首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Abstract

Flood hazard maps were developed using remote sensing (RS) data for the historical event of the 1988 flood with data of elevation height, and geological and physiographic divisions. Flood damage depends on the hydraulic factors which include characteristics of the flood such as the depth of flooding, rate of the rise in water level, propagation of a flood wave, duration and frequency of flooding, sediment load, and timing. In this study flood depth and “flood-affected frequency” within one flood event were considered for the evaluation of flood hazard assessment, where the depth and frequency of the flooding were assumed to be the major determinant in estimating the total damage function. Different combinations of thematic maps among physiography, geology, land cover and elevation were evaluated for flood hazard maps and a best combination for the event of the 1988 flood was proposed. Finally, the flood hazard map for Bangladesh and a flood risk map for the administrative districts of Bangladesh were proposed.  相似文献   

2.
Abstract

This study contributes to the comprehensive assessment of flood hazard and risk for the Phrae flood plain of the Yom River basin in northern Thailand. The study was carried out using a hydrologic–hydrodynamic model in conjunction with a geographic information system (GIS). The model was calibrated and verified using the observed rainfall and river flood data during flood seasons in 1994 and 2001, respectively. Flooding scenarios were evaluated in terms of flooding depth for events of 25-, 50-, 100- and 200-year return periods. An impact-based hazard estimation technique was applied to assess the degree of hazard across the flood plain. The results showed that 78% of the Phrae flood-plain area of 476 km2 in the upper Yom River basin lies in the hazard zone of the 100-year return-period flood. Risk analyses were performed by incorporating flood hazard and the vulnerability of elements at risk. Based on relative magnitude of risk, flood-prone areas were divided into low-, moderate-, high- and severe-risk zones. For the 100-year return-period flood, the risk-free area was found to be 22% of the total flood plain, while areas under low, medium, high and severe risk were 33, 11, 28 and 6%, respectively. The outcomes are consistent with overall property damage recorded in the past. The study identifies risk areas for priority-based flood management, which is crucial when there is a limited budget to protect the entire risk zone simultaneously.

Citation Tingsanchali, T. & Karim, F. (2010) Flood-hazard assessment and risk-based zoning of a tropical flood plain: case study of the Yom River, Thailand. Hydrol. Sci. J. 55(2), 145–161.  相似文献   

3.
洪水风险=灾害事件×暴露程度×脆弱程度   总被引:2,自引:0,他引:2  
Wolfgang KRON 《湖泊科学》2003,15(Z1):190-204
世界上,洪水可能是造成损失最大的自然灾害.世界上没有哪个地区不受到洪水的威助、由于洪灾风险是灾害事件、洪泛区财产遭遇风险的程度,以及它们的脆弱性的函数,所以灾害损失的增长与上述各个方面的变化都有关.防洪措施可以减少灾害事件的频率,恰当的预防措施也能显著降低财产风险.然而除了公共措施和私人措施外,在减少私人、企业、甚至整个社会的风险方面,保险发挥着关键作用.近年来,对洪水保险的需求日益增长,促使保险公司必须采取适当的解决方案.与此同时,至关重要的是,保险公司应当清楚在极端情况下他们自己可能承担的最大损失.  相似文献   

4.
In northern regions, river ice‐ jam flooding can be more severe than open‐water flooding causing property and infrastructure damages, loss of human life and adverse impacts on aquatic ecosystems. Very little has been performed to assess the risk induced by ice‐related floods because most risk assessments are limited to open‐water floods. The specific objective of this study is to incorporate ice‐jam numerical modelling tools (e.g. RIVICE, Monte‐Carlo simulation) into flood hazard and risk assessment along the Peace River at the Town of Peace River (TPR) in Alberta, Canada. Adequate historical data for different ice‐jam and open‐water flooding events were available for this study site and were useful in developing ice‐affected stage‐frequency curves. These curves were then applied to calibrate a numerical hydraulic model, which simulated different ice jams and flood scenarios along the Peace River at the TPR. A Monte‐Carlo analysis was then carried out to acquire an ensemble of water level profiles to determine the 1 : 100‐year and 1 : 200‐year annual exceedance probability flood stages for the TPR. These flood stages were then used to map flood hazard and vulnerability of the TPR. Finally, the flood risk for a 200‐year return period was calculated to be an average of $32/m2/a ($/m2/a corresponds to a unit of annual expected damages or risk). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Flood hazard maps used to inform and build resilience in remote communities in the Terai region of southern Nepal are based on outdated and static digital elevation models (DEMs), which do not reflect dynamic river configuration or hydrology. Episodic changes in river course, sediment dynamics, and the distribution of flow down large bifurcation nodes can modify the extent of flooding in this region, but these processes are rarely considered in flood hazard assessment. Here, we develop a 2D hydrodynamic flood model of the Karnali River in the Terai region of west Nepal. A number of scenarios are tested examining different DEMs, variable bed elevations to simulate bed aggradation and incision, and updating bed elevations at a large bifurcation node to reflect field observations. By changing the age of the DEM used in the model, a 9.5% increase in inundation extent was observed for a 20-year flood discharge. Reducing horizontal DEM resolution alone resulted in a <1% change. Uniformly varying the bed elevation led to a 36% change in inundation extent. Finally, changes in bed elevation at the main bifurcation to reflect observed conditions resulted in the diversion of the majority of flow into the west branch, consistent with measured discharge ratios between the two branches, and a 32% change in inundation extent. Although the total flood inundation area was reduced (−4%), there was increased inundation along the west bank. Our results suggest that regular field measurements of bed elevation and updated DEMs following large sediment-generating events, and at topographically sensitive areas such as large river bifurcations, could help improve model inputs in future flood prediction models. This is particularly important following flood events carrying large sediment loads out of mountainous regions that could promote bed aggradation and channel switching across densely populated alluvial river systems and floodplains further downstream. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

6.
ABSTRACT

In this study, a GIS-based integration of multi-criteria analysis and the Height Above Nearest Drainage (HAND) terrain model was adopted to delineate potential flood hazard zones and vulnerability of the Ogun River Basin, Nigeria. Flood causative factors were used as input for multi-criteria analysis using an analytical hierarchy process (AHP) and weighted overlay in ArcGIS 10.5 to generate potential flood hazard zones. The flood hazard map was overlaid with demographic population data to identify areas where vulnerable people and assets are located. The results show the varying degree of people’s susceptibility to flood hazards. Flood hazard zones were classified into Very High, High, Moderate, Low and Very Low, with area coverage of 1269.40, 14139.50, 7188.40, 17.41 and 0.85 km2, respectively (occupied by 466 290, 355 542, 69 554, 231 and 54 people, respectively). This study serves as a preliminary guide for early warning and policy decision-making for flood disaster risk reduction.  相似文献   

7.
The Mekong floodplains, which encompasses the region from Kratie Township in Central Cambodia to the Vietnamese East Sea, is a region of globally renown agricultural productivity and biodiversity. The construction of 135 dams across the Mekong basin and the development of delta‐based flood prevention systems have caused public concern given possible threats on the stability of agricultural and ecological systems in the floodplains. Mekong dams store water upstream and regulate flow seasonality, while in situ flood prevention systems re‐distribute water retention capacity in the floodplains. The main aim of this paper is to evaluate possible impacts of the recent development of both hydropower dams and flood prevention systems on hydrological regimes in the Mekong floodplains. An analysis of measured daily and hourly water level data for key stations in the Mekong floodplains from Kratie to the river mouth in Vietnam was conducted. Hydropower dam information was obtained from the hydropower database managed by the Mekong River Commission, and the MODIS satellite imagery was used to detect changes in flooding extent related to the operation of flood prevention systems in the Vietnam Mekong Delta. Results indicate that the upper part of the floodplains, the Cambodian floodplains, may buffer upstream dam impacts to the Vietnam Mekong Delta. Flood prevention up to date has had the greatest effect on the natural hydrological regime of the Mekong floodplains, evidenced by a significant increase of water level rise and fall rates in the upper delta and causing water levels in the middle delta to increase. The development of flood prevention systems has also effected spatial distribution of flooding as indicated via a time series analysis of satellite imagery. While this development leads to increase localized agricultural productivity, our historical data analysis indicates that development of one region detrimentally affects other regions within the delta, which could increase the risk of future conflicts among regions, economic sectors and the ecological value of these important floodplains. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

A global flood risk index (FRI) is established, based on both natural and social factors. The advanced flood risk index (AFRI) is the expectation of damage in the case of a single flood occurrence, estimated by a linear regression-based approach as a function of hazard and vulnerability metrics. The resulting equations are used to predict potential flood damage given gridded global data for independent variables. It is new in the aspect that it targets floods by units of events, instead of a long-term trend. Moreover, the value of the AFRI is that it can express relative potential flood risk with the process of flood damage occurrence considered. The significance of this study is that not only the hazard parameters which contribute directly to flood occurrence, but vulnerability parameters which reflect the conditions of the region where flood occurred, including its residential and social characteristics, were shown quantitatively to affect flood damage.

Citation Okazawa, Y., Yeh, P., Kanae, S. & Oki, T. (2011) Development of a global flood risk index based on natural and socioeconomic factors. Hydrol. Sci. J. 56(5), 789–804.  相似文献   

9.
Effects of agricultural land management practices on surface runoff are evident at local scales, but evidence for watershed‐scale impacts is limited. In this study, we used the Soil and Water Assessment Tool model to assess changes in downstream flood risks under different land uses for the large, intensely agricultural, Raccoon River watershed in Iowa. We first developed a baseline model for flood risk based on current land use and typical weather patterns and then simulated the effects of varying levels of increased perennials on the landscape under the same weather patterns. Results suggest that land use changes in the Raccoon River could reduce the likelihood of flood events, decreasing both the number of flood events and the frequency of severe floods. The duration of flood events were not substantially affected by land use change in our assessment. The greatest flood risk reduction was associated with converting all cropland to perennial vegetation, but we found that converting half of the land to perennial vegetation or extended rotations (and leaving the remaining area in cropland) could also have major effects on reducing downstream flooding potential. We discuss the potential costs of adopting the land use change in the watershed to illustrate the scale of subsidies required to induce large‐scale conversion to perennially based systems needed for flood risk reduction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The aim of this study is to promote appropriate land development policies and to improve operations of flood risk in urban areas. This study first illustrated a multi-parameter flood hazard index (FHI) model for assessing potential flood risk areas in the Guanzhong Urban Area (GUA), a large-scale urban area in northwestern China. The FHI model consisted of the following seven parameters: rainfall intensity, flow accumulation, distance from the river network, elevation, land use, surface slope, and geology. The parameter weights were assigned using an analytical hierarchy process and the sum weight of the first three parameters accounted for 71.21% of the total weight and had significant influence on flooding. By combining with population factor, the FHI model was modified to estimate the flood control area in the GUA. The spatial distribution of the flood risk was obviously different in the flood hazard area and flood control area. The very low risk and medium risk area in the flood control area increased by 11.19% and reduced by 9.03% compared to flood hazard area, but there were no obvious differences in other levels of risk areas. The flood control assessment indicated that very high flood risk areas were principally concentrated along river banks (the Weihe River and its tributaries) and in the middle of the Guanzhong Plain. Land use and population distribution are related to flooding. Especially, forestland was located in 84.48% of the very low risk area, while low risk areas were mainly located in 91.49% of high population dispersion area.  相似文献   

11.
On the basis of the disaster system theory and comprehensive analysis of flood risk factors, including the hazard of the disaster-inducing factors and disaster-breeding environment, as well as the vulnerability of the hazards-bearing bodies, the primary risk assessment index system of flood diversion district as well as its assessment standards were established. Then, a new model for comprehensive flood risk assessment was put forward in this paper based on set pair analysis (SPA) and variable fuzzy sets (VFS) theory, named set pair analysis-variable fuzzy sets model (SPA-VFS), which determines the relative membership degree function of VFS by using SPA method and has the advantages of intuitionist course, simple calculation and good generality application. Moreover, the analytic hierarchy process (AHP) was combined with trapezoidal fuzzy numbers to calculate the weights of assessment indices, thus the weights for flood hazard and flood vulnerability were determined by the fuzzy AHP procedure, respectively. Then SPA-VFS were applied to calculate the flood hazard grades and flood vulnerability grades with rank feature value equation and the confidence criterion, respectively. Under the natural disasters risk expression recommended by the Humanitarian Affairs Department of United Nations, flood risk grades were achieved from the flood hazard grades and flood vulnerability grades with risk grade classification matrix, where flood hazard, flood vulnerability and flood risk were all classified into five grades as very low, low, medium, high and very high. Consequently, integrated flood risk maps could be carried out for flood risk management and decision-making. Finally, SPA-VFS and fuzzy AHP were employed for comprehensive flood risk assessment of Jingjiang flood diversion district in China, and the computational results demonstrate that SPA-VFS is reasonable, reliable and applicable, thus has bright prospects of application for comprehensive flood risk assessment, and moreover has potential to be applicable to comprehensive risk assessment of other natural disasters with no much modification.  相似文献   

12.
Abstract

The Easter 1998 flood was the largest flood event in the gauged record of many basins of the English Midlands. Flood frequency analysis, using such gauged records only, placed the 1998 event at a return period of over 100 years on several basins. However a review of historical (pre-gauged) flooding on some rivers gives a different perspective. Examples are given of the use of historical flood information on the River Leam, the River Wreake at Melton Mowbray, the River Sence (tributary to the River Soar) and the River Frome at Stroud. The cost of acquiring such historical flood data is trivial in comparison to gauged data, but the benefits are demonstrated as significant. In particular, historical flood data provide a better basis for risk assessment and planning on flood plains through revised estimates of flood discharge and depth.  相似文献   

13.
Abstract

This paper presents a viable approach for flood management strategy in a river basin based on the European Floods Directive. A reliable flood management plan has two components: (a) a proper flood management strategy, and (b) the determination of the flood-hazard areas. A method to evaluate the benefits of a flood warning system is presented herein, as well as a method to estimate the flood-hazard areas. Six factors were considered in order to estimate the spatial distribution of the hazardous areas: flow accumulation, slope, land use, rainfall intensity, geology and elevation. The study area was divided into five regions characterized by different degrees of flood hazard ranging from very low to very high. The produced map of flood-hazard areas identifies the areas and settlements at high risk of flooding. The proposed methodology can be applied to any river basin and here was applied to the Koiliaris River basin in Greece.

Citation Kourgialas, N. N. & Karatzas, G. P. (2011) Flood management and a GIS modelling method to assess flood-hazard areas—a case study. Hydrol. Sci. J. 56(2), 212–225.  相似文献   

14.
Flood vulnerability assessment plays a key role in the area of risk management. Therefore, techniques that make this assessment more straightforward and at the same time improve the results are important. In this briefing, we present an automated calculation of a flood vulnerability index implemented through a web management interface (PHP) that enhances the ability of decision makers to strategically guide investment. To test the applicability of this methodology using this website, many case studies are required in order to cover the full range of cases in terms of scale such as river basin, subcatchment and urban area. This requires prompt solutions with large amounts of data and this has led to the development of this automated tool to help organize, monitor, process and compare the data of different case studies. The authors aim to create a network of knowledge between different institutions and universities in which this methodology is used. It is also hoped to encourage collaboration between the members of the network on managing flood vulnerability information and also promoting further studies on flood risk assessment at all scales. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Flood hazard maps at trans‐national scale have potential for a large number of applications ranging from climate change studies, reinsurance products, aid to emergency operations for major flood crisis, among others. However, at continental scales, only few products are available, due to the difficulty of retrieving large consistent data sets. Moreover, these are produced at relatively coarse grid resolution, which limits their applications to qualitative assessments. At finer resolution, maps are often limited to country boundaries, due to limited data sharing at trans‐national level. The creation of a European flood hazard map would currently imply a collection of scattered regional maps, often lacking mutual consistency due to the variety of adopted approaches and quality of the underlying input data. In this work, we derive a pan‐European flood hazard map at 100 m resolution. The proposed approach is based on expanding a literature cascade model through a physically based approach. A combination of distributed hydrological and hydraulic models was set up for the European domain. Then, an observed meteorological data set is used to derive a long‐term streamflow simulation and subsequently coherent design flood hydrographs for a return period of 100 years along the pan‐European river network. Flood hydrographs are used to simulate areas at risk of flooding and output maps are merged into a pan‐European flood hazard map. The quality of this map is evaluated for selected areas in Germany and United Kingdom against national/regional hazard maps. Despite inherent limitations and model resolution issues, simulated maps are in good agreement with reference maps (hit rate between 59% and 78%, critical success index between 43% and 65%), suggesting strong potential for a number of applications at the European scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Flood risk management is an essential responsibility of state governments and local councils to ensure the protection of people residing on floodplains. Globally, floodplains are under increasing pressure from growing populations. Typically, the engineering‐type solutions that are used to predict local flood magnitude and frequency based on limited gauging data are inadequate, especially in settings which experience high hydrological variability. This study highlights the importance of incorporating geomorphological understanding into flood risk management in southeast Queensland (SEQ), an area badly affected by extreme flood events in 2011 and 2013. The major aim of this study is to outline the hydrological and sedimentological characteristics of various ‘inundation surfaces’ that are typical of catchments in the sub‐tropics. It identifies four major inundation surfaces; within‐channel bench [Q ~ 2.33 yr average recurrence interval (ARI)]; genetic floodplain (Q = 20 yr ARI); hydraulic floodplain (20 yr < Q ≤ 200 yr ARI) and terrace (Q > 1000 yr ARI). These surfaces are considered typical of inundation areas within, and adjacent to, the large macrochannels common to this region and others of similar hydrological variability. An additional area within genetic floodplains was identified where flood surfaces coalesce and produce an abrupt reduction in channel capacity. This is referred to here as a Spill‐out Zone (SOZ). The associated vulnerability and risk of these surfaces is reviewed and recommendations made based on incorporating this geomorphological understanding into flood risk assessments. These recommendations recognize the importance to manage for risks associated with flow inundation and sediment erosion, delivery and deposition. The increasing availability of high resolution topographic data opens up the possibility of more rapid and spatially extensive assessments of key geomorphic processes which can readily be used to predict flood risk. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
我国东南沿海地区大多为一些中小流域,这些流域上游多建有水库工程,下游则为人口稠密的平原区,流域调蓄能力小,汇流时间短.同时,随着近年来城镇化快速发展,洪涝风险不断加大.因此,迫切需要开展水库下游不同暴雨重现期下的洪涝风险评估研究,以便为防洪决策提供技术支撑.为此,本文利用遥感、GIS、水文水动力学模型等相关技术方法,建立洪涝动态模拟模型来评估洪涝危险性;采用层次分析法和因子叠加法,从洪涝危险性和洪涝易损性两方面开展洪涝风险综合评估分析.研究表明,通过多学科与多技术手段相结合方法,来模拟预测不同暴雨重现期洪水动态淹没过程,再结合相关社会经济属性,可以有效地评估研究区洪涝灾害的风险,从而为水库调度及流域防洪减灾提供有力支撑.  相似文献   

18.
Flood modelling inputs used to create flood hazard maps are normally based on the assumption of data stationarity for flood frequency analysis. However, changes in the behaviour of climate systems can lead to nonstationarity in flood series. Here, we develop flood hazard maps for Ho Chi Minh City, Vietnam, under nonstationary conditions using extreme value analysis, a coupled 1D–2D model and high-resolution topographical data derived from LiDAR (Light Detection and Ranging) data. Our findings indicate that ENSO (El Niño Southern Oscillation) and PDO (Pacific Decadal Oscillation) influence the magnitude and frequency of extreme rainfall, while global sea-level rise causes nonstationarity in local sea levels, having an impact on flood risk. The detailed flood hazard maps show that areas of high flood potential are located along river banks, with 0.60 km2 of the study area being unsafe for people, vehicles and buildings (H5 zone) under a 100-year return period scenario.  相似文献   

19.
Impact assessment of urbanization on flood risk in the Yangtze River Delta   总被引:2,自引:0,他引:2  
The Yangtze River Delta region is the region with highest urbanization speed in China. In this study, 6 typical urbanization areas in Yangtze River Delta were selected as the objectives of study. Flood risk assessment index system was established based on the flood disaster formation mechanism, and analytic hierarchy process was utilized to define the weight of indices. The flood hazard, the exposure of disaster bearing body, the vulnerability of disaster bearing body and the comprehensive flood risk corresponding to three typical years in different urbanization stages, 1991, 2001 and 2006 were assessed. The results show that the flood hazard and the exposure of disaster bearing body in the 6 areas are all with an increasing trend in the process of urbanization, among which, the increasing trend of the exposure of disaster bearing body is especially obvious. Though the vulnerabilities of disaster bearing body in the 6 areas are all with decreasing trend owe to the enhancement of flood control and disaster mitigation capability, the comprehensive flood risks in the 6 areas increased as a whole, which would pose a serious threat to urban sustainable development. Finally, effective countermeasures for flood risk management of urbanization areas in Yangtze River Delta were put forward based on the assessment results.  相似文献   

20.
This paper investigates the development of flood hazard and flood risk delineations that account for uncertainty as improvements to standard floodplain maps for coastal watersheds. Current regulatory floodplain maps for the Gulf Coastal United States present 1% flood hazards as polygon features developed using deterministic, steady‐state models that do not consider data uncertainty or natural variability of input parameters. Using the techniques presented here, a standard binary deterministic floodplain delineation is replaced with a flood inundation map showing the underlying flood hazard structure. Additionally, the hazard uncertainty is further transformed to show flood risk as a spatially distributed probable flood depth using concepts familiar to practicing engineers and software tools accepted and understood by regulators. A case study of the proposed hazard and risk assessment methodology is presented for a Gulf Coast watershed, which suggests that storm duration and stage boundary conditions are important variable parameters, whereas rainfall distribution, storm movement, and roughness coefficients contribute less variability. The floodplain with uncertainty for this coastal watershed showed the highest variability in the tidally influenced reaches and showed little variability in the inland riverine reaches. Additionally, comparison of flood hazard maps to flood risk maps shows that they are not directly correlated, as areas of high hazard do not always represent high risk. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号