首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scour below marine pipelines in shoaling conditions for random waves   总被引:1,自引:0,他引:1  
This paper provides an approach by which the scour depth below pipelines in shoaling conditions beneath non-breaking and breaking random waves can be derived. Here the scour depth formula in shoaling conditions for regular non-breaking and breaking waves with normal incidence to the pipeline presented by Cevik and Yüksel [Cevik, E. and Yüksel, Y., (1999). Scour under submarine pipelines in waves in shoaling conditions. ASCE J. Waterw., Port, Coast. Ocean Eng., 125 (1), 9–19.] combined with the wave height distribution including shoaling and breaking waves presented by Mendez et al. [Mendez, F.J., Losada, I.J. and Medina, R., (2004). Transformation model of wave height distribution on planar beaches. Coast. Eng. 50 (3), 97–115.] are used. Moreover, the approach is based on describing the wave motion as a stationary Gaussian narrow-band random process. An example of calculation is also presented.  相似文献   

2.
This paper provides a practical method for estimating the drag force on a vegetation field exposed to long-crested (2D) and short-crested (3D) nonlinear random waves. This is achieved by using a simple drag formula together with an empirical drag coefficient given by Mendez et al. (1999), in conjunction with a stochastic approach. Here the waves are assumed to be a stationary narrow-band random process. Effects of nonlinear waves are included by adopting the Forristall (2000) wave crest height distribution representing both 2D and 3D random waves.  相似文献   

3.
《Coastal Engineering》2006,53(4):311-318
The extended mild-slope equations of Suh et al. [Suh, K.D., Lee, C., Park, W.S., 1997. Time-dependent equations for wave propagation on rapidly varying topography. Coastal Eng., 32, 91–117] and Lee et al. [Lee, C., Kim, G., Suh, K.D., 2003. Extended mild-slope equation for random waves. Coastal Eng., 48, 277–287] are compared analytically and numerically to determine their applicability to random wave transformation. The geometric optics approach is used to compare the two models analytically. In the model of Suh et al., the wave number of the component wave with a local angular frequency ω is approximated with an accuracy of O(ω  ω¯) at a constant water depth, where ω¯ is the carrier frequency of random waves. In the model of Suh et al., however, the diffraction effects and higher-order bottom effects are considered only for monochromatic waves, and the shoaling coefficient of random waves is not accurately approximated. This inaccuracy arises because the model of Suh et al. was derived for regular waves. In the model of Lee et al., all the parameters of random waves such as wave number, shoaling coefficient, diffraction effects, and higher-order bottom effects are approximated with an accuracy of O(ω  ω¯). This approximation is because the model of Lee et al. was developed using the Taylor series expansion technique for random waves. The result of dispersion relation analysis suggests the use of the peak and weighted-average frequencies as a carrier frequency for Suh et al. and Lee et al. models, respectively. All the analytical results are verified by numerical experiments of shoaling of random waves over a slightly inclined bed and diffraction of random waves through a breakwater gap on a flat bottom.  相似文献   

4.
This paper provides a practical method by which the drag force on a vegetation field beneath nonlinear random waves can be estimated. This is achieved by using a simple drag formula together with an empirical drag coefficient given by Mendez et al. (Mendez, F.J., Losada, I.J., Losada, M.A., 1999. Hydrodynamics induced by wind waves in a vegetation field. J. Geophys. Res. 104 (C8), 18383–18396). Effects of nonlinear waves are included by using Stokes second order wave theory where the basic harmonic motion is assumed to be a stationary Gaussian narrow–band random process. An example of calculation is also presented.  相似文献   

5.
Wave dissipation by vegetation with layer schematization in SWAN   总被引:1,自引:0,他引:1  
The energy of waves propagating through vegetation is dissipated due to the work done by the waves on the vegetation. Dalrymple et al. (1984) estimated wave dissipation by integrating the force on a cylinder over its vertical extent. This was extended by Mendez and Losada (2004) to include varying depths and the effects of wave damping due to vegetation and wave breaking for narrow-banded random waves. This paper describes the wave dissipation over a vegetation field by the implementation of the Mendez and Losada formulation in a full spectrum model SWAN, with an extension to include a vertical layer schematization for the vegetation. The present model is validated with the original equation and results from Mendez and Losada (2004). The sensitivity of the model to the shape of the frequency spectrum, directional spreading and layer schematization are investigated. The model is then applied to field measurements by using a vegetation factor. This model has the ability to calculate two-dimensional wave dissipation over a vegetation field including some important aspects such as breaking and diffraction as used in SWAN model.  相似文献   

6.
In the present paper, by introducing the effective wave elevation, we transform the extended ellip- tic mild-slope equation with bottom friction, wave breaking and steep or rapidly varying bottom topography to the simplest time-dependent hyperbolic equation. Based on this equation and the empirical nonlinear amplitude dispersion relation proposed by Li et al. (2003), the numerical scheme is established. Error analysis by Taylor expansion method shows that the numerical stability of the present model succeeds the merits in Song et al. (2007)’s model because of the introduced dissipation terms. For the purpose of verifying its performance on wave nonlinearity, rapidly vary- ing topography and wave breaking, the present model is applied to study: (1) wave refraction and diffraction over a submerged elliptic shoal on a slope (Berkhoff et al., 1982); (2) Bragg reflection of monochromatic waves from the sinusoidal ripples (Davies and Heathershaw, 1985); (3) wave transformation near a shore attached breakwater (Watanabe and Maruyama, 1986). Comparisons of the numerical solutions with the experimental or theoretical ones or with those of other models (REF/DIF model and FUNWAVE model) show good results, which indicate that the present model is capable of giving favorably predictions of wave refraction, diffraction, reflection, shoaling, bottom friction, breaking energy dissipation and weak nonlinearity in the near shore zone.  相似文献   

7.
This is the second of three papers on the modelling of various types of surf zone phenomena. In the first paper the general model was described and it was applied to study cross-shore motion of regular waves in the surf zone. In this paper, part II, we consider the cross-shore motion of wave groups and irregular waves with emphasis on shoaling, breaking and runup as well as the generation of surf beats. These phenomena are investigated numerically by using a time-domain Boussinesq type model, which resolves the primary wave motion as well as the long waves. As compared with the classical Boussinesq equations, the equations adopted here allow for improved linear dispersion characteristics and wave breaking is modelled by using a roller concept for spilling breakers. The swash zone is included by incorporating a moving shoreline boundary condition and radiation of short and long period waves from the offshore boundary is allowed by the use of absorbing sponge layers. Mutual interaction between short waves and long waves is inherent in the model. This allows, for example, for a general exchange of energy between triads rather than a simple one-way forcing of bound waves and for a substantial modification of bore celerities in the swash zone due to the presence of long waves. The model study is based mainly on incident bichromatic wave groups considering a range of mean frequencies, group frequencies, modulation rates, sea bed slopes and surf similarity parameters. Additionally, two cases of incident irregular waves are studied. The model results presented include transformation of surface elevations during shoaling, breaking and runup and the resulting shoreline oscillations. The low frequency motion induced by the primary-wave groups is determined at the shoreline and outside the surf zone by low-pass filtering and subsequent division into incident bound and free components and reflected free components. The model results are compared with laboratory experiments from the literature and the agreement is generally found to be very good. Finally the paper includes special details from the breaker model: time and space trajectories of surface rollers revealing the breakpoint oscillation and the speed of bores; envelopes of low-pass filtered radiation stress and surface elevation; sensitivity of surf beat to group frequency, modulation rate and bottom slope is investigated. Part III of this work (Sørensen et al., 1998) presents nearshore circulations induced by the breaking of unidirectional and multi-directional waves.  相似文献   

8.
The boundary layer characteristics beneath waves transforming on a natural beach are affected by both waves and wave-induced currents, and their predictability is more difficult and challenging than for those observed over a seabed of uniform depth. In this research, a first-order boundary layer model is developed to investigate the characteristics of bottom boundary layers in a wave–current coexisting environment beneath shoaling and breaking waves. The main difference between the present modeling approach and previous methods is in the mathematical formulation for the mean horizontal pressure gradient term in the governing equations for the cross-shore wave-induced currents. This term is obtained from the wave-averaged momentum equation, and its magnitude depends on the balance between the wave excess momentum flux gradient and the hydrostatic pressure gradient due to spatial variations in the wave field of propagating waves and mean water level fluctuations. A turbulence closure scheme is used with a modified low Reynolds number k-ε model. The model was validated with two published experimental datasets for normally incident shoaling and breaking waves over a sloping seabed. For shoaling waves, model results agree well with data for the instantaneous velocity profiles, oscillatory wave amplitudes, and mean velocity profiles. For breaking waves, a good agreement is obtained between model and data for the vertical distribution of mean shear stress. In particular, the model reproduced the local onshore mean flow near the bottom beneath shoaling waves, and the vertically decreasing pattern of mean shear stress beneath breaking waves. These successful demonstrations for wave–current bottom boundary layers are attributed to a novel formulation of the mean pressure gradient incorporated in the present model. The proposed new formulation plays an important role in modeling the boundary layer characteristics beneath shoaling and breaking waves, and ensuring that the present model is applicable to nearshore sediment transport and morphology evolution.  相似文献   

9.
Water level variations due to obliquely incident, shoaling and breaking waves on a plane sloping beach were discussed recently by Hsu et al. (Coastal Engineering, 53, 865–877, 2006). An inconsistency in this work with respect to the set-down, and its implications to circulation offshore of the breakpoint, was pointed out by Shi and Kirby (Coastal Engineering, 55, 1246 – 1249, 2008). Here we extend that discussion to include the surfzone momentum balance and wave-induced set-up. We discuss some remaining inconsistencies in the approximation of the surfzone momentum balance, derive and present a consistent approximation, and validate the new approximation through numerical comparison to a more exact model.  相似文献   

10.
Studies of the breaking criteria for solitary waves on a slope are presented in this paper. The boundary element method is used to model the processes of shoaling and breaking of solitary waves on various slopes. Empirical formulae that can be used to characterize the breaking of solitary waves are presented. These include the breaking index, the wave height, the water depth, and the maximum particle velocity at the point of breaking. Comparisons with the results of other researches are given.  相似文献   

11.
This paper presents a modified Euler–Lagrange transformation method to obtain the third-order trajectory solution in a Lagrangian form for the water particles in nonlinear water waves. We impose the assumption that the Lagrangian wave frequency is a function of wave steepness and an arbitrary vertical position for each water particle. Expanding the unknown function in a small perturbation parameter and using a successive expansion in a Taylor series for the water particle path and the period of a particle motion, the third-order asymptotic expressions for the Lagrangian particle trajectories, the mass transport velocity and the period of particle motion can be derived directly in Lagrangian form. The wave frequency and mean level of the particle motion in Lagrangian form differ from those of the Eulerian. Finally, the third-order asymptotic solution obtained is uniformly valid in contrast with early works containing resonant terms presented by Wiegel [1964. Oceanographical Engineering. Prentice-Hall, New Jersey, pp. 37–40] (Eqs. (B.1) and (B.1), (B.2) in Appendix B) or Chen et al.[2006. Theoretical analysis of surface waves shoaling and breaking on a sloping bottom. Part 2 nonlinear waves. Wave motion, 43, 356–369] based on a straightforward expansion for two-dimensional progressive waves.  相似文献   

12.
An existing 2D time-domain method for separating irregular incident and reflected waves by wavelet transform [Ma et al., 2010. A new method for separation of 2D incident and reflected waves by the Morlet wavelet transform. Coastal Eng., 57(6):597–603] is extended to account for obliquely incident irregular waves propagating over sloping bottoms. The linear shoaling and refraction coefficients are adopted to determine the amplitude and phase changes of waves. The optimal central frequency of the Morlet wavelet is determined by the minimum Shannon wavelet entropy. Numerical tests show that the present method can accurately separate waves over horizontal depths. For waves at sloping bottoms, however, the separation errors increase as bottom slope increases and are significant for waves with incident angle larger than π/3.  相似文献   

13.
海洋是多尺度强迫-耗散系统,机械能主要在大尺度输入,在小尺度耗散。在大、中尺度运动的能量向小尺度湍流传递过程中,内波扮演着重要角色。内波的生成和破碎可打破海洋动力平衡,而在陆架区,内波(主要是内孤立波)的浅化演变与耗散则是驱动湍流混合的关键过程。通过长期的理论、观测与数值模拟研究,目前已认识到内波浅化过程中主要发生如下演变:波形调制、极性转变、裂变、破碎与耗散。相较于直接发生破碎,浅化演变过程中的裂变及其引发的剪切不稳定和对流不稳定是内孤立波在陆架区的主要耗散机制,显著调制陆架区的跃层混合。从能量串级的角度讲,内孤立波浅化裂变为动力不稳定的高频内波是潮能串级的重要通道。本文简要回顾南海北部陆架区内波的研究历史,并着重总结内波在陆架区演变与耗散机制的研究进展。  相似文献   

14.
An acoustic current meter attached to a servo-hydraulic surface-following device was used to obtain near-surface velocity measurements beneath breaking and near breaking surface gravity waves shoaling on a 1:40 beach. The data are compared to velocities predicted by two adaptations of linear theory: superposition and stretching. For unbroken and near breaking waves, the predictions are in close agreement with the measurements. For breaking and broken waves, near surface crest velocity measurements are influenced by air entrainment; trough velocities are relatively well predicted. The problems associated with the acoustic measurement of near-surface velocities are highlighted.  相似文献   

15.
In a recent paper, Kenyon (2004) proposed that the wave-induced energy flux is generally not conserved, and that shoaling waves cause a mean force and torque on the bottom. That force was equated to the divergence of the wave momentum flux estimated from the assumption that the wave-induced mass flux is conserved. This assumption and conclusions are contrary to a wide body of observations and theory. Most importantly, waves propagate in water, so that the momentum balance generally involves the mean water flow. Although the expression for the non-hydrostatic bottom force given by Kenyon is not supported by observations, a consistent review of existing theory shows that a smaller mean wave-induced force must be present in cases with bottom friction or wave reflection. That force exactly balances the change in wave momentum flux due to bottom friction and the exchange of wave momentum between incident and reflected wave components. The remainder of the wave momentum flux divergence, due to shoaling or wave breaking, is compensated by the mean flow, with a balance involving hydrostatic pressure forces that arise from a change in mean surface elevation that is very well verified by observations.  相似文献   

16.
Nepheloid layers and internal waves over continental shelves and slopes   总被引:2,自引:0,他引:2  
Cacchione  D. A.  Drake  D. E. 《Geo-Marine Letters》1986,6(3):147-152
Theoretical and laboratory results indicate that bottom velocities within shoaling internal gravity waves intensify upslope approximately inversely proportional to the water depth. The elevated velocities (and bottom stresses) caused by shoaling and, possibly, breaking internal waves might explain the generation and maintenance of near-bottom nepheloid zones and attached turbid plumes that have been observed over certain continental shelves and slopes. This process is proposed as an explanation of zones of relatively low transmissibility that emanate from the upper continental slope near Newport submarine canyon off southern California.  相似文献   

17.
The highly accurate Boussinesq-type equations of Madsen et al. (Madsen, P.A., Bingham, H.B., Schäffer, H.A., 2003. Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: Derivation and analysis. Proc. R. Soc. Lond. A 459, 1075–1104; Madsen, P.A., Fuhrman, D.R., Wang, B., 2006. A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry. Coast. Eng. 53, 487–504); Jamois et al. (Jamois, E., Fuhrman, D.R., Bingham, H.B., Molin, B., 2006. Wave-structure interactions and nonlinear wave processes on the weather side of reflective structures. Coast. Eng. 53, 929–945) are re-derived in a more general framework which establishes the correct relationship between the model in a velocity formulation and a velocity potential formulation. Although most work with this model has used the velocity formulation, the potential formulation is of interest because it reduces the computational effort by approximately a factor of two and facilitates a coupling to other potential flow solvers. A new shoaling enhancement operator is introduced to derive new models (in both formulations) with a velocity profile which is always consistent with the kinematic bottom boundary condition. The true behaviour of the velocity potential formulation with respect to linear shoaling is given for the first time, correcting errors made by Jamois et al. (Jamois, E., Fuhrman, D.R., Bingham, H.B., Molin, B., 2006. Wave-structure interactions and nonlinear wave processes on the weather side of reflective structures. Coast. Eng. 53, 929–945). An exact infinite series solution for the potential is obtained via a Taylor expansion about an arbitrary vertical position zˆ. For practical implementation however, the solution is expanded based on a slow variation of zˆ and terms are retained to first-order. With shoaling enhancement, the new models obtain a comparable accuracy in linear shoaling to the original velocity formulation. General consistency relations are also derived which are convenient for verifying that the differential operators satisfy a potential flow and/or conserve mass up to the order of truncation of the model. The performance of the new formulation is validated using computations of linear and nonlinear shoaling problems. The behaviour on a rapidly varying bathymetry is also checked using linear wave reflection from a shelf and Bragg scattering from an undulating bottom. Although the new models perform equally well for Bragg scattering they fail earlier than the existing model for reflection/transmission problems in very deep water.  相似文献   

18.
Based on the wave breaking model by Li and Wang (1999), this work is to apply Dally‘ s analytical solution to the wave-height decay instead of the empirical and semi-empirical hypotheses of wave-height distribution within the wave breaking zone. This enhances the applicability of the model. Computational results of shoaling, location of wave breaking, wave-height decay after wave breaking, set-down and set-up for incident regular waves are shown to have good agreement with experimental and field data.  相似文献   

19.
The propagation,shoaling and breaking of solitary waves on mild slopes are simulated byboundary element method.In this paper,the criterion of breaking solitary waves on mild slopes is discussed.The criterion is that the ratio of horizontal velocity of water particles on the wave crest to wave celerity equalsone.However,the case that the ratio of horizontal velocity of water particles on the wave crest to wave ce-lerity is below one but the front face of wave profile becomes vertical is also considered as a breaking criteri-on.According to the above criteria,the breaking index for slopes 1:10 to 1:25 is studied.The result is com-pared to other researchers'.The deformation of solitary waves on slopes is discussed and the distribution offluid velocities at breaking is shown.  相似文献   

20.
The present paper proposes a numerical model to determine horizontal and vertical components of the hydrodynamic forces on a slender submarine pipeline lying at the sea bed and exposed to non-linear waves plus a current. The new model is an extension of the Wake II type model, originally proposed for sinusoidal waves (Soedigdo et al., 1999) and for combined sinusoidal waves and currents (Sabag et al., 2000), to the case of periodic or random waves, even with a superimposed current. The Wake II type model takes into account the wake effects on the kinematic field and the time variation of drag and lift hydrodynamic coefficients. The proposed extension is based on an evolutional analysis carried out for each half period of the free stream horizontal velocity at the pipeline. An analytical expression of the wake velocity is developed starting from the Navier–Stokes and the boundary layer equations. The time variation of the drag and lift hydrodynamic coefficients is obtained using a Gaussian integration of the start-up function. A reduced scale laboratory investigation in a large wave flume has been conducted in order to calibrate the empirical parameters involved in the proposed model. Different wave and current conditions have been considered and measurements of free stream horizontal velocities and dynamic pressures on a bottom-mounted pipeline have been conducted. The comparison between experimental and numerical hydrodynamic forces shows the accuracy of the new model in evaluating the time variation of peaks and phase shifts of the horizontal and vertical wave and current induced forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号