首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While the role of groundwater in flushing of solutes has long been recognized, few studies have explicitly studied the within‐event changes in groundwater chemistry. We compared the changes in groundwater chemistry during storm events for a wetland and hillslope position in a small (1·5 ha) glaciated, forested catchment in western New York. Flushing responses for dissolved organic carbon (DOC) and nitrogen (DON), nitrate (NO3) and sulfate (SO4) in wetland and hillslope groundwaters were also compared against the corresponding responses in stream water. Eight storm events with varying intensity, amount, and antecedent moisture conditions were evaluated. Solute flushing patterns for wetland and hillslope groundwaters differed dramatically. While DOC concentrations in wetland groundwater followed a dilution trend, corresponding values for hillslope groundwater showed a slight increase. Concentrations for NO3 in wetland groundwater were below detection limits, but hillslope groundwaters displayed high NO3 concentrations with a pronounced increase during storm events. Flushing responses at all positions were also influenced by the size of the event and the time between events. We attributed the differences in flushing to the differences in hydrologic flow paths and biogeochemical conditions. Flushing of the wetland did appear to influence storm‐event stream chemistry but the same could not be said for hillslope groundwaters. This suggests that while a variety of flushing responses may be observed in a catchment, only a subset of these responses affect the discharge chemistry at the catchment outlet. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
We examined the contributions of bedrock groundwater to the upscaling of storm‐runoff generation processes in weathered granitic headwater catchments by conducting detailed hydrochemical observations in five catchments that ranged from zero to second order. End‐member mixing analysis (EMMA) was performed to identify the geographical sources of stream water. Throughfall, hillslope groundwater, shallow bedrock groundwater, and deep bedrock groundwater were identified as end members. The contribution of each end member to storm runoff differed among the catchments because of the differing quantities of riparian groundwater, which was recharged by the bedrock groundwater prior to rainfall events. Among the five catchments, the contribution of throughfall was highest during both baseflow and storm flow in a zero‐order catchment with little contribution from the bedrock groundwater to the riparian reservoir. In zero‐order catchments with some contribution from bedrock groundwater, stream water was dominated by shallow bedrock groundwater during baseflow, but it was significantly influenced by hillslope groundwater during storms. In the first‐order catchment, stream water was dominated by shallow bedrock groundwater during storms as well as baseflow periods. In the second‐order catchment, deeper bedrock groundwater than that found in the zero‐order and first‐order catchments contributed to stream water in all periods, except during large storm events. These results suggest that bedrock groundwater influences the upscaling of storm‐runoff generation processes by affecting the linkages of geomorphic units such as hillslopes, riparian zones, and stream channels. Our results highlight the need for a three‐dimensional approach that considers bedrock groundwater flow when studying the upscaling of storm‐runoff generation processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The use of electrical resistivity tomography (ERT; non‐intrusive geophysical technique) was assessed to identify the hydrogeological conditions at a surface water/groundwater test site in the southern Black Forest, Germany. A total of 111 ERT transects were measured, which adopted electrode spacings from 0·5 to 5 m as well as using either Wenner or dipole‐dipole electrode arrays. The resulting two‐dimensional (2D) electrical resistivity distributions are related to the structure and water content of the subsurface. The images were interpreted with respect to previous classical hillslope hydrological investigations within the same research basin using both tracer methods and groundwater level observations. A raster‐grid survey provided a quasi 3D resistivity pattern of the floodplain. Strong structural heterogeneity of the subsurface could be demonstrated, and (non)connectivities between surface and subsurface bodies were mapped. Through the spatial identification of likely flow pathways and source areas of runoff, the deep groundwater within the steeper valley slope seems to be much more connected to runoff generation processes within the valley floodplain than commonly credited in such environmental circumstances. Further, there appears to be no direct link between subsurface water‐bodies adjacent to the stream channel. Deep groundwater sources are also able to contribute towards streamflow from exfiltration at the edge of the floodplain as well as through the saturated areas overlying the floodplain itself. Such exfiltrated water then moves towards the stream as channelized surface flow. These findings support previous tracer investigations which showed that groundwater largely dominates the storm hydrograph of the stream, but the source areas of this component were unclear without geophysical measurements. The work highlighted the importance of using information from previous, complementary hydrochemical and hydrometric research campaigns to better interpret the ERT measurements. On the other hand, the ERT can provide a better spatial understanding of existing hydrochemical and hydrometric data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A small hillslope was chosen to investigate the role of throughflow as a mechanism responsible for the movement of soil water and solutes towards a saline seep and as a source of recharge to a permanent, regional aquifer at depth. The hydraulic properties, chemical characteristics and physical responses of both systems were studied on a deeply weathered, salt-affected hillslope. Additional data were also obtained from other sites in south-western Australia. Regional groundwater flow occurred in a variably textured, deeply weathered material in which the hydraulic conductivity varied from < 0·001 to 0·14m day?1. Perched groundwater flow (throughflow) occurred in the higher permeability (? 1·5 m day?1), near-surface soil materials. Throughflow occurred throughout winter, contributing approximately 530 m3 of fresh (? 160 mg l?1 Cl) water to a saline seep. By contrast, the deep aquifer discharged approximately 1100 m3 of waters with salt concentrations of 2000–6000 mg l?1 Cl. Recharge and discharge rates to and from the deep aquifer, were estimated to be of the order of 5–20 mm a?1 and 50–300 mm a?1 respectively. Saturated conditions existed throughout winter within the seep and the immediately adjacent non-saline area, with up to 60 per cent of the hillslope soils becoming saturated after major rainfall events ( > 20 mm day?1). In the mid-slopes, in particular along a central depression, saturation of the shallow soils caused macropore channel recharge to take place through the clay-textured subsoils. Water-level responses suggest that approximately 25–30 per cent of annual recharge occurred from one storm studied in September 1984. Recharge through macropore channels is a significant mechanism in the concave slope areas on the hillslope. Throughflow was found to be a major source of water, but not salt, contributing to the saline seep. In general, the contribution of throughflow was found to decrease further inland at other sites studied. However, at inland sites where perennial, perched aquifers have developed in deep sands, saline areas have been caused by throughflow and not by deep aquifer discharge.  相似文献   

5.
Hydrological budgets and flow pathways have been quantified for a small upland catchment (1.76 km2) in the northeast of Scotland. Water balance calculations for four subcatchments identified spatial variability within the catchment, with an estimated runoff enhancement of up to 25% for the upper western area, compared with the rest of the catchment. Data from spatial hydrochemical sampling, over a range of flow conditions, were used to identify the principal hillslope runoff mechanisms within the catchment. A hydrochemical mixing analysis revealed that runoff emerging from springs in various locations of the hillslope accounted for a significant proportion of flow in the streams, even during storm events. A hydrological model of the catchment was calibrated using the calculated stream flows for four locations, together with results from the mixing analysis for different time points. The calibrated model was used to predict the temporal variability in contributions to stream flow from the hillslope springs and soil water flows. The overall split ranged from 57%:43% spring water:soil water in the upper eastern subcatchment, to 76%:24% in the upper western subcatchment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Philippe Vidon 《水文研究》2012,26(21):3207-3215
Determining how riparian zone hydrological conditions may change in response to precipitation in various geomorphic settings is critical to determine the occurrence of hot moments of biogeochemical transformations for phosphorus, nitrogen, sulfate, mercury and greenhouse gases in these systems. The author investigate water table response to precipitation at a high temporal resolution (15 min) in a riparian zone located in a deeply incised glacial till valley (20 m) with approximately 2 m of alluvium over a confining layer, in Indiana, USA. During storms, larger water table fluctuations (approximately 100 cm) occurred near the stream than near the toe slope (10–25 cm). A quick rise in water table near the stream occurred for all storms, with partial flow reversals occurring for three of seven storms. The quick rise of the water table near the stream was associated with a decrease in hillslope water contributions to the stream during storms and the development of a water table down valley gradient for most storms. Water table fluctuations, groundwater flow velocities and electrical conductivity data indicated that riparian zone water table response to precipitation was primarily regulated by pressure wave processes. Regardless of the storm, high water tables persisted for at least 2 days after the cessation of precipitation. Although this suggests that high‐resolution precipitation data may be useful to quantify hot moments of biogeochemical transformation associated with high water tables in riparian zones, precipitation data alone are not sufficient to correctly estimate the magnitude of riparian water table level changes during storms. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
There is a growing opinion that poorly managed plantation forests in Japan are contributing to increased storm runoff and erosion. Here we present evidence to the contrary from runoff plots at two scales (hillslope and 0·5 × 2 m plots) for several forest conditions in the Mie and Nariki catchments. Runoff coefficients from small plots in untended hinoki forests were variable but typically higher than from better managed or deciduous forests during small storms at Nariki; at Mie, runoff during small events was highly variable from all small plots but runoff coefficients were similar for hinoki plots with and without understory vegetation, while the deciduous plot had lower runoff coefficients. Storm runoff was less at the hillslope scale than the plot scale in Mie; these results were more evident at sites with better ground cover. During the largest storms at both sites, differences in runoff due to forest condition were not evident regardless of scale. Dynamic soil moisture tension measurements at Nariki indicated that during a large storm, flow in the upper organic‐rich and root‐permeated soil horizons was 3·2 times higher than measured overland runoff from a small hinoki plot with poor ground cover and 8·3 times higher than runoff from a deciduous forest plot. On the basis of field observations during storms, at least a portion of the monitored ‘Hortonian overland flow’ was actually occurring in this near‐surface ‘biomat’. Therefore our field measurements in both small and large plots potentially included biomat flow in addition to short‐lived Hortonian runoff. Because overland flow decreased with increasing scale, rill erosion did not occur on hillslopes. Additionally, runoff coefficients were not significantly different among cover conditions during large storms; thus, the ‘degraded’ forest conditions appear not to greatly enhance peak flows or erosion potential at larger scales, especially when biomat flow is significant. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Understanding the interplay between hydrological flushing and biogeochemical cycling in streams is now possible owing to advances in high-frequency water quality measurements with in situ sensors. It is often assumed that storm events are periods when biogeochemical processes become suppressed and longitudinal transport of solutes and particulates dominates. However, high-frequency data show that diel cycles are a common feature of water quality time series and can be preserved during storm events, especially those of low-magnitude. In this study, we mine a high-frequency dataset and use two key hydrochemical indices, hysteresis and flushing index to evaluate the diversity of concentration-discharge relationships in third order agricultural stream. We show that mobilization patterns, inferred from the hysteresis index, change on a seasonal basis, with a predominance of rapid mobilization from surface and near stream sources during winter high-magnitude storm events and of delayed mobilization from subsurface sources during summer low-magnitude storm events. Using dynamic harmonic regression, we were able to separate concentration signals during storm events into hydrological flushing (using trend as a proxy) and biogeochemical cycling (using amplitude of a diel cycle as a proxy). We identified three groups of water quality parameters depending on their typical c-q response: flushing dominated parameters (phosphorus and sediments), mixed flushing and cycling parameters (nitrate nitrogen, specific conductivity and pH) and cycling dominated parameters (dissolved oxygen, redox potential and water temperature). Our results show that despite large storm to storm diversity in hydrochemical responses, storm event magnitude and timing have a critical role in controlling the type of mobilization, flushing and cycling behaviour of each water quality constituent. Hydrochemical indices can be used to fingerprint the effect of hydrological disturbance on freshwater quality and can be useful in determining the impacts of global change on stream ecology.  相似文献   

9.
A large weighing lysimeter was installed at Yucheng Comprehensive Experimental Station, north China, for evapotranspiration and soil‐water–groundwater exchange studies. Features of the lysimeter include the following: (i) mass resolution equivalent to 0·016 mm of water to accurately and simultaneously determine hourly evapotranspiration, surface evaporation and groundwater recharge; (ii) a surface area of 3·14 m2 and a soil profile depth of 5·0 m to permit normal plant development, soil‐water extraction, soil‐water–groundwater exchanges, and fluctuations of groundwater level; (iii) a special supply–drainage system to simulate field conditions of groundwater within the lysimeter; (iv) a soil mass of about 30 Mg, including both unsaturated and saturated loam. The soil consists mainly of mealy sand and light loam. Monitoring the vegetated lysimeter during the growing period of winter wheat, from October 1998 through to June 1999, indicated that during the period groundwater evaporation contributed 16·6% of total evapotranspiration for a water‐table depth from 1·6 m to 2·4 m below ground surface. Too much irrigation reduced the amount of upward water flow from the groundwater table, and caused deep percolation to the groundwater. Data from neutron probe and tensiometers suggest that soil‐water‐content profiles and soil‐water‐potential profiles were strongly affected by shallow groundwater. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
We examined the applicability of the critical‐source area (CSA) concept to the dairy‐grazed 192‐ha Upper Toenepi catchment and its 8·7‐ha Kiwitahi sub‐catchment, New Zealand. We evaluated if phosphorus (P) transport from land into stream is dominated by saturation‐excess (SE) and infiltration‐excess (IE) runoff during stormflow and by sub‐surface (<1·5 m depth) flows during baseflow. We measured stream flow and shallow groundwater levels, collected monthly stream, tile drain (TDA) and groundwater samples, and flow‐proportional stream samples from the Kiwitahi sub‐catchment, and determined their dissolved reactive phosphorus (DRP) and total phosphorus (TP) concentrations. In the Kiwitahi sub‐catchment, during storm events, IE contributions were significant. Contributions from SE appeared significant in the Upper Toenepi catchment. However, in both catchments, sub‐surface contributions dominated stormflow and baseflow periods. Absence of water table at the surface and the water table gradient towards the stream indicated that P transport during events was not limited to surface runoff. The dynamics of the groundwater table and the occurrence of SE areas were influenced by proximity to the stream and hillslope positions. Baseflow accounted for 42% of the annual flow in the Kiwitahi sub‐catchment, and contributed 37 and 52% to the DRP and TP loads, respectively. The P transport during baseflow appeared equally important as P losses from CSAs during stormflow. The close resemblance in P levels between groundwater and stream samples during baseflow demonstrates the importance of shallow groundwater for stream flow. In the Upper Toenepi catchment, contributions from effluent ponds (EFFs) dominated P loads. Management strategies should focus on controlling P release from EFFs, and on decreasing Olsen P concentrations in soil to minimize leaching of P via sub‐surface flow to streams. Research is needed to quantify the role of sub‐surface flow as well as to expand management strategies to minimize P transfers during stormflow and baseflow conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Headwaters contribute a substantial part of the flow in river networks. However, spatial variations of streamflow generation processes in steep headwaters have not been well studied. In this study, we examined the spatio-temporal variation of streamflow generation processes in a steep 2.98-ha headwater catchment. The time when baseflow of the upstream section exceeded that downstream was coincident with the time when the riparian groundwater switched from downwelling to upwelling. This suggests that upwelling of the riparian groundwater increased considerably in the upstream section during the wet period, producing a shift in the relative size of baseflow between the upstream and downstream sections. The timing of fluctuations among hillslope soil moisture, hillslope groundwater and streamflow reveals that the hillslope contributed to storm flow, but this contribution was limited to the wet period. Overall, these results suggest that streamflow generation has strong spatial variations, even in small, steep headwater catchments.

EDITOR A. Castellarin ASSOCIATE EDITOR X. Chen  相似文献   

12.
Pukemanga is a small (3 ha) steep headwater catchment at the Whatawhata Research Station near Hamilton, New Zealand. The water balance (1996–2002) shows average annual rainfall of 1640 mm producing annual runoff of 440 mm (baseflow 326 mm, stormflow 114 mm) and ‘deep seepage’ loss of 450 mm (i.e. 450 mm of water not appearing in the stream). Oxygen-18 (18O) concentrations were measured at weekly intervals for 8–15 months at six sites, ranging from Pukemanga Stream baseflow through wetland seepage to ephemeral streams and surface runoff. The first two showed no significant 18O variations. Inferred mean residence times within the catchment ranged from at least 4 years (for the stream baseflow and seepage) to a few weeks (for the ephemeral flows and surface runoff). Silica concentrations could also be used to distinguish deep flowpath water from near-surface flowpath water. Tritium concentrations gave an estimated mean residence time of 9 years for Pukemanga Stream baseflow. Sulphur hexafluoride tended to give younger ages, while the chlorofluorocarbon ages were older, but are not considered as reliable for dating streamflow in this time range. These results show that deep pathways predominate with over 74% of runoff deriving from deep hillslope flowpaths via the wetland, and 87% of total drainage (baseflow and deep seepage) travelling via deep hillslope flowpaths. Our conception of the deep drainage process is that there is a large volume of slowly moving water in the system (above and below the water table), which reaches the wetland and stream via an unconfined groundwater system. Subsurface water equivalents are estimated to be 2·9 m for drainage at the weir and 4·1 m for drainage bypassing the weir, giving a total of 7 m depth over the catchment. The unsaturated zone plays an important role in storing water for long periods (about 4 years), while linking the surface with the groundwater water table to contribute to the fast streamflow response to rainfall. A schematic model of the various pathways with indicative residence times is given. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The lower coastal plain of the Southeast USA is undergoing rapid urbanisation as a result of population growth. Land use change has been shown to affect watershed hydrology by altering stream flow and, ultimately, impairing water quality and ecologic health. However, because few long‐term studies have focused on groundwater–surface water interactions in lowland watersheds, it is difficult to establish what the effect of development might be in the coastal plain region. The objective of this study was to use an innovative improvement to end‐member mixing analysis (EMMA) to identify time sequences of hydrologic processes affecting storm flow. Hydrologic and major ion chemical data from groundwater, soil water, precipitation and stream sites were collected over a 2‐year period at a watershed located in USDA Forest Service's Santee Experimental Forest near Charleston, South Carolina, USA. Stream flow was ephemeral and highly dependent on evapotranspiration rates and rainfall amount and intensity. Hydrograph separation for a series of storm events using EMMA allowed us to identify precipitation, riparian groundwater and streambed groundwater as main sources to stream flow, although source contribution varied as a function of antecedent soil moisture condition. Precipitation, as runoff, dominated stream flow during all storm events while riparian and streambed groundwater contributions varied and were mainly dependent on antecedent soil moisture condition. Sensitivity analyses examined the influence of 10% and 50% increases in analyte concentration on EMMA calculations and found that contribution estimates were very sensitive to changes in chemistry. This study has implications on the type of methodology used in traditional forms of EMMA research, particularly in the recognition and use of median end‐member water chemistry in hydrograph separation techniques. Potential effects of urban development on important hydrologic processes (groundwater recharge, interflow, runoff, etc.) that influence stream flow in these lowland watersheds were qualitatively examined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Analysis of water flow pathways from hillslopes to streams is essential for the optimal protection of water resources as well as for ecohydrological studies. This study addresses runoff generation processes at a hillslope and near‐stream shallow groundwater system in the Black Forest Mountains, southwestern Germany. The changing spatial and temporal flow patterns during differing hydrological situations were examined using a combined hydraulic and hydrochemical approach. Groundwater levels at 10 wells, discharge at a near‐stream saturated area, and several natural tracers (deuterium, dissolved silica, and major anions and cations) were observed at different locations during high and low flows. The importance of the groundwater component during flood formation was clearly demonstrated: its contribution was about 80% during a double peak flood event at the saturated area. In addition, a rapid change of the shallow groundwater levels was observed along two transects of groundwater wells in the floodplain. This led to an enhanced groundwater discharge into the saturated area located at the end of one study transect. The amount of groundwater additionally activated during the event was about 30% of total discharge recorded at the outlet of the saturated area. Two alternative hypotheses are discussed to explain this phenomenon: the establishment of locally confined conditions and the development of a pressure wave (hypothesis A), or the significant change of the three‐dimensional groundwater flow lines that caused a large increase of the groundwater catchment at the saturated area during the investigated event (hypothesis B). Even if the exact flow paths and mechanisms could not be clearly identified, the importance of rapid responding hillslope groundwater was undoubtedly demonstrated by a combination of tracer and hydrometric methods. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Stream temperature ranged from 3 to 4°C at an experimental site during snowmelt on Hokkaido Island, Japan, which provided direct evidence of major contributions of subsurface water to stream water. In contrast, stream temperatures during rainstorms in summer decreased gradually after stream flow peaked, attaining a nearly constant temperature ranging from 9 to 11°C. During storm flow recession, stream temperatures during summer or snowmelt were similar to the soil temperature at 1·8 m below the land surface, suggesting that subsurface water contributions to stream flow are derived from this depth. The hygrographs during two rainstorms, August 1987 and September 1989, were separated using temperature. The stream temperature was assumed to depend on the mixing of surface flow, having a temperature ranging from that of rainfall to that of shallow (50 cm deep) soil water, and subsurface flow, having the temperature of the soil at 1·8 m below the land surface. Subsurface flow was estimated to contribute 85–90% of the total stream flow during each rainstorm. A two‐component hydrograph separation was also evaluated using specific conductance. Runoff contributions from the two sources for the temperature and specific conductance analysis were similar. Analysis of the temperature and conductance–discharge hysteresis loop, and of individual flow components for storm hygrographs, provide a general picture of the runoff process in the experimental basin. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
The hillslope‐riparian‐stream system is a key functional unit of catchments, yet very difficult to measure and monitor due to its tremendous complexity and high spatio‐temporal variability. Here, we present a simple and practical tool for imaging directly these hillslope‐riparian‐area connections. We used a FLIR b50 infrared camera to produce thermal images at the scale of 140 × 140 pixels over the spectral range 7·5–13 µm. Our IR imaging technique is sensitive to the upper 0·1 mm of the water column. Images were obtained from a constant position on the right bank of the Weierbach catchment in Luxembourg, at an incidence angle of approximately 45° over a 5‐week period. The study site measured 5 × 3 m. Our results show that ground‐based IR imagery can discriminate between areas with snow cover, snow melt, soil seepage, and stream water. More importantly, it can detect when and where variably saturated areas are active and when connectivity exists between the hillslope–riparian–stream system. Our proof of concept suggests that this is a simple, inexpensive technology for sequential mapping and characterisation of surface saturated areas and a useful complement to conventional tracer techniques. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A 40 m × 20 m mowed, grass hillslope adjacent to a headwater stream within a 26‐ha watershed in east‐central Pennsylvania, USA, was instrumented to identify and map the extent and dynamics of surface saturation (areas with the water table at the surface) and surface runoff source areas. Rainfall, stream flow and surface runoff from the hillslope were recorded at 5‐min intervals from 11 August to 22 November 1998, and 13 April to 12 November 1999. The dynamics of the water table (0 to 45 cm depth from the soil surface) and the occurrence of surface runoff source areas across the hillslope were recorded using specially designed subsurface saturation and surface runoff sensors, respectively. Detailed data analyses for two rainfall events that occurred in August (57·7 mm in 150 min) and September (83·6 mm in 1265 min) 1999, illustrated the spatial and temporal dynamics of surface saturation and surface runoff source areas. Temporal data analyses showed the necessity to measure the hillslope dynamics at time intervals comparable to that of rainfall measurements. Both infiltration excess surface runoff (runoff caused when rainfall intensity exceeds soil infiltration capacity) and saturation excess surface runoff (runoff caused when soil moisture storage capacity is exceeded) source areas were recorded during these rainfall events. The August rainfall event was primarily an infiltration excess surface runoff event, whereas the September rainfall event produced both infiltration excess and saturation excess surface runoff. Occurrence and disappearance of infiltration excess surface runoff source areas during the rainfall events appeared scattered across the hillslope. Analysis of surface saturation and surface runoff data showed that not all surface saturation areas produced surface runoff that reached the stream. Emergence of subsurface flow to the surface during the post‐rainfall periods appeared to be a major flow process dominating the hillslope after the August rainfall event. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Small‐scale heterogeneities and large changes in hydraulic gradient over short distances can create preferential groundwater flow paths that discharge to lakes. A 170 m2 grid within an area of springs and seeps along the shore of Shingobee Lake, Minnesota, was intensively instrumented to characterize groundwater‐lake interaction within underlying organic‐rich soil and sandy glacial sediments. Seepage meters in the lake and piezometer nests, installed at depths of 0·5 and 1·0 m below the ground surface and lakebed, were used to estimate groundwater flow. Statistical analysis of hydraulic conductivity estimated from slug tests indicated a range from 21 to 4·8 × 10?3 m day?1 and small spatial correlation. Although hydraulic gradients are overall upward and toward the lake, surface water that flows onto an area about 2 m onshore results in downward flow and localized recharge. Most flow occurred within 3 m of the shore through more permeable pathways. Seepage meter and Darcy law estimates of groundwater discharge agreed well within error limits. In the small area examined, discharge decreases irregularly with distance into the lake, indicating that sediment heterogeneity plays an important role in the distribution of groundwater discharge. Temperature gradients showed some relationship to discharge, but neither temperature profiles nor specific electrical conductance could provide a more convenient method to map groundwater–lake interaction. These results suggest that site‐specific data may be needed to evaluate local water budget and to protect the water quality and quantity of discharge‐dominated lakes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Variability in soil respiration at various spatial and temporal scales has been the focus of much research over the last decade aimed to improve our understanding and parameterization of physical and environmental controls on this flux. However, few studies have assessed the control of landscape position and groundwater table dynamics on the spatiotemporal variability of soil respiration. We investigated growing season soil respiration in a ~393 ha subalpine watershed in Montana across eight riparian–hillslope transitions that differed in slope, upslope accumulated area (UAA), aspect, and groundwater table dynamics. We collected daily‐to‐weekly measurements of soil water content (SWC), soil temperature, soil CO2 concentrations, surface CO2 efflux, and groundwater table depth, as well as soil C and N concentrations at 32 locations from June to August 2005. Instantaneous soil surface CO2 efflux was not significantly different within or among riparian and hillslope zones at monthly timescales. However, cumulative integration of CO2 efflux during the 83‐day growing season showed that efflux in the wetter riparian zones was ~25% greater than in the adjacent drier hillslopes. Furthermore, greater cumulative growing season efflux occurred in areas with high UAA and gentle slopes, where groundwater tables were higher and more persistent. Our findings reveal the influence of landscape position and groundwater table dynamics on riparian versus hillslope soil CO2 efflux and the importance of time integration for assessment of soil CO2 dynamics, which is critical for landscape‐scale simulation and modelling of soil CO2 efflux in complex landscapes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Allan Rodhe  Jan Seibert 《水文研究》2011,25(12):1899-1909
Knowledge of groundwater dynamics is important for the understanding of hydrological controls on chemical processes along the water flow pathways. To increase our knowledge of groundwater dynamics in areas with shallow groundwater, the groundwater dynamics along a hillslope were studied in a boreal catchment in Southern Sweden. The forested hillslope had a 1‐ to 2‐m deep layer of sandy till above bedrock. The groundwater flow direction and slope were calculated under the assumption that the flow followed the slope of the groundwater table, which was computed for different triangles, each defined by three groundwater wells. The flow direction showed considerable variations over time, with a maximum variation of 75°. During periods of high groundwater levels the flow was almost perpendicular to the stream, but as the groundwater level fell, the flow direction became gradually more parallel to the stream, directed in the downstream direction. These findings are of importance for the interpretation of results from hillslope transects, where the flow direction usually is assumed to be invariable and always in the direction of the hillslope. The variations in the groundwater flow direction may also cause an apparent dispersion for groundwater‐based transport. In contrast to findings in several other studies, the groundwater level was most responsive to rainfall and snowmelt in the upper part of the hillslope, while the lower parts of the slope reached their highest groundwater level up to 40 h after the upper parts. This can be explained by the topography with a wetter hollow area in the upper part. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号