首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we use Richards Equation models of variably saturated soil and bedrock groundwater flow to investigate first-order patterns of the coupling between soil and bedrock flow systems. We utilize a Monte Carlo sensitivity analysis to identify important hillslope parameters controlling bedrock recharge and then model the transient response of bedrock and soil flow to seasonal precipitation. Our results suggest that hillslopes can be divided into three conceptual zones of groundwater interaction, (a) the zone of lateral unsaturated soil moisture accumulation (upper portion of hillslope), (b) the zone of soil saturation and bedrock recharge (middle of hillslope) and (c) the zone of saturated-soil lateral flow and bedrock groundwater exfiltration (bottom of hillslope). Zones of groundwater interaction expand upslope during periods of precipitation and drain downslope during dry periods. The amount of water partitioned to the bedrock groundwater system a can be predicted by the ratio of bedrock to soil saturated hydraulic conductivity across a variety of hillslope configurations. Our modelled processes are qualitatively consistent with observations of shallow subsurface saturation and groundwater fluctuation on hillslopes studied in our two experimental watersheds and support a conceptual model of tightly coupled shallow and deep subsurface circulation where groundwater recharge and discharge continuously stores and releases water from longer residence time storage.  相似文献   

2.
This study examined the variation in soil erodibility along hillslopes in a Prairie landscape. The soil loss produced by simulated rainfall on undisturbed soils was used as an index of relative soil erodibility. Relative erodibility, and several soil properties, were measured at the summit, shoulder, midslope footslope and toeslope of 11 slope transects in an area of cultivated grassland soils on hummocky glacial till. The variation of erodibility with slope position was statistically significant, and slope position explained about 40 per cent of the variation in the erodibility measurements. Erodibility was 14 per cent higher on the shoulder and midslope, and 21 per cent lower on the toeslope, than on the summit and footslope. Local variation in erodibility along slopes was considered to be an important control on patterns of soil erosion in the landscape. The variation of erodibility along the slopes reflected soil property trends. The greatest erodibility was associated with upper slope positions where soils tended to be shallow, coarse, poorly leached and low in organic matter, while lower erodibility was found at lower slope positions with deep, organic-rich and leached soils. Of the individual soil properties considered, silt and sand content were the most highly correlated with erodibility. The results, together with results from other studies, also suggest that net erosion and erodibility are positively related.  相似文献   

3.
The precise nature and effects of forest clearance, followed by a two to three year cycle of shifting cultivation and subsequent secondary re-growth, was observed in an area of lowland evergreen forest over cone karst topography in central Belize. The surface soil properties varied in their response to disturbance but a number of significant changes were measured by comparing the pre-clearance and post-cultivation soil analyses. Four groups of soil properties were identified: (1) organic properties which suffered a marked decrease over the summit and upper slope areas and which showed a tendency to increase towards the foot, (2) alkaline status which demonstrated an increase on the upper slopes, (3) nutrient cations whose levels, from more limited evidence, were generally lower after clearance, particularly in the summit and upper slope areas, and (4) soil physical properties, where both the fine fraction and soil depth were drastically affected by clearance; the proportion of clay diminished on the upper slopes and increased at the footslope zone whilst soil depth thinned at the summit and increased markedly over the foreland. The scale of disturbance is so considerable that it has led to recommendations to limit cultivation and clearance pressure in these vulnerable environments.  相似文献   

4.
Through the delivery of water in snowmelt, climate should govern the rate and extent of saprolite formation in snow‐dominated mountain watersheds, yet the mechanisms by which water flows deeply into regolith are largely unexplored. In this study we link rainfall, snow depth, and water content data from both soil and shallow saprolite to document vadose zone dynamics in two montane catchments over 2 years. Measurements of snow pack thickness and soil moisture reveal strong contrasts between north‐ and south‐facing slopes in both the timing of meltwater delivery and the duration of significant soil wetting in the shallow vadose zone. Despite similar magnitudes of snowmelt recharge, north‐facing slopes have higher sustained soil moisture compared to south‐facing slopes. To help interpret these observations, we use a 2D numerical model of vadose zone dynamics to calculate the expected space–time moisture patterns on an idealized hillslope under two wetting scenarios: a single sustained recharge pulse versus a set of short pulses. The model predicts that the duration of the recharge event exerts a stronger control on the depth and residence time of water in the upper unsaturated zone than the magnitude of the recharge event. Model calculations also imply that water should move more slowly through the subsurface and downward water flux should be substantially reduced when water is applied in several pulses rather than in one sustained event. The results suggest that thicker soil and more deeply weathered rock on north‐facing slopes may reflect greater water supply to the deep subsurface. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Hydrodynamic characteristics of rill flow on steep slopes   总被引:4,自引:0,他引:4       下载免费PDF全文
Rill erosion is a dominant sediment source on sloping lands. However, the amount of soil loss from rills on steep slopes is vastly more than that on gentle slopes because of differences in rill shape and hydraulic patterns. The aims of this paper are to determine the hydrodynamic characteristics of rills and the friction coefficients in steep slope conditions and to propose modifications of some hydraulic parameters used in soil loss prediction models. A series of inflow experiments was conducted on loess slopes. The results show that the geometric and hydraulic properties of rill on the steep loess slopes, which are characterized by the mean width of cross sections, mean velocity and mean depth of flow, are related to discharge and slope gradient in power functions. However, the related exponents to discharge are 0.26, 0.48 and 0.26, respectively, which are different from the exponents derived in previous studies, which were conducted on gentle slopes. The Manning roughness coefficient ranged from 0.035 to 0.071, with an average of 0.0536, and the Darcy–Weisbach friction coefficients varied from 0.4 to 1.9. The roughness coefficients are closely related to the Reynolds numbers and flow volumes; however, the correlations vary with slope gradient. The roughness coefficients are directly proportional to the Reynolds number and the flow volume on steep slopes, in contrast with the roughness coefficients found on gentle slopes, which decrease as the Reynolds number and flow volume increase. This difference is caused by the interactions among the hydraulics of the flow, the shape of the rills and the sediment concentrations on steep slopes. The results indicate that parameters used in models to predict rill erosion have to be modified according to slope gradient. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Snowmelt water supplies streamflow and growing season soil moisture in mountain regions, yet pathways of snowmelt water and their effects on moisture patterns are still largely unknown. This study examined how flow processes during snowmelt runoff affected spatial patterns of soil moisture on two steep sub‐alpine hillslope transects in Rocky Mountain National Park, CO, USA. The transects have northeast‐facing and east‐facing aspects, and both extend from high‐elevation bedrock outcrops down to streams in valley bottoms. Spatial patterns of both snow depth and near‐surface soil moisture were surveyed along these transects in the snowmelt and summer seasons of 2008–2010. To link these patterns to flow processes, soil moisture was measured continuously on both transects and compared with the timing of discharge in nearby streams. Results indicate that both slopes generated shallow lateral subsurface flow during snowmelt through near‐surface soil, colluvium and bedrock fractures. On the northeast‐facing transect, this shallow subsurface flow emerged through mid‐slope seepage zones, in some cases producing saturation overland flow, whereas the east‐facing slope had no seepage zones or overland flow. At the hillslope scale, earlier snowmelt timing on the east‐facing slope led to drier average soil moisture conditions than on the northeast‐facing slope, but within hillslopes, snow patterns had little relation to soil moisture patterns except in areas with persistent snow drifts. Results suggest that lateral flow and exfiltration processes are key controls on soil moisture spatial patterns in this steep sub‐alpine location. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Giora J. Kidron 《水文研究》1999,13(11):1665-1682
Runoff is one of the main water sources responsible for water redistribution within a given ecosystem. Water redistribution is especially important in arid regions, and may be of great importance on sandy dunes, where the likelihood of runoff is low owing to the high infiltration rates of sand. Redistribution of water may significantly affect plant and animal distribution, and may explain vegetation patterns within an ecosystem. Runoff yield over sandy dune slopes in the western Negev Desert was measured under natural conditions during 1990–1994. The magnitude of runoff yield on different slope sections and on north and south exposures was established. The results demonstrate that while slope position controlled the microbiotic crust cover, crust cover and crust biomass controlled the amounts of runoff obtained. Whereas no runoff was measured on the upper dune sections devoid of crust, only meagre quantities were measured on the midslope sections, characterized by discontinuous crust cover. Substantially larger amounts were, however, obtained at the bottoms of the slopes, characterized by continuous crust cover. North‐facing slopes, usually characterized by a chlorophyll a content of 29–41 mg m−2, yielded on average 3·2 times more runoff than south‐facing footslopes, characterized by a 17 mg m−2 chlorophyll a content. Whereas microbiotic crust was found to be responsible for runoff generation, additional water supply owing to runoff may also explain the occurrence of a high biomass crust and the dense vegetation belt at the dune–interdune interface of the northern exposure, where runoff tends to collect. Thus, whereas crust may reduce infiltration in certain habitats, runoff generated by crust may also be responsible for the promotion of crust growth in other habitats. Runoff may also be used to promote vegetation growth at the dune footslopes. The possibility of using runoff to facilitate agroforestry is discussed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
Using hydraulic parameters is essential for describing soil detachment and developing physically based erosion prediction models. Many hydraulic parameters have been used, but the one that performs the best for describing soil detachment on steep slopes when the lateral expansion (widening) of rills is not limited has not been identified. An indoor concentrated flow scouring experiment was performed on steep loessial slopes to investigate soil detachment rates for different flow rates and slope gradients. The experiments were conducted on a slope‐adjustable plot (5 m length, 1 m width, 0.5 m depth). Sixteen combinations of 4 flow rates (10, 15, 20, and 25 L/min) and 4 slope gradients (17.6%, 26.8%, 36.4%, and 46.6%) were investigated. The individual and combined effects of slope gradient and flow hydraulic parameters on soil detachment rate were analysed. The results indicated that soil detachment rate increased with flow rate and slope gradient. Soil detachment rate varied linearly and exponentially with flow rate and slope gradient, respectively. Multivariate, nonlinear regression analysis indicated that flow depth exerted the greatest influence on the soil detachment rate, followed by unit discharge per unit width, slope gradient, and flow rate in this study. Shear stress and stream power could efficiently describe the soil detachment rate using a power equation. However, the unit stream power and unit energy of the water‐carrying section changed linearly with soil detachment rate. Stream power was an optimal hydraulic parameter for describing soil detachment. These findings improve our understanding of concentrated flow erosion on steep loessial slopes.  相似文献   

9.
We conducted an integrated groundwater–surface water monitoring programme in a 3.2‐km2 experimental catchment in the Scottish Highlands by sampling all springs, seepages, and wells in six, spatially extensive synoptic surveys over a 2‐year period. The catchment has been glaciated, with steep hillslopes and a flat valley bottom. There is around 70% glacial drift cover in lower areas. The solid geology, which outcrops at higher elevations, is granite and metamorphic schist. The springs and seepages generally occur at the contact between the solid geology and drift or at breaks of slopes in the valley bottom. Samples were analysed for stable isotopes, Gran alkalinity and electrical conductivity. Despite the surveys encompassing markedly different antecedent conditions, the isotopic composition of groundwater at each location exhibited limited temporal variability, resulting in a remarkable persistence of spatial patterns indicating well‐mixed shallow, groundwater stores. Moreover, line‐conditioned excess values derived from the isotope data indicated no evidence of fractionation affecting the groundwater, which suggests that most recharge occurs in winter. The alkalinity and electrical conductivity of groundwater reflected geological differences in the catchment, being highest where more weatherable calcareous rocks outcrop at higher altitudes in the catchment. Springs draining these areas also had the most variable isotope composition, which indicated that they have shorter residence times than the drift covered part of the catchment. The study showed that even in geologically heterogeneous upland catchments, groundwater can be characterized by a consistent isotopic composition, reflecting rapid mixing in the recharge zone. Our work, thus, emphasizes the critical role of groundwater in upland catchments and provides tracer data that can help constrain quantitative groundwater models.  相似文献   

10.
本文研究分析了多种因素对土质边坡地震稳定性的不同影响程度,认为影响作用较大的前8个因素分别为坡度、坡高、斜坡结构类型、降水、水系距离、黏聚力、内摩擦角和地震动参数.利用层次分析法计算各因素的影响权重,以综合性、操作性和适用性为原则,将影响权重较高的因素作为划分指标,将土质边坡划分为4大类,每大类中再根据坡度的大小划分为缓坡、缓陡坡、陡坡和急坡等4个亚类.划分结果可为地震作用下土质边坡稳定性的评价提供参考依据.   相似文献   

11.
12.
Longshan Zhao  Rui Hou  Faqi Wu 《水文研究》2019,33(22):2918-2925
Reservoir tillage (RT) improves the soil rainwater harvesting capacity and reduces soil erosion on cropland, but there is some debate regarding its effectiveness. The objective of this study was to further verify the effect of RT on soil erosion and explore the reasons for this effect by analysing microrelief changes during rainfall. Rainfall intensities of 60, 90, and 120 mm/hr and three slope degrees (5, 15, and 25°, representing gentle, medium, and steep slopes) were considered. A smooth surface (SS) served as the control. The microrelief changes were determined based on digital elevation models, which were measured using a laser scanner with a 2‐cm grid before and after rainfall events. The results showed that compared with the values for the SS, RT reduced both the runoff and sediment by approximately 10‐20% on the gentle slope; on the medium slope, although RT also reduced the runoff in the 90‐ and 120‐mm/hr intensity rainfall events, the sediment increased by 158.90% and 246.08%; on the steep slope, the sediment increased by 92.33 to 296.47%. Overall, when the runoff control benefit of RT was lower than 5%, there was no sediment control benefit. RT was effective at controlling soil loss on the gentle slopes but was not effective on the medium and steep slopes. This is because the surface depressions created by RT were filled in with sediment that eroded from the upslopes, and the surface microrelief became smoother, which then caused greater soil and water loss than that on an SS at the later rainfall stage.  相似文献   

13.
In order to evaluate the relationship between the apparent complexity of hillslope soil moisture and the emergent patterns of catchment hydrological behaviour and water quality, we need fine‐resolution catchment‐wide data on soil moisture characteristics. This study proposes a methodology whereby vegetation patterns obtained from high‐resolution orthorectified aerial photographs are used as an indicator of soil moisture characteristics. This enables us to examine a set of hypotheses regarding what drives the spatial patterns of soil moisture at the catchment scale (material properties or topography). We find that the pattern of Juncus effusus vegetation is controlled largely by topography and mediated by the catchment's material properties. Characterizing topography using the topographic index adds value to the soil moisture predictions relative to slope or upslope contributing area (UCA). However, these predictions depart from the observed soil moisture patterns at very steep slopes or low UCAs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
We measured deuterium excess (d = δD ? 8δ18O) in throughfall, groundwater, soil water, spring water, and stream water for 3 years in a small headwater catchment (Matsuzawa, 0·68 ha) in the Kiryu Experimental Watershed in Japan. The d value represents a kinetic effect produced when water evaporates. The d value of the throughfall showed a sinusoidal change (amplitude: 6·9‰ relative to Vienna standard mean ocean water (V‐SMOW)) derived from seasonal changes in the source of water vapour. The amplitude of this sinusoidal change was attenuated to 1·3–6·9‰ V‐SMOW in soil water, groundwater, spring water, and stream water. It is thought that these attenuations derive from hydrodynamic transport processes in the subsurface and mixing processes at an outflow point (stream or spring) or a well. The mean residence time (MRT) of water was estimated from d value variations using an exponential‐piston flow model and a dispersion model. MRTs for soil water were 0–5 months and were not necessarily proportional to the depth. This may imply the existence of bypass flow in the soil. Groundwater in the hillslope zone had short residence times, similar to those of the soil water. For groundwater in the saturated zone near the spring outflow point, the MRTs differed between shallow and deeper groundwater; shallow groundwater had a shorter residence time (5–8 months) than deeper groundwater (more than 9 months). The MRT of stream water (8–9 months) was between that of shallow groundwater near the spring and deeper groundwater near the spring. The seasonal variation in the d value of precipitation arises from changes in isotopic water vapour composition associated with seasonal activity of the Asian monsoon mechanism. The d value is probably an effective tracer for estimating the MRT of subsurface water not only in Japan, but also in other East Asian countries influenced by the Asian monsoon. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The slope effects on sediment trapping process in vegetative filter strips (VFS) are usually neglected in current modelling practices for VFS operation, which hamper the VFS design and performance evaluation, especially on steep slopes. To fill the knowledge gap, 12 laboratory experiments of sediment trapping in VFS were conducted with three different inflow discharge (80, 100, and 120 ml s−1) and four slope angles (5,10, 15, and 20°). The experimental results show that, on steep slopes (10, 15, and 20°), a part of trapped sediment particles in VFS can be eroded again and then dragged to the downstream as bed load, whilst they do not move on gentle slope (5°). To describe the complex processes, a simple and effective modelling framework was developed for sloped VFS by coupling the slope infiltration, runoff, and modified sediment transport model. The model was tested against the experimental results and good agreements between the modelled and observed results were found in both runoff and sediment transport processes for all cases. On steep slopes, the sediment trapping performance of VFS decreases significantly because the erosion of deposited sediment particles can account for more than 60% of the sediment load in the outflow. The slope effect on sediment trapping efficiency of VFS varies greatly with soil, VFS, and slope properties. The model was compared with previous sediment transport equation and found that both methods can satisfactorily predict the sediment trapping of VFS on gentle slopes, but previous sediment transport equation is likely to overestimate the sediment trapping efficiency in VFS on steep slopes. This model is expected to provide a more realistic and accurate method for predicting runoff and sediment reduction in VFS on sloping surfaces.  相似文献   

16.
Soil erosion plays an important role in plant colonization of semi‐arid degraded areas. In this study, we aimed at deepening our knowledge of the mechanisms that control plant colonization on semi‐arid eroded slopes in east Spain by (i) determining topographic thresholds for plant colonization, (ii) identifying the soil properties limiting plant establishment and (iii) assessing whether colonizing species have specific plant traits to cope with these limitations. Slope angle and aspect were surrogates of erosion rate and water availability, respectively. Since soil erosion and water availability can limit plant establishment and both can interact in the landscape, we analysed variations in colonization success (vegetation cover and species number) with slope angle on 156 slopes, as a function of slope aspect. After determining slope angle thresholds for plant colonization, soil was sampled near the threshold values for soil analysis [nitrogen, phosphorous, calcium carbonate (CaCO3), water holding capacity]. Plant traits expressing the plant colonizing capacity were analysed both in the pool of species colonizing the steep slopes just below the threshold and in the pool of species inhabiting gentler slopes and absent from the slopes just below the threshold. Results show that the slope angle threshold for plant colonization decreased from north to south. For the vegetation cover, threshold values were 63°, 50°, 46°, 41° for the north, east, west and south slope aspect classes, respectively, and 65°, 53°, 49° and 45° for the species richness and the same aspect classes. No differences existed in soil properties at slope angle threshold values among slope aspects and between slope positions (just below and above the threshold) within slope aspect classes. This suggests that variations between slope aspect classes in the slope angle threshold result from differences in the colonizing capacity of plants which is controlled by water availability. Long‐distance dispersal and mucilage production were preferably associated with the pool of colonizing species. These results are discussed in the perspective of a more efficient ecological restoration of degraded semi‐arid ecosystems where soil erosion acts as an ecological filter for plant establishment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Snow distribution patterns are still poorly understood in steep alpine catchments because of mass redistribution from wind and avalanching. Snow models rarely operate with sufficient resolution, physics or input data to resolve this issue explicitly, and existing sub-grid parameterisations are rarely tested in this type of terrain. To address this issue daily snow cover observations, obtained from a ground-based camera, are combined with a snow melt model to estimate the spatial distribution of snow water equivalent (SWE) in a mountainous alpine catchment. Results show the importance of slope in controlling the spatial distribution of SWE and snow duration. This distribution is linked to the physical process of gravitational transport, where there is removal of snow from steep slopes and preferential deposition on moderate-angle slopes. From a modelling perspective, if sub-grid snow variability is parameterised using a log-normal probability distribution (as is common in hydrological and land-use models) then ignoring steep/shallow slope differences leads to an overestimation of melt at the beginning of the melt season, and a premature end to the snow melt season. When modelling SWE in complex terrain, care should be taken to consider reduced SWE on steep slopes.  相似文献   

18.
Mountainous areas are characterized by steep slopes and rocky landforms, with hydrological conditions varying rapidly from upstream to downstream, creating variable interactions between groundwater and surface water. In this study, mechanisms of groundwater–surface water interactions within a headwater catchment of the North China Plain were assessed along the stream length and during different seasons, using hydrochemical and stable isotope data, and groundwater residence times estimated using chlorofluorocarbons. These tracers indicate that the river is gaining, due to groundwater discharge in the headwater catchment both in the dry and rainy seasons. Residence time estimation of groundwater using chlorofluorocarbons data reveals that groundwater flow in the shallow sedimentary aquifer is dominated by the binary mixing of water approximating a piston flow model along 2 flow paths: old water, carried by a regional flow system along the direction of river flow, along with young water, which enters the river through local flow systems from hilly areas adjacent to the river valley (particularly during the rainy season). The larger mixing ratio of young water from lateral groundwater recharge and return flow of irrigation during the rainy season result in higher ion concentrations in groundwater than in the dry season. The binary mixing model showed that the ratio of young water versus total groundwater ranged from 0.88 to 0.22 and 1.0 to 0.74 in the upper and lower reaches, respectively. In the middle reach, meandering stream morphology allows some loss of river water back into the aquifer, leading to increasing estimates of the ratio of young water (from 0.22 to 1). This is also explained by declining groundwater levels near the river, due to groundwater extraction for agricultural irrigation. The switch from a greater predominance of regional flow in the dry season, to more localized groundwater flow paths in the wet season is an important groundwater–surface water interactions mechanism, with important catchment management implications.  相似文献   

19.
In the Colorado Front Range, forested catchments near the rain–snow transition are likely to experience changes in snowmelt delivery and subsurface water transport with climate warming and associated shifts in precipitation patterns. Snowpack dynamics are strongly affected by aspect: Lodgepole pine forested north‐facing slopes develop a seasonal snowpack, whereas Ponderosa pine‐dotted south‐facing slopes experience intermittent snow accumulation throughout winter and spring. We tested the degree to which these contrasting water input patterns cause different near‐surface hydrologic response on north‐facing and south‐facing hillslopes during the snowmelt period. During spring snowmelt, we applied lithium bromide (LiBr) tracer to instrumented plots along a north–south catchment transect. Bromide broke through immediately at 10‐ and 30‐cm depths on the north‐facing slope and was transported out of soil waters within 40 days. On the south‐facing slope, Br? was transported to significant depths only during spring storms and remained above the detection limit throughout the study. Modelling of unsaturated zone hydrologic response using Hydrus‐1D corroborated these aspect‐driven differences in subsurface transport. Our multiple lines of evidence suggest that north‐facing slopes are dominated by connected flow through the soil matrix, whereas south‐facing slope soils experience brief periods of rapid vertical transport following snowmelt events and are drier overall than north‐facing slopes. These differences in hydrologic response were largely a function of energy‐driven differences in water supply, emphasizing the importance of aspect and climate forcing when considering contributions of water and solutes to streamflow in catchments near the snow line. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Water sources and flow paths contributing to stream chemistry were evaluated in four Japanese forested watersheds with steep topography (slopes ≥30°). Stream chemistry during periods without rainfall and during events with less than 100 mm of precipitation was similar to seepage water chemistry, but markedly different from that of soil water which had higher concentrations of NO3 and Ca2+ and lower concentrations of Na+ and HCO3. Also, stream Cl concentrations in a Cl‐treated watershed did not increase either during events with less than 100 mm of total rainfall or at baseflow conditions, even three years after the Cl treatment. These results suggest that groundwater within bedrock fissures of Paleozoic strata had a long residence time and was a major contributor to steam water under baseflow conditions and even during small precipitation events (≤100 mm). In contrast, for large precipitation events (≥100 mm), stream chemistry became more similar to soil water chemistry, especially within the steepest watershed. Also, for large precipitation events, stream Cl concentrations in the Cl‐treated watershed increased markedly. These results suggest that soil water was a major contributor to stream waters only during these large events. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号