首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract Three types of mineral associations are described from calc-silicate granulites from the Eastern Ghats, India, where geothermobarometry in associated rocks suggests extremely high P–T conditions of metamorphism ( c . 9 ± 1 kbar, 950° C). These mineral associations are: (i) calcite + quartz + scapolite + plagioclase, (ii) calcite + scapolite + wollastonite + porphyroblastic garnet + coronal garnet and (iii) calcite + quartz + wollastonite + scapolite + porphyroblastic garnet + coronal garnet, all coexisting with K-feldspar, titanite and clinopyroxene. The first two associations evolved through nearly isobaric cooling retrograde paths, whereas the third evolved through a nearly isothermal decompression path followed by an isobaric cooling retrograde path. Textural and compositional characteristics suggest the following mineral reactions in the calc-silicate granulites: calcite + quartz = wollastonite + CO2, calcite + plagioclase = scapolite, calcite + scapolite + wollastonite = porphyroblastic garnet ± quartz + CO2, CaTs + wollastonite = coronal garnet (association ii) and wollastonite + scapolite = coronal garnet (association iii) + quartz + CO2. Andradite content in garnet was buffered by the redox equilibria wollastonite + hedenbergite + O2= andradite + quartz (association iii) and wollastonite + andradite + CaTs + scapolite = hedenbergite + calcite + grossular + O2 (association ii). The contrasting mineral parageneses have been ascribed to interplay of variables such as X CO2, f O2, f HCl in the fluid, bulk Na content and the nature of the retrograde P–T–X CO2 paths through which the rocks evolved.  相似文献   

2.
The massif-type anorthosite complex at Bolangir in the northern part of the Eastern Ghats belt occurs in a milieu of predominantly supracrustal granulite-grade rocks. The massif is separated from the host gneisses by coarse-grained garnetiferous granitoid gneisses which are interpreted as coeval crustallyderived melts. Melanocratic ferrodiorite rocks occur at the immediate contact with the anorthosite massif which they intrude in cross-cutting dikes and sheets. The emplacement age of the anorthosite diapir and the associated igneous suites is deemed to be pre-D2. Recrystallization of the igneous assemblages of the ferrodiorite suite (750–800°C, 7–8kbar, ) during a period of near-isobaric cooling from the igneous crystallization stage to the regionalP-T regime led to extensive development of coronitic garnet at the interface of plagioclase phenocrysts with the mafic matrix assemblage (opx + fay + cpx + ilm ± amph, bio). Abundant accessory phases are zircon, apatite and thorite. The mafic phases have extremely ferrous compositions (XFe gar: 0.93-0.87, fay: 0.90-0.87, opx: 0.80-0.60, cpx: 0.70-0.47, amph: 0.81-0.71) reflecting the low Mg-number (16-8) of the rocks. Compared to worldwide occurrences of similar rocks, the Bolangir ferrodiorites (SiO2 36–58 wt.%, FeO*: 39-10 wt.%) are characterized by exceptionally high concentrations of HFSE and REE (TiO2: 4.8-1.0 wt.%, P2O5: 1.7-0.5 wt.%, Zr: 5900-1300 ppm, Y: 240-80 ppm, La: 540-100 ppm, Ce: 1100-200 ppm, Yb: 22-10 ppm, Th: 195-65 ppm). Well defined linear variation trends for major and trace elements reflect progressive plagioclase accumulation towards the felsic members of the suite. The ferrodiorites are interpreted to represent residual liquids of anorthosite crystallization which after segregation and extraction from the ascending diapir became enriched in HFSE and REE through selective assimilation of accessory phases (zircon, monazite, apatite) from crustal felsic melts. Ferromonzodioritic rock presumably formed through hybridization between the ferrodiorite and overlying felsic melts.  相似文献   

3.
A suite of spinel–cordierite granulites from Viziangram, Eastern Ghats Belt, India preserve mineral assemblages and reaction textures indicative of peak metamorphic conditions of >1000 °C, >8<10 kbar, followed successively by near isobaric cooling (down to 750–800 °C), near isothermal decompression (to 4–5 kbar), and late hydration. P–T conditions of each stage are evaluated through a combination of petrogenetic grid approach and thermobarometry. Sapphirine is developed in sillimanite‐bearing acid pegmatite veins that intruded the spinel–cordierite granulite close to peak metamorphic conditions, and also in the host rock in immediate contact with the pegmatite. Both sillimanite and sapphirine in the pegmatite are considered to be magmatic phases. Field observations and textural characteristics suggest that Al‐metasomatism of the spinel–cordierite granulite due to the intrusion of pegmatite was responsible for sapphirine formation in the spinel granulite.  相似文献   

4.
Linear domains of deformed alkaline rocks and carbonatites have recently been identified as representing sites of ancient suture zones. In peninsular India, the western margin of the Proterozoic Eastern Ghats Belt (EGB) is characterized by a series of alkaline plutons that are aligned close to the contact with the Archaean Craton. Most of the complexes were deformed and metamorphosed during a subsequent orogenic event. Unlike other plutons in the belt, the alkaline complex at Koraput reportedly escaped deformation and granulite facies metamorphism forming an anomalous entity within the zone. Multiply-deformed country rocks hosting this complex underwent syn-D1CR granulite facies metamorphism followed by D2CR thrusting, with pervasive shearing along a NE-SW trending foliation. A second granulite facies event followed localized D3CR shearing. Within the Koraput Complex, strain partitioning was responsible for preserving igneous textures in the gabbroic core, but aligned magmatic amphibole needles and plagioclase laths occasionally define a S1AC fabric. Along the margins, S1AC is rotated parallel to a NE-trending, east-dipping S2AC fabric in the gabbro, fringing syenodiorite and nepheline syenite bands. Locally, D3AC shearing follows D2AC deformation; S2AC and S3AC parallel S2CR and S3CR in the country rocks. High-grade metamorphism represented by recrystallization of amphibole and plagioclase, and breakdown of amphibole and biotite to garnet, pyroxene and K-feldspar in the complex follows D3AC. Unlike earlier reports, therefore, the Koraput body is also deformed and metamorphosed. The aligned alkaline complexes in the EGB probably represent deformed alkaline rocks and carbonatites formed by rifting related to an earlier episode of continental break-up that were deformed during subsequent juxtaposition of the EGB with the Archaean Craton. This supports the contention that the western margin of the EGB and its contact with the Archaean Craton is a suture zone related to the Indo-Antarctica collision event.  相似文献   

5.
A suite of metapelitic, basic and quartzofeldspathic rocks intruded by enderbitic gneiss from the southernmost tip of the Eastern Ghats Belt, India, and metamorphosed at c. 750–800  °C, 6  kbar, were subjected to repeated ductile shear deformation, hydration, cooling and accompanying alkali metasomatism along narrow shear zones. Gedrite-bearing assemblages developed in the shear zones traversing metapelitic rocks. Interpretation of the reaction textures in an appropriate P–T  grid in the system FMASH, an isothermal–isobaric μ H2O– μ Na2O grid in the system NFMASH, and geothermobarometric data suggest a complex evolutionary history for the gedrite-bearing parageneses. Initially, gedrite-bearing assemblages were produced due to increase in μ Na2O at nearly constant but high μ H2O accompanying cooling. Gedrite was partially destabilized to orthopyroxene+albite due to progressively increasing μ Na2O. During further cooling and at increased μ H2O a second generation of gedrite appeared in the rocks.  相似文献   

6.
The Proterozoic Eastern Ghats Mobile Belt along the east coast of India shares a thrusted lower contact with the surrounding cratons. The thrust, known as the Terrane Boundary shear zone, is associated with two large lateral ramps resulting in a curved outline on the northwestern corner of the mobile belt. The Eastern Ghats Mobile Belt is divided into two lithotectonic units, the Lathore Group and the Turekela Group, based on their lithological assemblages and deformational history. On the basis of published data from a Deep Seismic Sounding (DSS) profile of the Eastern Ghats crust, the Terrane Boundary Shear Zone is considered to be listric in nature and acts as the sole thrust between craton and mobile belt. The Lathore and Turekela Groups are nappes. With this structural configuration the NW part is described as a fold thrust belt. However, the thrusting postdates folding and granulite metamorphism that occurred in the Eastern Ghats, as in the Caledonide type of fold thrust belt of NW Scotland. The Terrane Boundary Shear Zone is interpreted to be contiguous with the Rayner-Napier boundary of the Enderby Land in a Gondwana assembly.  相似文献   

7.
The Kunavaram alkaline complex is a NE-SW trending elongate body located along a major lineament, the Sileru Shear Zone (SSZ) that is regarded as a Proterozoic suture related to Indo-Antarctica collision. The complex is hosted within migmatitic quartzofeldspathic gneisses, mafic granulites retrogressed to amphibolites, and quartzites. The structural evolution of the country rocks and the alkaline complex are similar. The first phase of deformation, D1, produces a pervasive segregation banding (S1) in all rock units within and outside the complex. A second deformation phase D2 isoclinally folded S1 along subvertical axial planes with shallow plunging axes. F2 isoclinal folds are ubiquitous in the country rocks and the eastern extremity of the complex. In the interior of the alkaline body, D2 strain decreases and S1 is commonly subhorizontal. While amphibolite to granulite facies conditions prevailed during deformation, post-D2 annealing textures testify to persisting high grade conditions. In the west, a NNE-SSW trending dextral shear zone with strike-slip sense (D3) truncates the complex. Within this shear zone, quartzofeldspathic country rocks are plastically deformed, while hornblende-K-feldspar assemblages of the complex are retrogressed to biotite and plagioclase. Warping related to D3 shears also resulted in fold interference patterns on the subhorizontal S1 foliation in low D2 strain domains. Based on its steep dip, north-easterly trend, and non-coaxial nature with dextral strike-slip sense, the D3 shear zone can be correlated with the SSZ. Since this shear zone, i.e., the SSZ, is not associated with primary igneous fabrics and resulted in solid state deformation of the complex, it cannot be considered as a conduit for alkaline magmatism, but is probably responsible for the post-tectonic disposition of the pluton.  相似文献   

8.
The boundary between the Archean cratons and the Eastern Ghats Belt in peninsular India represents a rifted Mesoproterozoic continental margin which was overprinted by a Pan-African collisional event associated with the westward thrusting of the Eastern Ghats granulites over the cratonic foreland. The contact zone contains a number of deformed and metamorphosed nepheline syenite complexes of rift-related geochemical affinities. In addition to the nepheline-bearing rocks, metamorphosed quartz-bearing monzosyenitic bodies can also be identified along the suture in the region between the Godavari-Pranhita graben and the Prakasam Igneous Province. One such occurrence at Jojuru near Kondapalle is geochemically comparable to the nepheline syenites and furnishes a weighted mean concordant U–Th–Pb SHRIMP zircon age of 1263 ± 23 Ma (2σ), which provides a lower age bracket for the rift-related magmatic activity. The original igneous mineral assemblage in the monzosyenite was partially replaced by the formation of coronitic garnet during the Pan-African metamorphism of the rocks. PT estimates of garnet corona formation at the interface between clinopyroxene–orthopyroxene–ilmenite clusters and plagioclase indicate mid to upper amphibolite facies condition (5.5–7.0 kbar and 600–700 °C) during the thrust induced deformation and metamorphism associated with the Pan-African collisional tectonics.  相似文献   

9.
Textural relations, thermobarometry and petrogenetic grid considerations in the syn-tectonic granitoid massif and the enveloping metasedimentary gneisses at Salur are consistent with a counter-clockwise PT t path for the rocks. The low-P/high-T prograde sector is documented by the pre- to syn-D1 cordierite±orthopyroxene±garnet±spinel–bearing metatexite leucosomes in metapelites. Heating and loading of the rocks (syn- to post-D1) resulted in the formation of garnet+orthopyroxene± cordierite-bearing diatexites, and decomposition of cordierite in metatexite leucosomes to orthopyroxene+sillimanite+biotite+quartz symplectites. Near-peak temperature, 850 °C at 8.0 kbar, was reached syn- to post-D2. Post-peak cooling resulted in the stabilization of coronal grossular and anorthite+calcite symplectites at the expense of scapolite+wollastonite+calcite assemblages in calc-silicate gneisses, and the resetting of cation exchange temperatures at 700–750 °C. Near-isothermal decompression at c. 700–750 °C is manifested by the decomposition of garnet porphyroblasts in the granitoid gneisses to plagioclase+orthopyroxene/ilmenite/biotite two-phase coronas and restabilization of cordierite at garnet margins in metapelites. Subsequent low-P, near-isobaric cooling led to the overprinting of granulite facies assemblages by muscovite+calcite assemblages, and further resetting of cation exchange thermometers to lower temperatures c. 600 °C. The tectonothermal evolution of the Salur gneiss complex vis-a-vis the Eastern Ghats Belt is therefore consistent with high degrees of lower crustal melting, followed by prograde heating of the cover rocks due to magma invasion synchronous with crustal compression, and finally thermal relaxation over a protracted period punctuated by tectonic/erosional denudation of the thickened crust.  相似文献   

10.
Structural mapping of the Pasupugallu pluton, an elliptical intrusive gabbro-anorthosite body, emplaced into the western contact zone between the Eastern Ghats Mobile Belt and the Archaean East Dharwar Craton, along the east coast of India, reveals concentric, helicoidal and inward dipping magmatic and/or tectonic foliations. We identify a <1 km-wide structural aureole characterized by pronounced deflection of regional structures into margin parallel direction, mylonitic foliations with S-C fabrics, sigmoidal clasts, moderately plunging stretching lineations, non-cylindrical intrafolial folds, and stretched elliptical mafic enclaves in the aureole rocks. Our results suggest that the pluton emplacement is syn-tectonic with respect to the regional ductile deformation associated with the terrane boundary shear zone at the western margin of the Eastern Ghats. We present a tectonic model for the emplacement of the pluton invoking shear-related ductile deformation, rotation and a minor component of lateral expansion of magma. The intrusive activity (1450-800 Ma) along the western margin of the Eastern Ghats can be correlated with the significant event of recurring mafic, alkaline and granitic magmatism throughout the global Grenvillian orogens associated with the continent-continent collision tectonics possibly related to the amalgamation and the breakup of the supercontinent Rodinia.  相似文献   

11.
High‐MgAl rocks occur as xenoliths (up to 2 m in diameter) in mafic granulites at a newly discovered locality near Anakapalle. Following an early phase of deformation, ultrahigh‐temperature (UHT) metamorphism and near‐isothermal decompression, the rocks were intruded in a lit‐par‐lit manner by felsic melts (charnockite), which caused local‐scale metasomatism. A subsequent deformation produced isoclinal folds and the distinct gneissic foliation of the charnockite still at granulite facies conditions. The sequence of multiphase reaction textures in the high‐MgAl xenoliths reflects the changes of physico‐chemical conditions during the polyphase evolution of the terrane; UHT metamorphism (stage 1, > 1000°C, c. 10 kbar) is documented by relics of extremely coarse grained domains with the assemblage orthopyroxene (opx)1 + garnet (grt)1 + sapphirine (spr)1 + spinel (spl)1 + rutile (rt). A subsequent phase of near‐isothermal decompression in the order of 1–2 kbar (stage 2) resulted in extensive replacement of grt1 and opx1 megacrysts by lamellar (opx2 + spr2) symplectites. The intrusion of felsic melt (stage 3) led to the development of a narrow metasomatic black wall reaction zone (bt + sil + plg3 + opx2,3 + rt) at the immediate contact of the xenoliths and in melt infiltration zones to the partial replacement of (opx2 + spr2) symplectites by biotite and sillimanite and/or plg3, mainly at the expense of orthopyroxene, with concomitant coarsening of the intergrowth texture. The subsequent deformation (stage 4) further modified the symplectite textures through polygonization, recrystallization and grain‐size coarsening. The deformation was followed by a period of cooling and decompression (stage 5, c. 800°C, 4–7 kbar) as indicated by local growth of late garnet (grt5) at the expense of (opx + spr + plg) domains at static conditions. Recently published isotope data suggest that the multistage evolution of the high‐MgAl granulites at Anakapalle followed a discontinuous P–T trajectory that may be related to heating of the crust through magmatic accretion culminating in deep‐crustal UHT metamorphism at 1.4 Ga (stage 1), fast uplift of the UHT granulites into mid‐crustal levels as a consequence of extensional tectonics (stage 2), emplacement of felsic magmas in the Grenvillian (at c. 1 Ga, stage 3) resulting in reheating of the crust to high–T conditions followed by a phase of compressional tectonics (stage 4) and a period of cooling to the stable geotherm (stage 5) still in the Grenvillian.  相似文献   

12.
The Eastern Ghats Granulite Belt (EGGB) forms part of a continuous Precambrian metamorphic terrain in Gondwana. It is characterised by widespread development of an Archaean khondalite suite of metasedimentary rocks, Archaean to Late-Proterozoic charnockites and Late Proterozoic anorthositic, granitic and syenitic emplacements. A 1900 Ma megacrystic granitoid suite, containing varying proportions of charnockites and granites, forms an important and widely distributed litho-unit in the central khondalite and eastern migmatite zones of the EGGB. It contains metasedimentary enclaves, megacrystic K-feldspar, quartz, plagioclase ovoids, biotite, garnet (porphyroblasts and coronas), apatite, zircon, ilmenite, magnetite, etc. Hypersthene is present in the charnockite phase. Monazite is present in some garnet-free granites. It is characterised by low Na2O/K2O ratios, high alumina saturation index, CaO, MgO, and ÝREE, negative correlation of TiO2, Al2O3, Fe2O3t, MgO, MnO, CaO, P2O5, Ba, Sr, Zr and V with SiO2, positive correlation of K2O, REE, Th and Rb with SiO2, fractionated LREE, relatively flat HREE and negative Eu anomalies.The data suggest S-type nature of the suite. Fractionation of the granitic magma and local variations in pH2O and fCO2 caused the formation of megacrystic charnockites. Formation of the corona garnet is related to the reworking of the suite during late Proterozoic (ca. 1250 Ma) isothermal decompression associated with channelised CO2-rich fluid flux along narrow shear zones.  相似文献   

13.
T.R.K. Chetty   《Gondwana Research》2010,18(4):565-582
New data from structural mapping and tectonic evaluation in the northern parts of the Eastern Ghats Mobile Belt (EGMB-north) involving the interpretation of satellite images, field traverses, critical outcrop mapping and kinematic studies of macro- as well as microstructures of the shear zone rocks together with the geometry and disposition of Gondwana basins led to, for the first time, the elucidation of post-Grenvillian structural architecture of the terrane. This helps in assessing the sequence of successive tectonothermal events that were responsible for the origin and progressive evolution of the Permo-Carboniferous coal bearing sediments along the Mahanadi rift that forms significant in the reconstruction models of east Gondwana.The composite terrane of high-grade metamorphic rocks (EGMB-north), strikes E–W in contrast to the regional NE–SW trend of the EGMB. The structural architecture obtained from this study is controlled by the boundary shear zones and associated link shear zones. The dextral kinematic displacements along the Northern Boundary Shear Zone (NBSZ) as well as the Mahanadi Shear Zone (MSZ) and Koraput–Sonapur–Rairakhol Shear Zone (KSRSZ) were derived from multi-scale field based structural observations. A N–S structural cross-section presents a crustal-scale ‘flower structure’ across the composite terrane exposing different domains displaying distinctive internal structures with widely varying different geological evolution history and strain partitioning, separated by crustal-scale shear zones. Deep seismic imaging and gravity signatures support ‘flower structure’ model. The pervasive first formed gneissic fabrics were continuously reworked and partitioned into a series of E–W, crustal-scale shear zones.The Neoproterozoic regional dextral transpressional tectonics along the shear zones and their repeated reactivation could be responsible for initiation and successive evolution of Gondwana basins and different episodes of sedimentation. Available geochronological data shows that the structural architecture presented here is post-Grenvillian, which has been repeatedly reactivated through long-lived transpressional tectonics. The composite terrane is characterized by all the typical features of an oblique convergent orogen with transpressional kinematics in the middle to lower crust. The kinematic changes from transpression to transtensional stresses were found to be associated with global geodynamics related to the transformation from Rodinia to Gondwana configuration.  相似文献   

14.
Stability of the assemblage sapphirine + quartz in Mg–Al-rich granulites implies ultrahigh temperature (UHT) condition of metamorphism but their direct contact is rarely preserved in natural rocks. The present study shows contrasting textural relations between sapphirine and quartz in different parts of the same occurrence of a Mg–Al-rich granulite, Eastern Ghats Belt, India. Textural data suggest stabilization of the assemblage sapphirine + quartz with orthopyroxene and cordierite during the metamorphic peak. Thermometric estimates yield temperature exceeding 950 °C for the stability of this assemblage. Most of such sapphirine grains (Spr1) are texturally separated from quartz and cordierite grains by double corona of sillimanite + orthopyroxene that results due to isobaric cooling during the post-peak stage. Sapphirine (Spr2) also forms a symplectic intergrowth with quartz and orthopyroxene at the fringe of coarse orthopyroxene. This textural feature can be explained by the breakdown of (Fe, Mg)-Tschermak components of orthopyroxene during the same isobaric cooling episode from UHT peak condition. The preservation of grain contact of this intergrown sapphirine and quartz can be attributed to a problem in reaction kinetics. In the other mode, sapphirine (Spr3) occurs with quartz with a thin skin of cordierite near a quartz vein. Such texture could result from isothermal decompression of the cooled crust. Alternatively and more possibly, cordierite could form from ingress of CO2–H2O rich fluid during terminal stage of cooling. Finally, sapphirine (Spr4) and quartz show direct contact close to the quartz vein. Direct contact of such sapphirine and quartz represents textural disequilibrium as this particular quartz is introduced as a vein much later than the peak metamorphism but prior to the major foliation-forming deformation. Coarse sapphirine and vein quartz, therefore, accidentally came in contact with each other and persisted metastably. Therefore, though coexistence of sapphirine and quartz is considered to be a strong evidence for ultrahigh temperature condition, care should be taken to decipher their stable coexistence. Different types of textural relations involving this mineral pair could originate in a single rock, probably in different stages of its metamorphic history.  相似文献   

15.
The Koraput Alkaline Complex in the high-grade Eastern Ghats Belt, India, is synkinematically emplaced in a pull-apart structure and far from the Bastar cratonic margin. The suite comprises four distinct members, namely, mafic syenite, felsic syenite, nepheline syenite and perthite syenite. Fe-rich orthopyroxene rims on olivine in mafic syenite indicate iron-enrichment in the early stage of differentiation. With plagioclase of andesine composition it could be described as alkali-norite, the plutonic equivalent of hawiite. Felsic syenite with both alkali-feldspars and plagioclase of oligoclase composition could be described as two-feldspar syenite, the plutonic equivalent of mugearite. Albitic rims on nepheline indicates subsolvus reaction. Chemical trends in amphiboles and plagioclase feldspars, progressively more ferroan and more sodic respectively, are strong indications of mineral fractionation in the Koraput suite. Chemical trends in the variation diagrams are compatible with feldspar fractionation in the Koraput suite. A weak Fe-enrichment trend in the early stage of differentiation, as observed in the AFM diagram, is compatible with that of the alkali-basalt series. Nb anomalies, both positive and negative, are indicative of crustal contamination as expected in synkinematic plutons. In terms of Gondwana assembly and break up, the alkaline complexes are supposed to represent rift-related magmatism along the continental margin. In spite of petrological evidence of the magmatic character of the Koraput Complex, anorogenic setting is contra-indicated by mesoscopic and microscopic fabrics, more akin to synkinematic intrusion during F 2 folding in the host country rocks. The Proterozoic alkaline complexes in the Eastern Ghats Belt, could alternatively trace the path of moving Gondwana continent over mantle plumes.  相似文献   

16.
Following ultrahigh temperature granulite metamorphism at ∼1 Ga, the Eastern Ghats Province of India was intruded by the Koraput Alkaline Complex, and was subsequently re-metamorphosed in the granulite facies in the mid-Neoproterozoic time. Fluid inclusion studies were conducted on silica undersaturated alkali gabbro and syenites in the complex, and a pre-metamorphic pegmatitic granite dyke that intrudes it. High density (1.02–1.05 g/cc), pseudo-secondary pure CO2 inclusions are restricted to metamorphic garnets within the gabbro and quartz within the granite, whereas moderate (∼0.92–0.95 g/cc) and low density (∼0.75 g/cc) secondary inclusions occur in garnet, magmatic clinopyroxene, plagioclase, hornblende and quartz. The isochores calculated for high density pseudo-secondary inclusions pass very close to the peak metamorphic window (∼8 kbar, 750 °C), and are interpreted to represent the fluid present during peak metamorphism that was entrapped by the growing garnet. Microscopic round inclusions of undigested, relict calcite in garnet suggest that the CO2 present during metamorphism of the complex was internally derived through carbonate breakdown. Pure to low salinity (0.00–10.1 wt% NaCl equivalent) aqueous intra-/intergranular inclusions showing unimodal normal distribution of final ice-melting temperature (Tm) and temperature of homogenization (Th) are present only in quartz within the granite. These represent re-equilibrated inclusions within the quartz host that were entrapped at the metamorphic peak. Rare, chemically precipitated graphite along the walls of carbonic inclusions is interpreted as a post-entrapment reaction product formed during decompression. The fluid inclusion evidence is consistent with rapid exhumation of a thickened lower crust following the mid-Neoproterozoic granulite facies metamorphic event. The study suggests that mantle CO2, transported by alkaline magma into the crust, was locked up within carbonates and released during granulite metamorphism.  相似文献   

17.
In this paper, we compare the petrological histories of the Kemp Land Coast (east Antarctica), and Gokavaram area (Eastern Ghats), that were supposed to have been juxtaposed. The area around Gokavaram is dominated by different varieties of paragneisses (pelitic, quartzofeldspathic, and calcareous composition) with relatively minor amounts of orthogneisses (mafic, enderbitic, and granitic composition). The rocks were involved in three major phases of deformation, and were finally affected by localised shear movement. On the basis of reaction textures, well preserved in high Mg-Al granulites, and calc-silicate granulites, and geothermobarometric data we deduce a polymetamorphic evolution of the rocks. Following an early M1 metamorphism culminating at 9.2–9.4 kbar, > 950°C, the rocks cooled nearly isobarically down to 850°C. During a subsequent M2 metamorphism, near isothermal decompression to 5–6 kbar occurred. This was followed by near isobaric cooling down to 600–650°C. M3 is a weak amphibolite facies overprint, largely restricted to late shears, which involved hydration as well. Available radiometric data from this area can be interpreted in terms of partial resetting of U-Pb systematics in older sphenes due to M3 metamorphism at ca. 550 Ma. Despite the absence of sufficient isotopic data on the Eastern Ghats granulites, we document a remarkable similarity in the petrological history of the two supposedly erstwhile neighbours.  相似文献   

18.
Nepheline syenite plutons emplaced within the Terrane Boundary Shear Zone of the Eastern Ghats Mobile Belt west of Khariar in northwestern Orissa are marked by a well-developed magmatic fabric including magmatic foliation, mineral lineations, folds and S-C fabrics. The minerals in the plutons, namely microcline, orthoclase, albite, nepheline, hornblende, biotite and aegirine show, by and large, well-developed crystal faces and lack undulose extinction and dynamic recrystallization, suggesting a magmatic origin. The magmatic fabric of the plutons is concordant with a solid-state strain fabric of the surrounding mylonites that developed due to noncoaxial strain along the Terrane Boundary Shear Zone during thrusting of the Eastern Ghats Mobile Belt over the Bastar Craton. However, a small fraction of the minerals, more commonly from the periphery of the plutons, is overprinted by a solid state strain fabric similar to that of the host rock. This fabric is manifested by discrete shear fractures, along which the feldspars are deformed into ribbons, have undergone dynamic recrystallization and show undulose extinction and myrmekitic growth. The shear fractures and the magmatic foliations are mutually parallel to the C-fabric of the host mylonites. Coexistence of concordant solid state strain fabric and magmatic fabric has been interpreted as a transitional feature from magmatic state to subsolidus deformation of the plutons, while the nepheline syenite magma was solidifying from a crystal-melt mush state under a noncoaxial strain. This suggests the emplacement of the plutons synkinematic to thrusting along the Terrane Boundary Shear Zone. The isotopic data by earlier workers suggest emplacement of nepheline syenite at 1500 +3/−4Ma, lending support for thrusting of the mobile belt over the craton around that time.  相似文献   

19.
ABSTRACT A suite of garnet-wollastonite-scapolite-bearing calcsilicate granulites from the Eastern Ghats has been investigated to document the controls of mineral reactions during the metamorphic evolution of the deep continental crust. The rocks studied show heterogeneity in modal mineralogy and phase compositions in millimetre-sized domains. Textural relations, and the compositional plots of the phases, established that the clinopyroxene exerts a strong influence on the formation and composition of garnet in the complex natural system. P-T estimates using the vapour-independent equilibria involving garnet define a near isobaric cooling path from c. 850C at c. 5.5–5.2 kbar. The deduced trajectory tallies well with the terminal segment of the overall retrograde P-T path construed from the associated rocks using well-calibrated thermobarometers. The ubiquitous occurrence of wollastonite and scapolite in the main calcsilicate body suggests low aCO2 during peak metamorphic condition. Fluid compositions constrained from mineral-fluid equilibria of the garnet-bearing assemblages show domainal variations as a function of the compositions of the solid phases, e.g. garnet and clinopyroxene. A quantitative log/CO2-log/O2 diagram has been constructed to depict the stability of the different calcsilicate assemblages as functions of the compositions and the behaviour of these fugitive species. The results of the mineral-fluid equilibria and the quantitative fluid/rock ratio calculations, in conjunction with the topological constraints, imply vapour-deficient meta-morphism in the rocks studied. It is argued that fO2 during peak metamorphism was monitored by the ambient fO2. Subsequently, during retrogression, different domains evolved independently, whereas the fluid composition was controlled by the mineral-fluid equilibria.  相似文献   

20.
At Deobhog, migmatitic gneisses and granulites of the Eastern Ghats Belt are juxtaposed against a cratonic ensemble of banded augen gneiss, amphibolite and calcsilicate gneiss, intruded by late hornblende granite and dolerite. In the migmatitic gneiss unit, early isoclinal folds (syn‐D1M and D2M) are reoriented along N–S‐trending and E‐dipping shear planes (S3M), with (S1M–S3M) intersection lineations having steep to moderate plunges. The near‐peak PT condition was syn‐D3M (≥900 °C, 9.5 kbar), as inferred from syn‐D3M Grt+Opx‐bearing leucosomes in mafic granulites, and from thermobarometry on Grt (corona)–Opx/Cpx–Pl–Qtz assemblages. The PT values are consistent with the occurrence of Opx–Spr–Crd assemblages in spatially associated high‐Mg–Al pelites. A subsequent period of cooling followed by isothermal decompression (800–850 °C, c. 7 kbar) is documented by the formation of coronal garnet and its decomposition to Opx+Pl symplectites in mafic granulites. Hydrous fluid infiltration accompanying the retrograde changes is manifested in biotite replacing Opx in some lithologies. The cratonic banded gneiss–granite unit also documents two phases of isoclinal folding (D1B & D2B), with the L2B lineation girdle different from the lineation spread in the migmatitic gneiss unit. Calcsilicate gneiss (Hbl–Pl–Cpx–Scap–Cal) and amphibolite (Hbl–Pl±Grt±Cpx) within banded gneisses record syn‐D2B peak metamorphic conditions (c. 700 °C, 6.5 kbar), followed by cooling (to c. 500 °C) manifested in the stabilization of coronal clinozoisite–epidote. The D3B shear deformation post‐dates granite and dolerite intrusions and is characterized by top‐to‐the‐west movement along N–S‐trending, E‐dipping shear planes. Deformation mechanisms of quartz and feldspar in granites and banded gneisses and amphibole–plagioclase thermometry within shear bands in dolerites document an inverted syn‐D3B thermal gradient with temperature increasing from 350 to 550 °C in the west to ≥700 °C near the contact with the migmatitic gneiss unit. The thermal gradient is reflected in the stabilization of chlorite after hornblende in S3B shears to the west, and post‐D2B neosome segregation along D3B folds and shears to the east. The contrasting lithologies, early structures and peak metamorphic conditions in the two units indicate unconnected pre‐D3PT –deformation histories. The shared D3 deformation in the two units, the syn‐D3 inverted thermal gradient preserved in the footwall cratonic rocks and the complementary cooling and hydration of the hanging wall granulites across the contact are attributed to westward thrusting of ‘hot’ Eastern Ghats granulites on ‘cool’ cratonic crust. It is suggested that the Eastern Ghats migmatitic gneiss unit is not a reworked part of the craton, but a para‐autochthonous/allochthonous unit emplaced on and amalgamated to the craton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号