首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a parameterization method based on Landsat‐7 Enhanced Thematic Mapper (ETM) data and field observations is presented and tested for deriving the regional land surface variables, vegetation variables and land surface heat fluxes over a heterogeneous landscape. As a case study, the method and two Landsat‐7 ETM images are applied to the Jiddah area of Saudi Arabia. The regional distribution maps of surface reflectance, normalized difference vegetation index, modified soil adjusted vegetation index (MSAVI), vegetation coverage, leaf area index, surface temperature, net radiation flux, soil heat flux, sensible heat flux and latent heat flux have been determined over the Jiddah area. The derived results have been validated by using the ‘ground truth’. The results show that the more reasonable regional distributions of land surface variables (surface reflectance, surface temperature), vegetation variables (MSAVI and vegetation coverage), net radiation, soil heat flux and sensible heat flux can be obtained by using the method proposed in this study. Further improvement of the method is also discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Information about seasonal crop water consumption is useful to develop the appropriate irrigation scheme. Measurements of energy balance components using the Bowen ratio method were made for a complete growing season at a vineyard in the arid region of northwest China. Vine in the experiment was furrow‐irrigated using a trellis system. The measured evapotranspiration was compared with estimates using the soil water balance method. It is shown that the Bowen ratio method provided accurate estimates of evapotranspiration from the vineyard and this requires that the Bowen ratio system is appropriately installed. The energy balance components showed typical diurnal pattern with peaks that occurred around the midday, except for the ground heat flux which delayed its peak by 2–3 h. The sensible heat flux was greater than the latent heat flux and followed the net radiation closely. The ratio of the latent heat flux to net radiation was low in the early growing season and increased over time. Under the limited irrigation experienced in the vineyard, the latent heat flux was controlled by available soil moisture and the total evapotranspiration in the growing season was 253 mm. The seasonal progression of the crop coefficient is similar to that reported in the literature, with the maximum occurring during the month of September. The crop coefficient can be estimated as a non‐linear function of day of year (DOY) and used to estimate evapotranspiration from vineyards in the region. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

Quantifying the reliability of distributed hydrological models is an important task in hydrology to understand their ability to estimate energy and water fluxes at the agricultural district scale as well the basin scale for water resources management in drought monitoring and flood forecasting. In this context, the paper presents an intercomparison of simulated representative equilibrium temperature (RET) derived from a distributed energy water balance model and remotely-sensed land surface temperature (LST) at spatial scales from the agricultural field to the river basin. The main objective of the study is to evaluate the use of LST retrieved from operational remote sensing data at different spatial and temporal resolutions for the internal validation of a distributed hydrological model to control its mass balance accuracy as a complementary method to traditional calibration with discharge measurements at control river cross-sections. Modelled and observed LST from different radiometric sensors located on the ground surface, on an aeroplane and a satellite are compared for a maize field in Landriano (Italy), the agricultural district of Barrax (Spain) and the Upper Po River basin (Italy). A good ability of the model in reproducing the observed LST values in terms of mean bias error, root mean square error, relative error and Nash-Sutcliffe index is shown.
Editor Z.W. Kundzewicz; Associate editor D. Gerten  相似文献   

4.
5.
Vegetation and soil properties and their associated changes through time and space affect the various stages of soil erosion. The island of Ishigaki in Okinawa Prefecture, Japan is of particular concern because of the propensity of the red‐soil‐dominated watersheds in the area to contribute substantial sediment discharge to adjacent coastal areas. This paper discusses the application of remote sensing techniques in the retrieval of vegetation and soil parameters necessary for the distributed soil‐loss modelling in small agricultural catchments and analyses the variation in erosional patterns and sediment distribution during rainfall events using numerical solutions of overland flow simulations and sediment continuity equations. To account for the spatial as well as temporal variability of selected parameters of the soil‐loss equations, a method is proposed to account for the variability of associated vegetation cover based on their spectral characteristics as captured by remotely sensed data. To allow for complete spatial integration, modelling the movement of sediment is accomplished under a loose‐coupled GIS computational framework. This study lends a theoretical support and empirical evidence to the role of vegetation as a potential agent for soil erosion control. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
本文研究了2010年2月27日智利8.8级地震前后地球表面潜热通量的时空演化过程, 并分析了可能的潜热通量异常及其与地表温度变化的关系.结果表明:(1)此次地震及其强余震前出现了三次明显的潜热通量异常,第一次潜热通量异常出现于主震1个月前,主要分布在震中及其东南陆区,第二次潜热通量异常出现在主震前7天,异常区分布在震中西南的海域,呈北西向分布,指向俯冲带,第三次潜热通量异常出现在强余震前,异常区分布在震中西南的海域及北段俯冲带上;(2)相似于2004年印度尼西亚地震海啸前潜热通量的异常演化特征,潜热通量异常从弧后向俯冲带迁移,此次地震前的潜热通量异常首先出现在弧后火山活动强烈地区,然后迁移到海域俯冲带附近,可能反映了临震前的构造变形过程;(3)当陆区出现潜热通量异常时,同时也可见地表温度异常,但在海域出现潜热通量异常时,却未发现有地表温度异常,这可能是由于海域水的热容量较大,不易出现红外温度异常所致.  相似文献   

7.
Describing the spatial variability of heterogeneous snowpacks at a watershed or mountain‐front scale is important for improvements in large‐scale snowmelt modelling. Snowmelt depletion curves, which relate fractional decreases in snow‐covered area (SCA) against normalized decreases in snow water equivalent (SWE), are a common approach to scale‐up snowmelt models. Unfortunately, the kinds of ground‐based observations that are used to develop depletion curves are expensive to gather and impractical for large areas. We describe an approach incorporating remotely sensed fractional SCA (FSCA) data with coinciding daily snowmelt SWE outputs during ablation to quantify the shape of a depletion curve. We joined melt estimates from the Utah Energy Balance Snow Accumulation and Melt Model (UEB) with FSCA data calculated from a normalized difference snow index snow algorithm using NASA's moderate resolution imaging spectroradiometer (MODIS) visible (0·545–0·565 µm) and shortwave infrared (1·628–1·652 µm) reflectance data. We tested the approach at three 500 m2 study sites, one in central Idaho and the other two on the North Slope in the Alaskan arctic. The UEB‐MODIS‐derived depletion curves were evaluated against depletion curves derived from ground‐based snow surveys. Comparisons showed strong agreement between the independent estimates. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
To evaluate the interactive effects of snow and forest on turbulent fluxes between the forest surface and the atmosphere, the surface energy balance above a forest was measured by the eddy correlation method during the winter of 1995–1996. The forest was a young coniferous plantation comprised of spruce and fir. The study site, in Sapporo, northern Japan, had heavy and frequent snowfalls and the canopy was frequently covered with snow during the study period. A comparison of the observed energy balance above the forest for periods with and without a snow‐covered canopy and an analysis using a single‐source model gave the following results: during daytime when the canopy was covered with snow, the upward latent heat flux was large, about 80% of the net radiation, and the sensible heat flux was positive but small. On the other hand, during daytime when the canopy was dry and free from snow, the sensible heat flux was dominant and the latent heat flux was minor, about 10% of the net radiation. To explain this difference of energy partition between snow‐covered and snow‐free conditions, not only differences in temperature but also differences in the bulk transfer coefficients for latent heat flux were necessary in the model. Therefore, the high evaporation rate from the snow‐covered canopy can be attributed largely to the high moisture availability of the canopy surface. Evaporation from the forest during a 60‐day period in midwinter was estimated on a daily basis as net radiation minus sensible heat flux. The overall average evaporation during the 60‐day period was 0·6 mm day−1, which is larger than that from open snow fields. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

Reliable estimation of sensible heat flux (H) is important in energy balance models for quantifying evapotranspiration (ET). This study was conducted to evaluate the value of adding the Priestley-Taylor (PT) equation to the METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration) model. METRIC was used to estimate energy fluxes for 10 Landsat images from the 2005, 2006 and 2007 crop growing seasons in south-central Nebraska, USA, where each image owing to recent rainfall exhibited high residual moisture content even at the hot pixel. The METRIC model performed satisfactorily for net radiation (Rn ) and soil heat flux (G) estimation with a root mean square error (RMSE) of 52 and 24 W m-2, respectively. A RMSE of 122 W m-2 for H indicated the limitation of the METRIC model in estimating H for high residual moisture content of the hot pixel (Alfalfa reference ET fraction, ET r F > 0.15). The modified METRIC model (wet METRIC or wMETRIC) incorporating the PT equation was applied to calculate H at the anchor pixels (hot and cold) for high residual moisture content of the hot pixel. The α coefficient of the PT equation was locally calibrated using hourly meteorological data from an automatic weather station and Rn and G data from a Bowen ratio flux tower. The mean α coefficient value was 1.14. The wMETRIC model reduced the RMSE of H from 122 to 64 W m-2 and that of latent heat flux, LE, from 163 to 106 W m-2. The RMSE of daily ET decreased from 1.7 to 1.1 mm d-1 with wMETRIC. The results indicate that treatment of anchor pixels for high residual moisture content with the PT approach gives improved estimation of H, LE and daily ET. It is recommended that the wMETRIC model be used for estimating ET if the hot pixel has high residual moisture (i.e. reference ET fraction > 0.15).

Citation Singh, R. K. & Irmak, A. (2011) Treatment of anchor pixels in the METRIC model for improved estimation of sensible and latent heat fluxes. Hydrol. Sci. J. 56(5), 895–906.  相似文献   

10.
Images from satellite platforms are a valid aid in order to obtain distributed information about hydrological surface states and parameters needed in calibration and validation of the water balance and flood forecasting. Remotely sensed data are easily available on large areas and with a frequency compatible with land cover changes. In this paper, remotely sensed images from different types of sensor have been utilized as a support to the calibration of the distributed hydrological model MOBIDIC, currently used in the experimental system of flood forecasting of the Arno River Basin Authority. Six radar images from ERS‐2 synthetic aperture radar (SAR) sensors (three for summer 2002 and three for spring–summer 2003) have been utilized and a relationship between soil saturation indexes and backscatter coefficient from SAR images has been investigated. Analysis has been performed only on pixels with meagre or no vegetation cover, in order to legitimize the assumption that water content of the soil is the main variable that influences the backscatter coefficient. Such pixels have been obtained by considering vegetation indexes (NDVI) and land cover maps produced by optical sensors (Landsat‐ETM). In order to calibrate the soil moisture model based on information provided by SAR images, an optimization algorithm has been utilized to minimize the regression error between saturation indexes from model and SAR data and error between measured and modelled discharge flows. Utilizing this procedure, model parameters that rule soil moisture fluxes have been calibrated, obtaining not only a good match with remotely sensed data, but also an enhancement of model performance in flow prediction with respect to a previous calibration with river discharge data only. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
The ongoing glacier shrinking in the Himalayan region causes a significant threat to freshwater sustainability and associated future runoff. However, data on the spatial climatic contribution of glacier retreat is scanty in this region. To investigate the spatially distributed glacier surface energy and mass fluxes, a two-dimensional mass balance model was developed and applied to the selected glaciers of the Chandra basin, in the Upper Indus Basin, Western Himalaya. This model is driven by the remote sensing data and meteorological variables measured in the vicinity of the Chandra basin for six hydrological years (October 2013 to September 2019). The modelled variables were calibrated/validated with the in-situ observation from the Himansh station in the Chandra basin. We have derived air temperature (Ta ) spatially using the multivariate statistical approach, which indicates a relative error of 0.02–0.05°C with the observed data. Additionally, the relative error between the modelled and observed radiation fluxes was <10.0 W m−2. Our study revealed that the Chandra basin glaciers have been losing its mass with a mean annual mass balance of −0.59 ± 0.12 m w.e. a−1 for the six hydrological years. Results illustrated that the mean surface melt rate of the selected glaciers ranged from −5.1 to −2.5 m w.e. a−1 that lies between 4500 and 5000 m a.s.l. The study revealed that the net radiation (RN) contributes ~75% in total energy (FM ) during the melt season while sensible heat (HS) , latent heat (Hl) , and ground heat (HG) fluxes shared 15%, 8%, and 2%, respectively. Sensitivity analysis of the energy balance components suggested that the mass balance is highly sensitive to albedo and surface radiations in the study area. Overall, the proposed model performed well for glacier-wide energy and mass balance estimation and confirms the utility of remote sensing data, which may help in reducing data scarcity in the upper reaches of the Himalayan region.  相似文献   

12.
The Noah model is a land surface model of the National Centers for Environmental Prediction. It has been widely used in regional coupled weather and climate models (i.e. Weather Research and Forecasting Model, Eta Mesoscale Model) and global coupled weather and climate models (i.e. National Centers for Environmental Prediction Global Forecast System, Climate Forecast System). Therefore, its continued improvement and development are keys to enhancing our weather and climate forecast ability and water and energy flux simulation accuracy. North American Land Data Assimilation System phase 1 (NLDAS‐1) experiments indicated that the Noah model exhibited substantial bias in latent heat flux, total runoff and land skin temperature during the warm season, and such bias can significantly affect coupled weather and climate models. This paper presents a study to improve the Noah model by adding model parameterization processes such as including seasonal factor on leaf area index and root distribution and selecting optimal model parameters. We compared simulated latent heat flux, mean annual runoff and land skin temperature from the Noah control and test versions with measured latent heat flux, land surface skin temperature, mean annual runoff and satellite‐retrieved land surface skin temperature. The results show that the test version significantly reduces biases in latent heat, total runoff and land skin temperature simulation. The test version has been used for the NLDAS phase 2 (NLDAS‐2) to produce 30‐year water flux, energy flux and state variable products to support the US drought monitor of National Integrated Drought Information System. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A new method was developed for analysing and delineating streambed water fluxes, flow conditions and hydraulic properties using coiled fibre‐optic distributed temperature sensing or closely spaced discrete temperature sensors. This method allows for a thorough treatment of the spatial information embedded in temperature data by creating a matrix visualization of all possible sensor pairs. Application of the method to a 5‐day field dataset reveals the complexity of shallow streambed thermal regimes. To understand how velocity estimates are affected by violations of assumptions of one‐dimensional, saturated, homogeneous flow and to aid in the interpretation of field observations, the method was also applied to temperature data generated by numerical models of common field conditions: horizontal layering, presence of lateral flow and variable streambed saturation. The results show that each condition creates a distinct signature visible in the triangular matrices. The matrices are used to perform a comparison of the behaviour of one‐dimensional analytical heat‐tracing models. The results show that the amplitude ratio‐based method of velocity calculation leads to the most reliable estimates. The minimum sensor spacing required to obtain reliable velocity estimates with discrete sensors is also investigated using field data. The developed method will aid future heat‐tracing studies by providing a technique for visualizing and comparing results from fibre‐optic distributed temperature sensing installations and testing the robustness of analytical heat‐tracing models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The North China Plain, which is critical for food production in China, is encountering serious water shortage due to heavy agricultural water requirement. The accurate modelling of carbon dioxide flux and evapotranspiration (ET) in croplands is thus essential for yield prediction and water resources management. The land surface model is powerful in simulating energy and carbon dioxide fluxes between land and atmosphere. Some key processes in the Simple Biosphere Model (Version 2, SiB2) were parameterized based on the observations. The simulated fluxes were tested against the eddy covariance flux measurements over two typical winter wheat/maize double cropping fields. A simple diagnostic parameterisation of soil respiration, not included in SiB2, was added and calibrated using the observations to model the carbon budget. The Ball‐Berry stomatal conductance model was calibrated using observed leaf gas exchange rate, showing that the original SiB2 could significantly underpredict the ET in the wheat field. SiB2 significantly underpredicted soil resistance at the Weishan site, leading to overpredict the ET. Overall, there was a close agreement between the simulated and observed latent heat fluxes and net CO2 exchange using the re‐parameterized SiB2. These findings are important when the model is used for the regional simulation in the North China Plain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
16.
The ecological situation of the Tarim River basin in China seriously declined since the early 1950s, mainly due to a strong increase in water abstraction for irrigation purposes. To restore the ecological system and support sustainable development of the Tarim River basin region in China, more hydrological studies are demanded to properly understand the processes of the watershed and efficiently manage the water resources. Such studies are, however, complicated due to the limited data availability, especially in the mountainous headwater regions of the Tarim River basin. This study investigated the usefulness of remote sensing (RS) data to overcome that lack of data in the spatially distributed hydrological modelling of the basin. Complementary to the conventional station‐based (SB) data, the RS products that are directly used in this study include precipitation, evapotranspiration and leaf area index. They are derived from raw image data of the Chinese Fengyun meteorological satellite and from the Moderate Resolution Imaging Spectroradiometer (MODIS). The MODIS land surface temperature was used to calculate the atmospheric temperature lapse rate to describe the temperature dependency on topographical variations. Moreover, MODIS‐based snow cover images were used to obtain model initial conditions and as validation reference for the snow model component. Comparison of model results based on RS input versus conventional SB input exhibited similar results in terms of high and low river runoff extremes, cumulative runoff volumes in both runoff and snow melting seasons and spatial and temporal variability of snow cover. During summer time, when the snow cover shrinks in the permanent glacier region, it was found that the model resolution influences the model results dramatically, hence, showing the importance of detailed (RS based) spatially distributed input data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Properly fabricated triangular‐plate added damping and stiffness (TADAS) devices can sustain a large number of yield reversals without strength degradation, thereby dissipating a significant amount of earthquake‐induced energy. A pronounced isotropic‐hardening effect is recognized in the force‐deformation relationships of the TADAS devices made from two grades of low yield strength steel. The proposed plasticity‐fibre model employing two surfaces (a yield surface and a bounding surface) in plasticity theory accurately predicts the experimental responses of the TADAS devices. This model is also implemented into a computer program DRAIN2D+ to investigate a frame response with the TADAS devices. Substructure pseudo‐dynamic tests and analytical studies of a two‐storey steel frame constructed with the low yield strength steel, LYP‐100 or LYP‐235 grade, TADAS devices confirm that the dynamic structural response can only be predicted if the proposed plasticity‐fibre model is used for LYP‐100 steel TADAS device. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
The application of heat as a hydrological tracer has become a standard method for quantifying water fluxes between groundwater and surface water. The typical application is to estimate vertical water fluxes in the shallow subsurface beneath streams or lakes. For this purpose, time series of temperatures in the surface water and in the sediment are measured and evaluated by a vertical 1D representation of heat transport by advection and conduction. Several analytical solutions exist to calculate the vertical water flux from the measured temperatures. Although analytical solutions can be easily implemented, they are restricted to specific boundary conditions such as a sinusoidal upper temperature boundary. Numerical solutions offer higher flexibility in the selection of the boundary conditions. This, in turn, reduces the effort of data preprocessing, such as the extraction of the diurnal temperature variation from the raw data. Here, we present software to estimate water fluxes based on temperatures—FLUX‐BOT. FLUX‐BOT is a numerical code written in MATLAB that calculates vertical water fluxes in saturated sediments based on the inversion of measured temperature time series observed at multiple depths. FLUX‐BOT applies a centred Crank–Nicolson implicit finite difference scheme to solve the one‐dimensional heat advection–conduction equation. FLUX‐BOT includes functions for the inverse numerical routines, functions for visualizing the results, and a function for performing uncertainty analysis. We present applications of FLUX‐BOT to synthetic and to real temperature data to demonstrate its performance.  相似文献   

19.
20.
The aim of this work is to compare three remote sensing based models: two contextual and one physically-based single-pixel model for the estimation of daytime integrated latent heat flux without the use of any ground measurements over Indian ecosystems. Satellite datasets from the MODIS sensors aboard the Terra and the Aqua satellites were used. The latent heat flux estimated from the remote sensing models was compared with that estimated from Bowen ratio energy balance towers at five sites in India. The root mean square error (RMSE) of the latent heat flux estimated from the contextual and the physically-based models was found to be in the order of 40 and 70 W m?2, respectively. The relatively inferior performance of the more complex physically-based model in comparison with the contextual models was found to be largely due to inaccurate parameterizations estimated only from remote sensing datasets without any ground data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号