment (33 ha) along the Mitchell River, northern Australia. Historical air photographs and recent global positioning system (GPS) surveys and LiDAR data documented linear increases in gully area and volume, indicating that sediment supply has been relatively consistent over the historic period. Daily time lapse photography of scarp retreat rates and internal erosion processes also demonstrated that erosion from rainfall and runoff consistently supplied fine washload (< 63 µm) sediment in addition to coarse lags of sand bed material. Empirical measurements of suspended sediment concentrations (10 000 to >100 000 mg/L) and sediment yields (89 to 363 t/ha/yr) were high for both Australian and world data. Total sediment yield estimated from empirical washload and theoretical bed material load was dominated by fine washload (< 63 µm). A lack of hysteresis in suspended sediment rating curves, scarp retreat and sediment yield correlated to rainfall input, and an equilibrium channel outlet slope supported the hypothesis that partially or fully transport‐limited conditions predominated along the alluvial gully outlet channel. This is in contrast to sediment supply‐limited conditions on uneroded floodplains above gully head scarps. While empirical data presented here can support future modelling efforts to predict suspended sediment concentration and yield under the transport limiting situations, additional field data will also be needed to better quantify sediment erosion and transport rates and processes in alluvial gullies at a variety of spatial and temporal scales. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Flow records, rising‐stage sediment samplers, and a sand suspension model are used to examine suspended sediment concentrations during major floods caused by tropical cyclones TC Joni and TC Kina in the Rewa River, Fiji. The highest concentrations of total suspended solids were measured during the early stages of TC Kina. The suspension model predicts higher sand concentrations for TC Kina compared with TC Joni because of the larger slope and higher shear stresses during Kina. Extremely high wash load concentrations early in TC Kina are at least partly due to remobilization of fine sediment deposited during the earlier TC Joni flood. Samples from the TC Kina had volumetric concentrations larger than 5%, indicating hyperconcentrated streamflows. Mass‐density shear stresses in the hyperconcentrated flows are up 1·6 times larger than clear‐water shear stresses, but they occur early during low stages of the flood and probably do not result in severe bed erosion. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Alluvial gullies are often formed in dispersible sodic soils along steep banks of incised river channels. Field data collected by Shellberg et al. (Earth Surface Processes and Landforms 38: 1765–1778, 2013) from a gully outlet in northern Australia showed little hysteresis between water discharge and fine (<63 µm) and coarse (>63 µm) suspended sediment, indicating transport‐limited rather than source‐limited conditions. The major source of the fine (silt/clay) component was the sodic soils of upstream gully scarps, and the coarser (sand) component was sourced locally from channel bed material. In this companion paper at the same study site, a new method was developed for combining the settling velocity characteristics of these two sediment source components to estimate the average settling velocity of the total suspended sediment. This was compared to the analysis of limited sediment samples collected during flood conditions. These settling velocity data were used in the steady‐state transport limit theory of Hairsine and Rose (Water Resources Research 28: 237–243, 245–250, 1992) that successfully predicted field data of concentrations and loads at a cross‐section, regardless of the complexity of transport‐limited upstream sources (sheet erosion, scalds, rills, gullies, mass failure, bank and bed erosion, other disturbed areas). The analysis required calibration of a key model parameter, the fraction of total stream power (F ≈ 0.025) that is effective in re‐entraining sediment. Practical recommendations are provided for the prediction of sediment loads from other alluvial gullies in the region with similar hydrogeomorphic conditions, using average stream power efficiency factors for suspended silt/clay (Fw ≈ 0.016) and sand (Fs ≈ 0.038) respectively, but with no requirement for field data on sediment concentrations. Only basic field data on settling velocity characteristics from soil samples, channel geometry measurements, estimates of water velocity and discharge, and associated error margins are needed for transport limit theory predictions of concentration and load. This theory is simpler than that required in source‐limited situations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The aim of this study is to examine the annual regime of channel scour and fill by monitoring bed‐elevation changes in a reach of Squamish River in southwestern British Columbia, Canada. Sonar surveys of 13 river cross‐sections in a sandy gravel‐bed single‐channel study reach were repeated biweekly over a full hydrologic year (1995/6). The survey results show that bedload movement occurs as waves or pulses forming bedwaves that appear to maintain an overall coherence with movement downstream. These bedwaves propagate downstream by a mode here termed pulse scour and pulse fill, a process distinguished from the conventional mode of scour and fill commonly associated with flood events (here termed local scour and local fill). Bedwave celerity was estimated to be about 15·5 m d−1 corresponding to a bedwave residence time in the study reach of almost one hydrologic year. The total amount of local bed‐elevation change ranged between 0·22 m and 2·41 m during the period of study. Analysis of the bed‐elevation and flow data reveals that, because of the bedwave phenomenon, there is no simple relation between the mean bed‐elevation and discharge nor any strong linear correlation among cross‐sectional behaviour. The bed‐elevation data also suggest that complex changes to the bed within a cross‐section are masked when the bed is viewed in one dimension, although no definitive trends in bed behaviour were found in the two‐dimensional analysis. Although a weak seasonal effect is evident in this study, the bed‐elevation regime is dominated by sediment supply‐driven fluctuations in bedload transport occurring at timescales shorter than the seasonal fluctuation in discharge. The study also indicates that bed‐elevation monitoring on Squamish River, and others like it, for purposes of detecting and measuring aggradation/degradation must take into account very considerable and normal channel‐bed variability operating at timescales from hours to months. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
This study analyses archival discharge and sediment concentration data (1965–1988), monitored by Water Survey of Canada, to examine suspended sediment transport rates and their relationship to effective discharge (Qeff) based on daily discharge duration curves. Effective discharge was determined as the mid‐point of the discharge class transporting the greatest portion of the suspended sediment load (hence class‐based Qeff). Results showed that the concept of effective discharge was applicable to the Fraser River basin where the average class‐based Qeff occurred during 8·4% of the study period with individual values ranging from 0·03% to 16·1%. The durations of effective discharge classes ranged from 0·02% to 19·6% while the transport of 50% of total sediment loads ranged from 3% to 22% with an average of 14% of the time. Equations for predicting the class‐based Qeff in the Fraser River basin from bankfull discharge and drainage area are presented. The observed variations among stations in sediment‐discharge regimes based on subjectively selected 20 discharge classes, seem to reflect the influence of sediment controlling factors such as geology, physiography, catchment size and land use practice in the basin. Future directions of research on applications of the effective discharge concept are explored. As a solution to the problem of lack of an objective method for determining the effective discharge, the effective discharge should be determined from event based assessments of sediment transport (event‐based Qeff), avoiding any subjectivity in the selection of number of discharge classes used for its determination. In conclusion, it is proposed that continued use of the conventional method of determining Qeff should cease. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
Sediment data were analyzed to determine grain‐size dependant factors affecting sediment transport in a low‐ordered, ephemeral watershed. Sediment and flow samples were collected during 22 flow events at the outlet of a 4·53 ha sub‐watershed within the Walnut Gulch Experimental Watershed in south‐eastern Arizona. Measured concentrations ranged from 4191 to 115 045 mg l?1 and included grain sizes up to 8·0 mm in diameter. Two grain‐size dependent transport patterns were observed, that of the finer grain‐size fraction (approximately < 0·25 mm) and that of a coarser grain‐size fraction (approximately ≥ 0·25 mm). The concentration of the fine fraction decreased with flow duration, peaking near the beginning of a flow event and declining thereafter. The concentration of the fine fraction showed slight trends with season and recovery period. The concentration of the coarse fraction displayed a slight negative trend with instantaneous discharge and was not correlated with event duration. These patterns typically produced a condition where the majority of the fine fraction of the sediment yield was evacuated out of the watershed before the hydrograph peak while the majority of the coarser sediment was evacuated during the falling limb of the hydrograph. Each grain‐size dependent transport pattern was likely influenced by the source of the associated sediment. At the flow event time scale, the fines were primarily wash load, supplied from the hillslopes and the coarser grains were entrained from the channel bed. Because transport patterns differ based on grain size, attempts to define the total sediment concentration and sediment yield by the behavior of a single grain‐size fraction may lead to erroneous results, especially when a large range of sediment grain sizes are present. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Sediment delivery from hillslopes to trunk streams represents a significant pathway of mass transfer in the landscape, with a large fraction facilitated by gully systems. The internal gully geomorphic dynamics represent a considerable gap in many landscape and empirical erosion models, therefore a better understanding of these processes over longer timescales (10–104 years) is needed. This study analyses the sediment mass balance and storage dynamics within a headwater gully catchment in central Europe over the last ~12 500 years. Human induced erosion resulted in hillslope erosion rates ~2.3 times higher than under naturally de‐vegetated conditions (during the Younger Dryas), however the total sediment inputs to the gully system (and therefore gully aggradation), were similar. Net gully storage has consistently increased to become the second largest term in the sediment budget after hillslope erosion (storage is ~45% and ~73% of inputs during two separate erosion and aggradation cycles). In terms of the depletion of gully sediment storage, the sediment mass balance shows that export beyond the gully fan was not significant until the last ~500 years, due to reduced gully fan accommodation space. The significance of storage effects on the gully sediment mass balance, particularly the export terms, means that it would be difficult to determine the influences of human impact and/or climatic changes from floodplain or lake sedimentary archives alone and that the sediment budgets of the headwater catchments from which they drain are more likely to provide these mechanistic links. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Suspended sediment is a major source of pollution in irrigation‐dominated watersheds. However, little is known about the process and mechanisms of suspended sediment transport in drain channels directly connected to agricultural fields. This paper explains sediment dynamics using averaged 5 min flow discharge Q (m3 s?1) and suspended sediment concentration C (mg l?1) collected during one crop season in a small catchment containing a first‐order drain channel and its connected six agricultural fields within the Salton Sea watershed. The statistical properties and average trends of Q and C were investigated for both early (i.e. November) and late (i.e. January) stages of a crop season. Further in‐depth analysis on sediment dynamics was performed by selecting two typical single‐field irrigation events and two multiple‐field irrigation events. For each set of irrigation events, the process of suspended sediment transport was revealed by examining hydrograph and sediment graph responses. The mechanisms underlying suspended sediment transport were investigated by analysing the types of corresponding hysteresis loop. Finally, sediment rating curves for both hourly and daily data at early and late stages and for the entire crop season were established to seek possible sediment‐transport predictive model(s). The study suggests that the complicated processes of suspended sediment transport in irrigation‐dominated watersheds require stochastic rather than deterministic forecasting. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Glaciers are major agents of erosion that increase sediment load to the downstream fluvial system. The Castle Creek Glacier, British Columbia, Canada, has retreated ~1.0 km in the past 70 years. Suspended sediment concentration (SSC) and streamflow (Q) were monitored independently at five sites within its pro‐glacial zone over a 60 day period from July to September 2011, representing part of the ablation season. Meteorological data were collected from two automatic weather stations proximal to the glacier. The time‐series were divided into hydrologic days and the shape and magnitude of the SSC response to hydro‐meteorological conditions (‘cold and wet’, ‘hot and dry’, ‘warm and damp’, and ‘storm’) were categorized using principal component analysis (PCA) and cluster analysis (CA). Suspended sediment load (SSL) was computed and summarized for the categories. The distribution of monitoring sites and results of the multivariate statistical analyses describe the temporal and spatial variability of suspended sediment flux and the relative importance of glacial and para‐glacial sediment sources in the pro‐glacial zone. During the 2011 study period, ~ 60% of the total SSL was derived from the glacial stream and sediment deposits proximal to the terminus of the glacier; during ‘storm’ events, that contribution dropped to ~40% as the contribution from diffuse and point sources of sediment throughout the pro‐glacial zone and within the meltwater channels increased. While ‘storm’ events accounted for just 3% of the study period, SSL was ~600% higher than the average over the monitoring period, and ~20% of the total SSL was generated in that time. Determining how hydro‐meteorological conditions and sediment sources control sediment fluxes will assist attempts to predict how pro‐glacial zones respond to future climate changes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
11.
The Holocene volumetric sediment budget is estimated for coarse textured sediments (sand and gravel) in a large, formerly glaciated valley in southwest British Columbia. Erosion is estimated by compiling volumetric loss estimated in digital elevation models (DEMs) of gullied topography and by applying a non‐linear diffusion model on planar, undissected hillslopes. Estimates of steepland yield are based on estimates of post‐glacial deposition volumes in fans, cones and deltas at the outlets of low‐order tributary catchments. Erosion of post‐glacial fans and tributary valley fills is estimated by reconstructing formerly continuous surfaces. Results are classed by catchment order and compared across scales of contributing area, revealing declining specific sediment yield (in m3 km?2 a?1) with catchment area for the smaller tributaries (<10 km2) and increasing specific sediment yield for larger tributaries and Chilliwack Valley itself. Approximately 60% of mobilized sediment is redeposited in first‐ to third‐order catchments, with lesser proportions stored at the outlets of higher order catchments. A simple network routing model emphasizes the significant sediment flux contributions from colluvium, drift blankets and gullies in steeper terrain. As this material is deposited at junctions within the lower drainage network, an increasing proportion of material is derived from remnant valley fills and para‐glacial fans in the major valleys. Yield from lower‐order, steepland catchments tends to remain in storage, indefinitely sequestered on footslopes. These observations have implications for modelling the post‐glacial sediment balance amongst catchments of varying size. After 104 years, the system remains in disequilibrium. The critical linkage lies between low‐order, hillslope catchments (相似文献   

12.
As the Mississippi River plays a major role in fulfilling various water demands in North America, accurate prediction of river flow and sediment transport in the basin is crucial for undertaking both short‐term emergency measures and long‐term management efforts. To this effect, the present study investigates the predictability of river flow and suspended sediment transport in the basin. As most of the existing approaches that link water discharge, suspended sediment concentration and suspended sediment load possess certain limitations (absence of consensus on linkages), this study employs an approach that presents predictions of a variable based on history of the variable alone. The approach, based on non‐linear determinism, involves: (1) reconstruction of single‐dimensional series in multi‐dimensional phase‐space for representing the underlying dynamics; and (2) use of the local approximation technique for prediction. For implementation, river flow and suspended sediment transport variables observed at the St. Louis (Missouri) station are studied. Specifically, daily water discharge, suspended sediment concentration and suspended sediment load data are analysed for their predictability and range, by making predictions from one day to ten days ahead. The results lead to the following conclusions: (1) extremely good one‐day ahead predictions are possible for all the series; (2) prediction accuracy decreases with increasing lead time for all the series, but the decrease is much more significant for suspended sediment concentration and suspended sediment load; and (3) the number of mechanisms dominantly governing the dynamics is three for each of the series. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
The aim of this study is to analyze suspended sediment transport in a Mediterranean agricultural catchment under traditional soil and water conservation practices. Field measurements were conducted in Can Revull, a small ephemeral catchment (1.03 km2) on the island of Mallorca. This study uses continuous turbidity records to analyse suspended sediment transport regimes, construct and interpret multiple regression models of total suspended sediment concentration (SSC) and of SSC related to stormflow discharge, and assess the sediment loads and yields of three hydrological years (2004–2005 to 2006–2007). An annual average SSC of 17.3 mg l?1, with a maximum of 2270 mg l?1, was recorded in the middle of the winter period when rainfall intensities are high and headwater slopes are ploughed and thus bare. Strong seasonal contrasts of baseflow dynamics associated with different degrees of dilution provide a large scatter in SSC and in the derived rating curves, reflecting that other factors control the supply of suspended sediment. Multiple regression models identify rainfall intensity as the most significant variable in sediment supply. However, under baseflow conditions, physical and biological processes generate sediment in the channel that is subsequently removed during high flow. In contrast, when baseflow is not present, rainfall intensity is the only process that supplies sediment to the channel, mostly from hillslopes. Considering the study period as average in terms of total annual rainfall and intensities, suspended sediment yields were an order of magnitude lower than those obtained in other Mediterranean catchments, a factor that can be related to the historical use of soil conservation practices. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The sediment saturation recovery process (i.e. the adaptation of suspended sediment concentration [SSC] to local forcing) is the main feature of the non‐equilibrium suspended sediment transport (SST) frequently occurring in fluvial, estuarine and coastal waters. In order to quantitatively describe this phenomenon, a series solution is analytically derived, including the evolution of both vertical SSC profile and near‐bed sediment flux (NBSF), and is verified by net erosion and net deposition experiments, respectively. The results suggest that the sediment saturation recovery process involves vertically varying fluxes that are not represented correctly by depth‐averaging. Consequently, a vertical two‐dimensional (2D) combined scheme is established and applied respectively in to a dredged trench and to a sand wave feature to demonstrate this argument. By analyzing the variations of the calculated depth‐averaged SSC and NBSF we reveal that the equilibrium state presented by the sediment carrying capacity (SCC) form of the NBSF, which is usually applied in depth‐integrated SST models, lags behind the actual dynamic bed equilibrium state. Moreover, the key factor α, the so‐called saturation recovery coefficient within this form, is not only a function of local Rouse number but also is influenced by the local SSC profile. Finally, a three‐dimensional (3D) non‐orthogonal curvilinear body‐fitted SST model is developed and validated in the Yangtze estuary, China, combined with the in situ hourly hydrographic data from August 14–15, 2007 during spring tide in the wet season. Model results confirm that the vertically varying sediment saturation recovery process, the discrepancies between the actual and SCC form of NBSF and non‐constant value of α are significant in actual real geomorphic cases. The quantitative morphological change resulting from variations in environmental conditions may not be correctly represented by uncorrected depth‐integrated SST models if they do not treat the effects of vertical motion on the sediment saturation recovery process. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Observations of suspended sediment concentration and discharge at two sites on the proglacial river network draining from a predominantly cold-based, High-Arctic glacier (Austre Brøggerbreen) are described. Analysis of these observations illustrates: (i) the relatively low suspended sediment yield from this basin in comparison with many other glacier basins reported in the open literature; (ii) sustained and possibly increasing availability of suspended sediment to the fluvial system as the ablation season progresses; and (iii) the role of the proglacial sandur as both a sediment source and sink. Field observations coupled with the results of the data analysis are used to make inferences concerning the changing nature and relative importance of sediment sources within the basin. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
In wind‐driven rains, wind velocity and direction are expected to affect not only energy input of rains but also shallow ?ow hydraulics by changing roughness induced by raindrop impacts with an angle on ?ow and the unidirectional splashes in the wind direction. A wind‐tunnel study under wind‐driven rains was conducted to determine the effects of horizontal wind velocity and direction on sediment transport by the raindrop‐impacted shallow ?ow. Windless rains and the rains driven by horizontal wind velocities of 6 m s?1, 10 m s?1, and 14 m s?1 were applied to three agricultural soils packed into a 20 by 55 cm soil pan placed on both windward and leeward slopes of 7 per cent, 15 per cent, and 20 per cent. During each rainfall application, sediment and runoff samples were collected at 5‐min intervals at the bottom edge of the soil pan with wide‐mouth bottles and were determined gravimetrically. Based on the interrill erosion mechanics, kinetic energy ?ux (Ern) as a rainfall parameter and product of unit discharge and slope in the form of qbSco as a ?ow parameter were used to explain the interactions between impact and ?ow parameters and sediment transport (qs). The differential sediment transport rates occurred depending on the variation in raindrop trajectory and rain intensity with the wind velocity and direction. Flux of rain energy computed by combining the effects of wind on the velocity, frequency, and angle of raindrop impact reasonably explained the characteristics of wind‐driven rains and acceptably accounted for the differences in sediment delivery rates to the shallow ?ow transport (R2 ≥ 0·78). Further analysis of the Pearson correlation coef?cients between Ern and qSo and qs also showed that wind velocity and direction signi?cantly affected the hydraulics of the shallow ?ow. Ern had a smaller correlation coef?cient with the qs in windward slopes where not only reverse splashes but also reverse lateral raindrop stress with respect to the shallow ?ow direction occurred. However, Ern was as much effective as qSo in the sediment transport in the leeward slopes where advance splashes and advance lateral raindrop stress on the ?ow occurred. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
The major goals of this study were to determine stream bed sediment erosion/deposition rates, sediment age, percent ‘new’ sediment, and suspended sediment origin during two storm events of contrasting magnitudes (11.9 mm over 5 h and 58.9 mm over 39 h) using fallout radionuclides (excess lead 210 – 210Pbxs and beryllium 7 – 7Be) and link the nature and type of sediment source contributions to potential phosphorus (P) off‐site transport. The study was conducted in cropland‐dominated and mixed land use subwatersheds in the non‐glaciated Pleasant Valley watershed (50 km2) in South Central Wisconsin. Fine sediment deposition and erosion rates on stream beds varied from 0.76 to 119.29 mg cm?2 day?1 (at sites near the watershed outlet) and 1.72 to 7.72 mg cm?2 day?1 (at sites in the headwaters), respectively, during the two storm events. The suspended sediment age ranged from 123 ± 12 to 234 ± 33 days during the smaller storm event; however, older sediment was more prevalent (p = 0.037) in the streams during the larger event with suspended sediment age ranging from 226 ± 9 to 322 ± 114 days. During the small and large storm event, percent new sediment in suspended sediment ranged from 5.3 ± 2.1 to 21.0 ± 2.9% and 5.3 ± 2.7 to 6.7 ± 5.7%, respectively. In the cropland‐dominated subwatershed, upland soils were the major source of suspended sediment, whereas in the mixed land use subwatershed, both uplands and stream banks had relatively similar contributions to suspended sediment. In‐stream (suspended and bed) sediment P levels ranged from 703 ± 193 to 963 ± 84 mg kg?1 during the two storm events. The P concentrations in suspended and bed sediment were reflective of the dominant sediment source (upland or stream bank or mixed). Overall, sediment transport dynamics showed significant variability between subwatersheds of different land use characteristics during two contrasting storm events. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Bedload transport data from planebed and step‐pool reach types are used to determine grain size transport thresholds for selected upland streams in southeast Australia. Morphological differences between the reach types allow the effects of frictional losses from bedforms, microtopography and bed packing to be incorporated into the dimensionless critical shear stress value. Local sediment transport data are also included in a regime model and applied to mountain streams, to investigate whether empirical data improve the delineation of reach types on the basis of dimensionless discharge per unit width (q*) and dimensionless bedload transport (qb*). Instrumented planebed and step‐pool sites are not competent to transport surface median grains (D50s) at bankfull discharge (Qbf). Application of a locally parametrized entrainment equation to the full range of reach types in the study area indicates that the majority of cascades, cascade‐pools, step‐pools and planebeds are also not competent at Qbf and require a 10 year recurrence interval flood to mobilize their D50s. Consequently, the hydraulic parameters of the regime diagram, which assume equilibrium conditions at bankfull, are ill suited to these streams and provide a poor basis of channel delineation. Modifying the diagram to better reflect the dominant transported bedload size (equivalent to the D16 of surface sediment) made only slight improvements to reach delineation and had greatest effect on the morphologies with smaller surface grain sizes such as forced pool‐riffles and planebeds. Likewise, the Corey shape factor was incorporated into the regime diagram as an objective method for adjusting a base dimensionless critical shear stress (τ*c50b) to account for lithologically controlled grain shape on bed packing and entrainment. However, it too provided only minor adjustments to reach type delineation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The behaviour of a discrete sub‐bank‐full flow event in a small desert stream in western NSW, Australia, is analysed from direct observation and sediment sampling during the flow event and from later channel surveys. The flow event, the result of an isolated afternoon thunderstorm, had a peak discharge of 9 m3/s at an upstream station. Transmission loss totally consumed the flow over the following 7·6 km. Suspended sediment concentration was highest at the flow front (not the discharge peak) and declined linearly with the log of time since passage of the flow front, regardless of discharge variation. The transmission loss responsible for the waning and eventual cessation of flow occurred at a mean rate of 13.2% per km. This is quite rapid, and is more than twice the corresponding figure for bank‐full flows estimated by Dunkerley (1992) on the same stream system. It is proposed that transmission losses in ephemeral streams of the kind studied may be minimized in flows near bank‐full stage, and be higher in both sub‐bank‐full and overbank flows. Factors contributing to enhanced flow loss in the sub‐bank‐full flow studied included abstractions of flow to pools, scour holes and other low points along the channel, and overflow abstractions into channel filaments that did not rejoin the main flow. On the other hand, losses were curtailed by the shallow depth of banks wetted and by extensive mud drapes that were set down over sand bars and other porous channel materials during the flow. Thus, in contrast with the relatively regular pattern of transmission loss inferred from large floods, losses from low flows exhibit marked spatial variability and depend to a considerable extent on streamwise variations in channel geometry, in addition to the depth and porosity of channel perimeter sediments. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
Soil erosion models are essential tools for the successful implementation of effective and adapted soil conservation measures on agricultural land. Therefore, models are needed that predict sediment delivery and quality, give a good spatial representation of erosion and deposition and allow us to account for various soil conservation measures. Here, we evaluate how well a modified version of the spatially distributed multi‐class sediment transport model (MCST) simulates the effectiveness of control measures for different event sizes. We use 8 year runoff and sediment delivery data from two small agricultural watersheds (0·7 and 3·7 ha) under optimized soil conservation. The modified MCST model successfully simulates surface runoff and sediment delivery from both watersheds; one of which was dominated by sheet and the other was partly affected by rill erosion. Moreover, first results of modelling enrichment of clay in sediment delivery are promising, showing the potential of MCST to model sediment enrichment and nutrient transport. In general, our results and those of an earlier modelling exercise in the Belgian Loess Belt indicate the potential of the MCST model to evaluate soil erosion and deposition under different agricultural land uses. As the model explicitly takes into account the dominant effects of soil‐conservation agriculture, it should be successfully applicable for soil‐conservation planning/evaluation in other environments. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号