共查询到20条相似文献,搜索用时 15 毫秒
1.
Salvatore Giammanco Barbara Justin Natalija Speh Marta Veder 《Environmental Geology》2009,57(1):75-89
The complex geochemical interactions in the groundwater of the industrial area of Šalek Valley (Slovenia) between natural
and anthropogenic fluids were studied by means of major (Ca, Mg, Na, K, HCO3
−, Cl− and SO4
2−) and trace elements’ (As , Cd, Cu, Pb, Zn, Hg, Se and V) abundances, geochemical classification and statistical analysis
of data. Cation abundances indicate mixing between a dolomitic end-member and an evaporitic or geothermal end-member. Anion
abundances indicate mixing between bicarbonate waters and either sulphate-enriched waters (suggesting hydrothermalism) or
chlorine-rich waters. Principal component analysis (PCA) allowed the extraction of seven factors, which describe, respectively:
water–rock interaction mainly on dolomitic rocks; redox conditions of water; Cd–Zn enrichment in chlorine-rich waters (probably
from industrial wastes); hydrothermal conditions in waters close to major faults; Pb and Cu pollution; V and K enrichments,
indicating their common organic source; the role of partial pressure of CO2 dissolved in water, which is highest in three wells with bubbling gases. Average underground discharge rates of solutes from
the Valley range between 0.09 t/a (V) and 1.8 × 104 t/a (HCO3
−) and indicate how natural fluids can significantly contribute to the levels of elements in the environment, in addition to
the amount of elements released by human activities. 相似文献
2.
3.
Water samples from precipitation, glacier melt, snow melt, glacial lake, streams and karst springs were collected across SE
of Kashmir Valley, to understand the hydrogeochemical processes governing the evolution of the water in a natural and non-industrial
area of western Himalayas. The time series data on solute chemistry suggest that the hydrochemical processes controlling the
chemistry of spring waters is more complex than the surface water. This is attributed to more time available for infiltrating
water to interact with the diverse host lithology. Total dissolved solids (TDS), in general, increases with decrease in altitude.
However, high TDS of some streams at higher altitudes and low TDS of some springs at lower altitudes indicated contribution
of high TDS waters from glacial lakes and low TDS waters from streams, respectively. The results show that some karst springs
are recharged by surface water; Achabalnag by the Bringi stream and Andernag and Martandnag by the Liddar stream. Calcite
dissolution, dedolomitization and silicate weathering were found to be the main processes controlling the chemistry of the
spring waters and calcite dissolution as the dominant process in controlling the chemistry of the surface waters. The spring
waters were undersaturated with respect to calcite and dolomite in most of the seasons except in November, which is attributed
to the replenishment of the CO2 by recharging waters during most of the seasons. 相似文献
4.
In orogens, shortening is mainly accommodated by thrusts, which constitute preferential zones for fluid–rock interactions. Fluid flow, mass transfer, and mineralogical reactions taking place along thrusts have been intensely investigated, especially in sedimentary basins for petroleum and uranium research. This study combines petrological investigations, mineralogical quantifications, and geochemical characterizations with a wide range of analytical tools with the aim of defining the fluid properties (nature, origin, temperature, and redox) and fluid–host rock interactions (mass transfers, recrystallization mechanisms, and newly formed synkinematic mineralization) in the Pic-de-Port-Vieux thrust fault zone (Pyrenees, Spain). We demonstrate that two geochemically contrasted rocks have been transformed by fluid flow under low-grade metamorphism conditions during thrusting. The hanging-wall Triassic red pelite was locally bleached, while the footwall Cretaceous dolomitic limestone was mylonitized. The results suggest that thrusting was accompanied by a dynamic calcite recrystallization in the dolomitic limestone as well as by leaching of iron via destabilization of iron oxides and phyllosilicate crystallization in the pelite. Geochemical and physical changes highlighted in this study have strong implications on the understanding of the thrust behavior (tectonic and hydraulic), and improve our knowledge of fluid–rock interactions in open fluid systems in the crust. 相似文献
5.
6.
Marco Tallini Barbara Parisse Marco Petitta Michele Spizzico 《Hydrogeology Journal》2013,21(7):1447-1467
In the Gran Sasso fissured carbonate aquifer (central Italy), a long-term (2001–2007) spatio-temporal hydrochemical and 222Rn tracing survey was performed with the goal to investigate groundwater flow and water–rock interaction. Analyses of the physico-chemical parameters, and comparisons of multichemical and characteristic ratios in space and time, and subsequent statistical analyses, permitted a characterisation of the hydrogeology. At the regional scale, groundwater flows from recharge areas to the springs located at the aquifer boundaries, with a gradual increase of mineralisation and temperature along its flowpaths. However, the parameters of each group of springs may significantly deviate from the regional trend owing to fast flows and to the geological setting of the discharge spring areas, as corroborated by statistical data. Along regional flowpaths, the effects of seasonal recharge and lowering of the water table clearly cause changes in ion concentrations over time. This conceptual model was validated by an analysis of the 222Rn content in groundwater. 222Rn content, for which temporal variability depends on seasonal fluctuations of the water table, local lithology and the fracture network at the spring discharge areas, was considered as a tracer of the final stages of groundwater flowpaths. 相似文献
7.
Beatriz González-Fernández Mónica Meléndez-Asensio Eduardo Menéndez-Casares 《Environmental Earth Sciences》2009,59(4):913-928
Chemical and isotopic analyses of groundwater from the carbonated Jurassic aquifers in the Gijón-Villaviciosa basin (Asturias,
northern Spain) were carried out. Nine springs were sampled to determine major cations and anions, as well as the stable isotopes
of the water molecule (δ2H and δ18O) and sulphate (δ34S) values. Also, δ34S values from gypsum coming both from Triassic rocks and bottom of Jurassic sequence were also determined. The results obtained
were used to classify the waters with a genetic criteria in three groups: (1) waters with a high gypsum influence, with sulphate
coming from Jurassic gypsum, (2) waters without gypsum influence, where sulphate source could be atmospheric deposition from
industrial processes and marine aerosol, and (3) waters with some gypsum influence, in which sulphate origin could be a combination
of different sources. In relation to recharge, δ2H and δ18O values were close to those of Global Meteoric Water Line and fit a local line that suggests a meteoric origin. The estimated
elevations for spring recharge are in agreement with those obtained from hydrogeological maps. 相似文献
8.
Francisco Sánchez-Martos Luis Molina-Sánchez Juan Gisbert-Gallego 《Environmental Earth Sciences》2014,71(1):67-76
Water resources management in coastal wetlands requires the degree of interdependence between groundwater and terrestrial ecosystems to be known. This is especially so in semiarid areas where surface inflows are restricted, marine influence is marked and the evaporation rate is high. Thus, chemistry of surface waters is very variable in the Cerrillos-Punta Entinas wetlands system. Using classical hydrogeochemical tools, the main processes that favor a diversity of water types were described, related to: presence of salt deposits on the lagoon beds, marine origin of the water, and local influence of groundwater. All these factors make it difficult to establish what reference conditions should be used to define “good” water quality of the surface waters—as required by the Water framework directive—and to understand the influence of groundwater on these coastal wetlands. Knowledge about the influence of the different interaction of these factors on the hydrogeochemical dynamics is required for the sustainable management of this protected natural site. 相似文献
9.
Y. Lucas A.D. Schmitt F. Chabaux A. Clément B. Fritz Ph. Elsass S. Durand 《Applied Geochemistry》2010
In the southern Upper Rhine Valley, groundwater has undergone intensive saline pollution caused by the infiltration of mining brines, a consequence of potash extraction carried out during the 20th century. Major and trace elements along with Sr and U isotopic ratios show that groundwater geochemical characteristics along the saline plumes cannot reflect conservative mixing between saline waters resulting from the dissolution of waste heaps and one or more unpolluted end-members. The results imply the occurrence of interactions between host rocks and polluted waters, and they suggest that cationic exchange mechanisms are the primary controlling process. A coupled hydrogeochemical model has been developed with the numerical code KIRMAT, which demonstrates that cationic exchange between alkalis from polluted waters and alkaline-earth elements from montmorillonite present in the host rock of the aquifer is the primary process controlling the geochemical evolution of the groundwater. The model requires only a small amount of montmorillonite (between 0.75% and 2.25%), which is in agreement with the observed mineralogical composition of the aquifer. The model also proves that a small contribution of calcite precipitation/dissolution takes places whereas other secondary mineral precipitation or host rock mineral dissolution do not play a significant role in the geochemical signature of the studied groundwater samples. Application of the model demonstrates that it is necessary to consider the pollution history to explain the important Cl, Na and Ca concentration modifications in groundwater samples taken over 2 km downstream of waste heaps. Additionally, the model shows that the rapidity of the cationic exchange reactions insures a reversibility of the cation fixation on clays in the aquifer. 相似文献
10.
The present paper reports the first detailed petrological and geochemical study of non-sulfide Zn–(FePb) deposits in the Riópar area (Prebetic Zone of the Mesozoic Betic Basin, SE Spain), constraining the origin and evolution of ore-forming fluids. In Riópar both sulfide and non-sulfide Zn–(FePb) (“calamine”) ores are hosted in hydrothermally dolomitized Lower Cretaceous limestones. The hypogene sulfides comprise sphalerite, marcasite and minor galena. Calamine ores consist of Zn-carbonates (smithsonite and scarce hydrozincite), associated with abundant Fe-(hydr)oxides (goethite and hematite) and minor Pb-carbonates (cerussite). Three smithsonite types have been recognized: i) Sm-I consists of brown anhedral microcrystalline aggregates as encrustations replacing sphalerite; ii) Sm-II refers to brownish subhedral aggregates of rugged appearance related with Fe oxi-hydroxides in the surface crystals, which replace extensively sphalerite; and iii) Sm-III smithsonite appears as coarse grayish botryoidal aggregates in microkarstic cavities and porosity. Hydrozincite is scarce and appears as milky white botryoidal encrustations in cavities replacing smithsonite. Also, two types of cerussite have been identified: i) Cer-I cerussite consists of fine crystals replacing galena along cleavage planes and crystal surfaces; and ii) Cer-II conforms fine botryoidal crystals found infill porosity. Calcite and thin gypsum encrustations were also recognized. The field and petrographic observations of the Riópar non-sulfide Zn–(FePb) revealed two successive stages of supergene ore formation under meteoric fluid processes: i) “gossan” and “red calamine” formation in the uppermost parts of the ore with deposition of Fe-(hydr)oxides and Zn- and Pb-carbonates (Sm-I, Sm-II and Cer-I), occurring as direct replacements of ZnPb sulfides; and ii) “gray calamine” ore formation with deposition of Sm-III, Cer-II and hydrozincite infilling microkarst cavities and porosity. The stable isotope variation of Riópar smithsonite is very similar to those obtained in other calamine-ore deposits around the world. Their CO isotope data (δ18O: + 27.8 to + 29.6‰ V-SMOW; δ13C: − 6.3 to + 0.4‰ V-PDB), puts constrains on: i) the oxidizing fluid type, which was of meteoric origin with temperatures of 12 to 19 °C, suggesting a supergene weathering process for the calamine-ore formation under a temperate climate; and ii) the carbon source, that resulted from mixing between two CO2 components derived from: the dissolution of host-dolomite (13C-enriched source) and vegetation decomposition (13C-depleted component). 相似文献
11.
Strontium isotopes (87Sr/86Sr) are routinely measured in hydrochemical studies to determine sources and mixing relationships. They have proved particularly useful in determining weathering processes and quantifying end-member mixing processes. A number of routine case studies are presented which highlight that Sr isotopes represent a powerful tool in the geochemists toolbox helping to constrain weathering reactions, weathering rates, flow pathways and mixing scenarios. Differences in methodologies for determining the weathering component in natural environments, inherent differences in weathering rates of different minerals, and mineral heterogeneity often cause difficulties in defining the weathering component of different catchments or aquifer systems. Nevertheless, Sr isotopes are useful when combined with other hydrochemical data, to constrain models of water–rock interaction and mixing as well as geochemical processes such as ion-exchange. This paper presents a summary of recent work by the authors in constraining the sources of waters and weathering processes in surface catchments and aquifers, and indicates cases where Sr isotopes alone are insufficient to solve hydrological problems. 相似文献
12.
《Gondwana Research》2016,29(4):1566-1578
From October 2012 to October 2013, a seismic swarm released more than 7000 microearthquakes beneath the eastern Guadalquivir foreland basin. From double-difference relocations of 501 events (md > 1.5), we can image the active structures associated with this swarm. Most of the events occurred along two ~ N–S trending lineaments separated ~ 1 km. Relocation places most events at 4–6.5 km depth in the Iberian-massif basement below the basin. Moment tensor inversion yields strike-slip mechanisms consistent with the hypocenter alignments, attributing left-lateral motion to the N–S structures and right-lateral motion to the ESE–WNW ones, in compliance with the ~ NNW direction of the main compressive stress field in the central Betics. These structures respond to a vertical-axis bend in the mountain front associated with the protrusion of Sierra Cazorla east of the epicentral area. This bend is mimicked by concordant, gentle bends in the foreland units, which are evident from the surface geology as well as through structural elements like strike-slip faults, crisscrossing joints. In this context, the right-lateral shear zone responsible for the Torreperogil sequence is taking up deformation in the western limb of the foreland bend. 相似文献
13.
Santamaría-López Ángel Sanz de Galdeano Carlos 《International Journal of Earth Sciences》2018,107(7):2539-2552
International Journal of Earth Sciences - U–Pb dating on inherited detrital zircons has been applied to obtain the probable maximum age of deposition of the detrital protolith of the... 相似文献
14.
15.
Unconsolidated sand, gravel and clay deposits near Beihai and in the Leizhou Peninsula in southern China form an unconfined
aquifer, aquitard and a confined aquifer. Water and soil samples were collected from the two aquifers in the coastal Beihai
area for the determination of chemical compositions, minerals and soluble ions. Hydrogeochemical modeling of three flow paths
through the aquitard are carried out using PHREEQC to determine water–rock interactions along the flow paths. The results
indicate that the dissolution of anorthite, fluorite, halite, rhodochrosite and CO2, and precipitation of potash feldspar and kaolinite may be occurring when groundwater leaks through the aquitard from the
unconfined aquifer to the confined aquifer. Cation exchanges between Na and Ca can also happen along the flow paths. 相似文献
16.
In order to understand and mitigate the deterioration of water quality in the aquifer system underlying Guadalajara metropolitan area, an investigation was performed developing geochemical evolution models for assessment of groundwater chemical processes. The models helped not only to conceptualize the groundwater geochemistry, but also to evaluate the relative influence of anthropogenic inputs and natural sources of salinity to the groundwater. Mixing processes, ion exchange, water–rock–water interactions and nitrate pollution and denitrification were identified and confirmed using mass-balance models constraint by information on hydrogeology, groundwater chemistry, lithology and stability of geochemical phases. The water–rock interactions in the volcanic setting produced a dominant NaHCO3 water type, followed by NaMgCaHCO3 and NaCaHCO3. For geochemical evolution modeling, flow sections were selected representing recharge and non-recharge processes and a variety of mixing conditions. Recharge processes are dominated by dissolution of soil CO2 gas, calcite, gypsum, albite and biotite, and Ca/Na exchange. Non-recharge processes show that the production of carbonic acid and Ca/Na exchange are decreasing, while other minerals such as halite and amorphous SiO2 are precipitated. The origin of nitrate pollution in groundwater are fertilizers in rural plots and wastewater and waste disposal in the urban area. This investigation may help water authorities to adequately address and manage groundwater contamination. 相似文献
17.
《Russian Geology and Geophysics》2015,56(3):411-434
The Dovyren intrusive complex includes the ore-bearing (Cu–Ni–PGE) Yoko–Dovyren layered pluton (728 Ma, up to 3.4 km in thickness), underlying ultramafic sills, and comagmatic leuconorite and gabbro-diabase dikes. Studies of Sr–Nd–Pb isotope systems were carried out for 24 intrusive rocks and five associated low- and high-Ti basalts. The high-Ti basalts show 0.7028 ≤ (87Sr/86Sr)T ≤ 0.7048 and 4.6 ≤ εNd(T) ≤ 5.8, similar to the values in MORB. The intrusive basic and ultrabasic rocks are geochemically similar to the low-Ti formation, making a compact cluster of compositions with extremely high ratios of radiogenic Sr and Pb isotopes and low εNd values. The maximum enrichment in radiogenic Sr is shown by the rocks near the pluton bottom ((87Sr/86Sr)T = 0.71387 ± 0.00010 (2σ); εNd(T) = –16.09 ± 0.06), which are the products of crystallization of the most primitive high-Mg magmas. The above-located dunites, troctolites, and gabbro show lower enrichment, probably because of the contamination of the host rocks during the filling of the magma chamber and/or because of the slight heterogeneity of the source. Calculations of the proportions of mixing of the parental melt with carbonate terrigenous material have shown that the variations in the Sr and Nd isotope ratios are due to the incredibly high contamination of the sediments, up to 40–50%. This contradicts the succession of the main rock types in the Yoko–Dovyren pluton in accordance with the crystallization of picrite-basaltic magma. The contribution of 5–10% high-Ti component seems more likely and suggests interaction between two isotopically contrasting magmas in this province in the Late Riphean. In general, the minor variations in εNd(T) of the intrusive rocks and metavolcanics (–14.3 ± 1.1) testify to the isotopically anomalous source of the low-Ti magmas. The time variation trend of εNd and geochemical features of the Dovyren rocks indicate that the products of melting of 2.7–2.8 Ga suprasubduction mantle might have been the massif protolith. Thus, the Dovyren parental magmas formed from a much older (sub)lithospheric source in the Late Riphean. The source was initially enriched in a mafic component with a low Sm/Nd ratio and was isolated from the convecting mantle and mantle melting processes for ~ 2 Gyr. The existence of such a long-living and at least twice reactivated lithospheric substratum is confirmed by the fact that the Nd isotope evolution trend of the initially nonanomalous mantle protolith includes not only the Dovyren rocks but also the Paleoproterozoic gabbro of the Chinei pluton and the Archean enderbites of the Baikal region.© 2015, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved. 相似文献
18.
Land subsidence is common in some regions of China. Various eco-environmental problems have arisen due to changes in water–rock interactions in these subsided areas, for which a comprehensive understanding of the hydrogeological setting is needed. This paper presents the general status of land subsidence in three typical subsided areas of China through the compilation of relevant data, and reviews some typical changes in the water–rock interactions in subsided areas along with related eco-environmental issues. It is found that the subsidence development and distribution are controlled by the groundwater-withdrawal intensity externally, and by the thickness and compressibility of unconsolidated sediments internally. The physical changes and related effects of water–rock interactions in subsided areas include: (1) the decreased ground elevation that caused floods, waterlogged farmland, etc.; (2) the differential subsidence that caused ground fissures; and (3) the change of seepage field that caused substantial reduction of the water resource. Chemically, the changes and related effects of water–rock interactions include: (1) the change to the chemical environment or processes due to the hydrogeologic structure alteration, which caused groundwater pollution; and (2) hydrologic mixing (seawater intrusion, artificial recharge; exchange with adjacent aquifers or aquitards), which degraded the groundwater quality. Further research on the subsided areas in China is suggested to reveal the mechanisms regarding biological and gaseous (meteorological) changes from the perspective of interacting systems among water, rocks, biological agents and gases. 相似文献
19.
The lower Triassic/Bunter sandstone and lower Jurassic/Rhät formations of the Northern Germany sedimentary basin constitute feasible reservoirs for the storage of CO2 from combustion of fossil fuels or industrial production processes. This study presents analyses of geochemical interactions between CO2, formation fluid and rock of these potential reservoirs using geochemical modelling in order to assess the short and long term impact of CO2 sequestration. Batch equilibrium modelling was performed first for assessing the consistency of fluid and mineralogy field data and for identifying potential secondary minerals under the influence of injected CO2. Inclusion of reaction kinetics in the batch models allowed an observation of reaction paths and to estimate the time frame of geochemical reactions. Finally, one-dimensional equilibrium reactive transport modelling was used in order to investigate the direction of reactions under conditions of fluid flow and mass transport and to quantify feedbacks of reactions on transport processes.Results of the simulations performed show that dawsonite may act as the main CO2 storage mineral in both formations, while the carbonates calcite and dolomite dissolve over time. Also, changes in porosity and permeability are significant in the equilibrium reactive transport simulations. The time scale of kinetically controlled reactions observed in the kinetic batch modeling, however, suggests that CO2 mineral trapping in both formations requires very long time frames, and hence other mechanisms such as structural or solubility trapping seem to be more relevant within the injection or early post-injection phase for the studied formations. 相似文献