首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Glacier‐fed river thermal regimes vary markedly in space and time; however, knowledge is limited on the fundamental processes controlling alpine stream temperature dynamics. To address the research gap, this study quantified heat exchanges at the water surface and bed of the Taillon glacier‐fed stream, French Pyrénées. Hydro‐meteorological observations were recorded at 15‐min intervals across two summer melt seasons (2010 and 2011), and energy balance components were measured or estimated based on site‐specific data. Averaged over both seasons, net radiation was the largest heat source (~80% of total flux); sensible heat (~13%) and friction (~3%) were also sources, while heat exchange across the channel–streambed interface was negligible (<1%). Latent heat displayed distinct interannual variability and contributed 5% in 2010 compared with 0.03% in 2011. At the sub‐seasonal scale, latent heat shifted from source to sink, possibly linked to the retreating valley snowline that changed temperature and humidity gradients. These findings represent the first, multiyear study of the heat exchange processes operating in a glacier‐fed stream, providing fundamental process understanding; the research highlights the direct control antecedent (winter) conditions that have on energy exchange and stream temperature during summer months. In particular, the timing and volume of snowfall/snowmelt can drive thermal dynamics by the following: (1) altering the length of the stream network exposed to the atmosphere and (2) controlling the volume and timing of cold water advection downstream. Finally, this study highlights the need to develop long‐term hydro‐meteorological monitoring stations to improve the understanding of these highly dynamic, climatically sensitive systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This study examined the influence of tidally‐induced oscillations of the beach water table in regulating beach surface moisture dynamics. A series of laboratory experiments were conducted to assess the influence of hysteresis and transient flow effects on surface moisture variability. The experimental apparatus utilized a column of well‐sorted fine sand partially immersed in a reservoir of water. The water level in the reservoir was raised and lowered via a diaphragm‐metering pump to simulate tidally induced fluctuations of the water table, and the moisture content profile within the column was monitored using an array of Delta‐T probes. Moisture contents at specific elevations within the column were utilized as proxies to represent various ‘surface’ elevations (relative to the high water table). Results indicate that surface moisture content behaves in a distinctly hysteretic manner. Examination of water flow scanning curves illustrated that for all surface elevations considered, higher moisture contents for a given pressure head occurred during the drying cycle than during the wetting cycle. This observation is particularly evident with shallow surface elevations (i.e. water table close to the surface) where the Haines Jump phenomenon was found to have a significant influence on moisture content dynamics. Additionally, an assessment of the accuracy of hysteretic and non‐hysteretic models to predict the measured moisture contents demonstrated that hysteretic simulations consistently provide a better representation of the observed moisture contents than non‐hysteretic simulations. A time lag was found between the respective maxima and minima in water table elevation surface moisture content. At the near surface water table positions the time lag ranged between 30 and 100 minutes, and it increased to 240 minutes (four hours) with the high water table at 60 cm below the surface. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号