首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
In this study, we aimed to clarify spatial variations in xylem sap flow, and to determine the impacts of these variations on stand‐scale transpiration (E) estimates. We examined circumferential and radial variations in sap flow velocity (Fd) measured at several directions and depths in tree trunks of black locust (Robinia pseudoacacia) and native oak (Quercus liaotungensis), both of which have ring‐porous wood anatomy, in forest stands on the Loess Plateau, China. We evaluated the impacts of circumferential variations in Fd on stand‐scale transpiration estimates using a simple scaling exercise. We found significant circumferential variations in Fd in the outermost xylem in both species (coefficients of variation = 20–45%). For both species, Fd measured at the inner xylem was smaller than that of the outermost xylem and the Fd at the depth of > 10 mm was almost zero. The simple exercises showed that omitting circumferential variations in Fd affected the E estimate by 16–21%, which was less than the effects of omitting within‐tree radial and tree‐to‐tree variations in Fd in both species. These results suggest that circumferential variations in Fd can be a minor source of error for E estimates compared with within‐tree radial and tree‐to‐tree variations in Fd, regardless of the significant circumferential variations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Field experiments were conducted to investigate the effects of leaf area index and soil moisture content on evapotranspiration and its components within an apple orchard in northwest China for 2 years. Evapotranspiration in the non‐rainfall period was estimated using two approaches: the soil water balance method based on tube‐type time‐domain reflection measurements, and sap flow plus micro‐lysimeter methods. The two methods were in good agreement, with differences usually less than 10%. The components of evapotranspiration varied with canopy development. During spring and autumn, soil evaporation was dominating as result of low leaf area index. In summer, plant transpiration became significant, with an average transpiration to evapotranspiration ratio of 0·87. The crop coefficient Kc showed a strong linear dependence on leaf area index. The water stress coefficient Ks was around 1·0 when soil moisture was above 23% and started to decrease linearly after that. This study demonstrates that prediction of evapotranspiration in apple orchards can be made using the Food and Agriculture Organization's crop coefficient method from commonly available meteorological data in the area. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
We investigated canopy transpiration and canopy conductance of peach trees under three irrigation patterns: fixed 1/2 partial root zone drip irrigation (FPRDI), alternate 1/2 partial root zone drip irrigation (APRDI) and full root zone drip irrigation (FDI). Canopy transpiration was measured using heat pulse sensors, and canopy conductance was calculated using the Jarvis model and the inversion of the Penman–Monteith equation. Results showed that the transpiration rate and canopy conductance in FPRDI and APRDI were smaller than those in FDI. More significantly, the total irrigation amount was greatly reduced, by 34·7% and 39·6%, respectively for APRDI and FPRDI in the PRDI (partial root zone drip irrigation) treatment period. The daily transpiration was linearly related to the reference evapotranspiration in the three treatments, but daily transpiration of FDI is more than that of APRDI and FPRDI under the same evaporation demand, suggesting a restriction of transpiration water loss in the APRDI and FPRDI trees. FDI needed a higher soil water content to carry the same amount of transpiration as the APRDI and FPRDI trees, suggesting the hydraulic conductance of roots of APRDI and FPRDI trees was enhanced, and the roots had a greater water uptake than in FDI when the average soil water content in the root zone was the same. By a comparison between the transpiration rates predicted by the Penman–Monteith equation and the measured canopy transpiration rates for 60 days during the experimental period, an excellent correlation along the 1:1 line was found for all the treatments (R2 > 0·80), proving the reliability of the methodology. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
This study emphasizes the importance of canopy drying time (CDT) after rainfall in a lowland tropical rain forest. In this study, we estimate CDT using sap flow velocities measured by a heat‐pulse method in an emergent tree in a lowland mixed‐dipterocarp forest. Estimated CDT (ECDT) for each rain event has been defined as the time from rainfall cessation to the specific time derived from the difference between diurnal courses of sap flow velocities on a rainy day versus bright days. ECDT could be derived for 22 rain events that were grouped into two types, depending on whether rainfall ceased before or after noon. The ECDTs were distributed more widely and with greater values when rainfall ceased before noon (Type 1) than after noon (Type 2). The ECDTs of both Type 1 and Type 2 decreased with increases in net radiation (Rn) and vapour pressure deficit (VPD) after rainfall. This result shows that ECDT is determined mainly by post‐rainfall evaporation rates. The sap flow velocity as a detector of canopy wetness worked out well because of the specific rainfall characteristics at this site. The practical limitations of the method using sap flow velocities are discussed in relation to rainfall characteristics and time lags between transpirations and sap flow velocities. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Estimating transpiration of the trees in agroforestry system is important in water management of the site. Sap flow of intercropped fast‐growing young poplar trees and microclimate factors in semiarid northeastern China was measured in two growing seasons (2008 and 2009). Sapwood growth and water storage of wood and leaf increment during the growing season were involved in the calculation of sap flow. The results showed that diurnal variation of sap flow followed to that of short wave solar radiation. Sap flows both in 10 min mean and daily gross values mainly depended on solar radiation and vapor pressure deficit, and the relations well fit hyperbolic function. The regression coefficients of monthly window data indicated that the seasonal variation of sap flow capacities decreased gradually from June to September. Moderate soil water stress of upper soil layer (0–50 cm) did not constrain the sap flow because the trees could use the water at deeper soil layer. The daily sap flow per tree ranged 0.8 to 18.1 and 3.7 to 23.8 kg d?1 tree?1, with averages of 8.7 and 14.3 kg d?1 tree?1 in 2008 and 2009 respectively. An empirical model was established to estimate the sap flow of the poplar trees by solar radiation, vapor pressure deficit, leaf area index and Julian days. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
We study the question of what difference it makes for the derived field-aligned conductance (K) values if one uses Maxwellian or kappa distributions for the fitting of low-orbiting satellite electron flux spectra in the auroral region. This question has arisen because sometimes a high-energy tail is seen in the spectra. In principle, the kappa fits should always be better, because the kappa distribution is a generalization of the Maxwellian. However, the physical meaning of the parameters appearing in the Maxwellian is clearer. It therefore makes sense to study under which circumstances it is appropriate to use a Maxwellian. We use Freja electron data (TESP and MATE) from two events. One of the events represents quiet magnetospheric conditions (stable arc) and the other represents disturbed conditions (surge). In these Freja events, at least, using kappa rather than Maxwellian fitting gives a better fit to the observed distribution, but the difference in K values is not large (usually less than 20%). The difference can be of either sign. However, sometimes even the kappa distribution does not provide a good fit, and one needs a more complicated distribution such as two Maxwellians. We investigate the relative contributions of the two Maxwellians to the total field-aligned conductance value in these cases. We find that the contribution of the high-energy population is insignificant (usually much less than 20%). This is because K is proportional to n/Ec Ec, where n is the source plasma density and Ec is the characteristic energy.  相似文献   

7.
 The Kalman filter is used in this paper as a framework for space time data analysis. Using Kalman filtering it is possible to include physically based simulation models into the data analysis procedure. Attention is concentrated on the development of fast filter algorithms to make Kalman filtering feasible for high dimensional space time models. The ensemble Kalman filter and the reduced rank square root filter algorithm are briefly summarized. A new algorithm, the partially orthogonal ensemble Kalman filter is introduced too. We will illustrate the performance of the Kalman filter algorithms with a real life air pollution problem. Here ozone concentrations in a part of North West Europe are estimated and predicted.  相似文献   

8.
9.
Soil moisture has a pronounced effect on earth surface processes. Global soil moisture is strongly driven by climate, whereas at finer scales, the role of non‐climatic drivers becomes more important. We provide insights into the significance of soil and land surface properties in landscape‐scale soil moisture variation by utilizing high‐resolution light detection and ranging (LiDAR) data and extensive field investigations. The data consist of 1200 study plots located in a high‐latitude landscape of mountain tundra in north‐western Finland. We measured the plots three times during growing season 2016 with a hand‐held time‐domain reflectometry sensor. To model soil moisture and its temporal variation, we used four statistical modelling methods: generalized linear models, generalized additive models, boosted regression trees, and random forests. The model fit of the soil moisture models were R2 = 0.60 and root mean square error (RMSE) 8.04 VWC% on average, while the temporal variation models showed a lower fit of R2 = 0.25 and RMSE 13.11 CV%. The predictive performances for the former were R2 = 0.47 and RMSE 9.34 VWC%, and for the latter R2 = 0.01 and RMSE 15.29 CV%. Results were similar across the modelling methods, demonstrating a consistent pattern. Soil moisture and its temporal variation showed strong heterogeneity over short distances; therefore, soil moisture modelling benefits from high‐resolution predictors, such as LiDAR based variables. In the soil moisture models, the strongest predictor was SAGA (System for Automated Geoscientific Analyses) wetness index (SWI), based on a 1 m2 digital terrain model derived from LiDAR data, which outperformed soil predictors. Thus, our study supports the use of LiDAR based SWI in explaining fine‐scale soil moisture variation. In the temporal variation models, the strongest predictor was the field‐quantified organic layer depth variable. Our results show that spatial soil moisture predictions can be based on soil and land surface properties, yet the temporal models require further investigation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Subsurface temperature is affected by heat advection due to groundwater flow and surface temperature changes. To evaluate their effects, it was implemented the measurements of temperature-depth profile (T-D profile) and the continuous monitoring of soil temperature in the southern part of Kamchatka which has not affected by human activity. Additionally, stable isotopic compositions of surface water and groundwater were analyzed. T-D profile and stable isotopic compositions show groundwater flow system is differ from the shallow aquifer to the deep aquifer. In the shallow aquifer, T-D profile suggests the existence of upward groundwater flux. On the other hand, the annual variation of soil temperature is divided into the large variation period (VP) and the stable period (SP) by the magnitude of daily and seasonal variation. VP and SP correspond to the summer and the winter season, respectively, and it considers that the difference between VP and SP is caused by the effect of snow cover. Therefore, the T-D profile is affected by not only upward groundwater flux but also the surface warming particularly in the summer season (VP).  相似文献   

12.
We present a methodology for identifying highly-localized flow channels embedded in a significantly less permeable medium using steady-state head and geometrical data. This situation is typical of fractured media where flows are often strongly channeled at the scales of interest (10 m–1 km). The objective is to identify both geometrical and hydraulic characteristics of the conducting structures. Channels are identified in decreasing order of importance by successive optimizations of an objective function. The identification strategy takes advantage of the hierarchical flow organization to restrict the dimension of the solution space of each individual optimization step. The characteristics of the secondary channels are strongly determined by the main flow channels. The latter are slightly modified by the secondary channels through the addition of a regularization term to the main channel characteristics in the objective function. As the objective function is strongly non-convex with numerous local minima, inversion is performed using a stochastic algorithm (simulated annealing). We assess the possibilities of the hierarchical identification strategy on simple synthetic steady-state flow configurations where hydraulic data are made up of 25 regularly spaced heads and of the boundary conditions. Those flow structures that are dominated by at most two simple channels can be identified with these head data only. Configurations comprising up to three complex and interconnected channels can still be identified with additional geometrical information including the distances of piezometers to their closest channel. The capabilities of the hierarchical identification strategy are limited to flow structures dominated by at most three equivalent flow channels. We finally discuss the perspectives of application of the method to transient-state data obtained on a more restricted number of piezometers.  相似文献   

13.
Groundwater flow-paths through shallow-perch and deep-regional basaltic aquifers at the Golan Heights, Israel, are reconstructed by using groundwater chemical and isotopic compositions. Groundwater chemical composition, which changes gradually along flow-paths due to mineral dissolution and water–rock interaction, is used to distinguish between shallow-perched and deep-regional aquifers. Groundwater replenishment areas of several springs are identified based on the regional depletion in rainwater δ18O values as a function of elevation (−0.25‰ per 100 m). Tritium concentrations assist in distinguishing between pre-bomb and post-bomb recharged rainwater.

It was found that waters emerging through the larger springs are lower in δ18O than surrounding meteoric water and poor in tritium; thus, they are inferred to originate in high-elevation regions up to 20 km away from their discharge points and at least several decades ago. These results verify the numerically simulated groundwater flow field proposed in a previous study, which considered the geological configuration, water mass balance and hydraulic head spatial distribution.  相似文献   


14.
A comparison of advective displacement probability distributions (flow propagators) obtained by nuclear magnetic resonance (NMR) experiment with both lattice Boltzmann (LB) and pore network (PN) simulations is presented. Here, we apply all three methods to the exact same sample for the first time: we consider water transport in a Bentheimer sandstone. The LB and PN simulations are based on X-ray micro-tomography (XMT) images of a small rock sample; the NMR experiments are conducted on a much larger rock core-plug from which the small rock sample originated. Despite the limited size of the simulation domains, good agreement is achieved between all three sets of results, verified quantitatively by comparison of the low order moments of the flow propagators. We are concerned primarily with validating the simulations at high liquid flow rates (>10 ml min−1) in high permeability sandstone, ultimately for future application to geological carbon sequestration studies. Under these conditions the LB simulation is found, as expected, to be more robust than the PN model due primarily to the reduced requirement to manually tune the simulation lattice to match the petro-physical properties of the rock.  相似文献   

15.
Five years of hydrogeological monitoring and field activities performed in the complex hydrogeological system of the Acque Albule basin (AAB) were conducted to define the hydrogeological setting, the relationship between deep and shallow aquifers and a conceptual groundwater flow model of this exploited area using conventional quantitative techniques. The basin, which is located close to Rome (Italy) on the west side of the Apennine chain and just north of the Colli Albani volcano, subsided after development of a north–south fault system (about 115 000 y bp). The AAB experiences intense hydrothermal activity, which has produced a large travertine deposit (80‐m thick). The travertine deposit constitutes a fractured aquifer that is the final destination of more than 5 m3 s‐1 of water and is strongly dewatered by quarry activities. The complex hydrogeology of this basin was investigated, revealing two main hydraulically connected aquifers, one thermalised and partly confined into the limestone bedrock and one unconfined in the travertine. The two aquifers are separated by a non‐continuous clayey aquiclude. The hydrogeological survey and geological characterisation contributed to the development of the groundwater flow conceptual model. Analysis and comparison of the monitored levels highlighted the pattern of flow between the deep and shallow parts of the flow system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号