首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
塔中Ⅰ号坡折带奥陶系凝析气田勘探中的古地貌学方法   总被引:11,自引:1,他引:10  
针对塔中地区碳酸盐岩埋藏深度大、横向非均质性强、岩层顶面地震反射强而内幕地震反射弱且分辨率低等地震地质特点,充分利用三维地震信息,精细解释了上奥陶统桑塔木组内部地震反射强振幅、强连续等时界面和碳酸盐岩顶界面,刻画了塔中Ⅰ号坡折带奥陶系碳酸盐岩台地—陆棚边缘高能礁滩体的地貌学特征,建立了碳酸盐岩建隆的地震地质模式。该模式为全面认识该区碳酸盐岩建隆沉积体系的发育特征和分布范围提供了重要依据,并在该区奥陶系凝析气田勘探、有利勘探区带评价和储量评估中得到了成功应用,取得了良好的经济效益。  相似文献   

2.
Twelve oil samples have been characterised by titration, FT-IR and chromatographic analysis to determine the differences between the organic acid composition of biodegraded and non-biodegraded oils. The biodegraded oils have higher total acid and total base contents, both by titration and extraction. The molecular weight ranges of the extracted acids are lowest in the biodegraded oils, and the equivalent weight calculations indicate a dominance of multi-functional molecules. Gel permeation chromatography gives a molecular weight range with most of the molecules between 300 and 500 g/mol. FT-IR shows that the extracted acids from biodegraded oils are more carboxylic and aliphatic while the non-degraded oils are more phenolic. Molecular analysis of the derivatised extracts give UCM envelopes for biodegraded oils, and no molecular identification. The results indicate that the acidic constituents in biodegraded oils are a product of the biodegradation, as the composition is very different from the non-biodegraded oils.  相似文献   

3.
Pyrolysis of asphaltenes from crude oils yields significant amounts of crude oil-like material. Studies of asphaltenes and their pyrolysis products from biodegraded and non-biodegraded oils show that biodegradation does not affect the composition of asphaltene. The overall composition of the oil produced from them on pyrolysis is similar to, yet significantly different from, that of the parent oil. From these compositional differences, it is concluded that asphaltene and its pyrolysis products contain geochemical information which is characteristic, and therefore may shed light on the history of the oil prior to asphaltene formation.  相似文献   

4.
More than 100 crude oils and 12 oil sands from Alberta, Canada, from stratigraphie units ranging in age from Upper Cretaceous to Middle Devonian, were processed to separate the asphaltenes which were then analysed for C, H, N, O and S and the ESR spectra run to determine g-value, spin number and line width. A factor analysis of these data, together with selected crude oil and reservoir properties, was interpreted in terms of a number of non-thermal processes which can affect the content and composition of asphaltenes during and after thermal maturation. Experiments on the effect of temperature on the signal intensity of free radicals indicate that more than half, and possibly all, the free radicals observed in asphaltenes must arise from charge transfer or closely related equilibria. An important solvent effect is demonstrated in further experiments, in which the more polar the solvent, the more the solvent dispersive forces overcome the associative forces of the asphaltene layers thus leading to lower molecular weights and a change in the charge transfer forces responsible for the ESR signal. The average molecular weight of asphaltenes from heavy, asphaltic, biodegraded crude oils and oil sands is considerably greater than the average molecular weight of asphaltenes from the more paraffinic, mature, non-biodegraded crude oils, and it seems likely that the differences in molecular weight of these asphaltenes are due to the solvent effect of the crude oils, and thus the laboratory observations have been confirmed in the Alberta basin.  相似文献   

5.
生物降解原油中吡咯氮化合物组成的变化   总被引:1,自引:0,他引:1  
渤海海域地区近50个原油样品中性氮组分的GC/MS定量分析资料表明,油藏中的生物降解作用对原油的吡咯氮化合物含量和分布有明显影响。经与同源未降解原油比较,各种烷基咔唑和苯并咔唑在3。4级中轻度降解油中就出现明显降解迹象,随生物降解程度增高其含量逐渐减少,在6—8级严重降解油中它们的总含量降低到原有的五分之一左右。在3—4级中轻度降解油中,裸露型甲基咔唑异构体更容易被微生物侵袭而代谢,抗生物降解能力按1-甲基咔唑〉4-甲基咔唑〉2-、3-甲基咔唑顺序递减;当降解程度更高时,这些化合物降解速率相当,1-/4-MCA等比值相对稳定。低-中等降解阶段,不同类型二甲基咔唑异构体的抗生物降解能力也存在明显差异性,呈屏蔽型〉半屏蔽型〉裸露型降低;在生物降解水平进一步增高时,这些异构体之间的相对含量变化不大。生物降解作用对苯并咔唑系列化合物分布的影响具有不确定性,且随降解程度的增加变得更为显著,降解油中【a】/[c】苯并咔唑比值或增高或降低。生物降解原油中吡咯氮化合物的组成变化,使降解油的二次运移示踪面临新的问题。  相似文献   

6.
Deeply buried heavy oils from the Tabei Uplift of the Tarim Basin have been investigated for their source origin, charge and accumulation time, biodegradation, mixing and thermal cracking using biomarkers, carbon isotopic compositions of individual alkanes, fluid inclusion homogenization temperatures and authigenic illite K–Ar radiometric ages. Oil-source correlation suggests that these oils mainly originated from Middle–Upper Ordovician source rocks. Burial history, coupled with fluid inclusion temperatures and K–Ar radiometric ages, suggests that these oils were generated and accumulated in the Late Permian. Biodegradation is the main control on the formation of these heavy oils when they were elevated to shallow depths during the late Hercynian orogeny. A pronounced unresolved complex mixture (UCM) in the gas chromatograms together with the presence of both 25-norhopanes and demethylated tricyclic terpanes in the oils are obvious evidence of biodegradation. The mixing of biodegraded oil with non-biodegraded oil components was indicated by the coexistence of n-alkanes with demethylated terpanes. Such mixing is most likely from the same phase of generation, but with accumulation at slightly different burial depths, as evidenced by overall similar oil maturities regardless of biodegradation level and/or amount of n-alkanes. Although these Ordovician carbonate reservoirs are currently buried to over 6000 m with reservoir temperatures above 160 °C, no significant secondary hydrocarbon generation from source rocks or thermal cracking of reservoired heavy oil occur in the study area. This is because the deep burial occurred only within the last 5 Ma of the Neogene, and there has not been enough heating time for additional reactions within the Middle–Upper Ordovician source rocks and reservoired heavy oils.  相似文献   

7.
《Applied Geochemistry》1997,12(3):229-241
The fluorescence spectra of crude oils, synthesized as hydrocarbon fluid inclusions (hcfi) in NaCI crystals, have been recorded and correlated with crude oil chemical analysis. The crude oils represent a wide range in total hydrocarbons, saturate and aromatic fractions, and resin-asphaltene concentration. The fluorescence properties (Lambda max and Q) of the hydrocarbon fluid inclusions display a systematic red shift to longer wavelengths from 440 nm to 595 nm with increasing aromatic content and increasing concentration of NSO-bearing compounds. A positive correlation also exists between Lmax-Q and the thermal maturity parameters nC17/pristane and nC18/phytane. First order linear regression equations provide a method for constraining the chemical composition of natural hydrocarbon fluid inclusions. Lmax and Q correlate positively with oil density (°API), providing for an indirect method of estimating the API of a natural hydrocarbon fluid inclusion assemblage. Fluorescence spectra of non-biodegraded crude oils from the Upper Devonian Birdbear Formation, Saskatchewan, Canada, have been correlated with regionally widespread hcfi within carbonate carrier beds and reservoir rocks of the same formation. The two most dominant types of hcfi spectra match well with the fluorescence spectra from crude oils within the Birdbear Formation. A third, less common population of very-blue fluorescing hcfi (Lmax=415440 nm, Q ≤ 0.10) also occur within fractures, intercrystalfne cements or in fossil overgrowths. The Lmax-Q-API-chemical correlations establised for the synthetic hcfi suggests that the °API of these inclusions is probably > 45° and the saturate/aromatic ratio ranges from 3.2 to 5.1. Spectra from hcfi within quartz overgrowths and cements, fractures and carbonate cements from sandstone reservoirs in the Jeanne d'Arc Basin offshore Newfoundland, compared with fluorescence spectra of crude oils suggests that some of the reservoirs may have been filled by a relatively low maturity oil and then a higher maturity oil. This is reflected in the intermediate spectra of the crude oils relative to the spectra of two separate hcfi events. Other reservoirs appear to have been charged with a relatively high gravity oil which was later biodegraded. This is marked by a blue region spectra for the hcfi compared with a red-shifted spectra for the crude oil (°API = 19). The API of the original unaltered oil which charged the reservoir is estimated to be between 32 and 38° using the Lmax-Q-API relationship established for the synthetic hcfi.  相似文献   

8.
塔里木盆地一类新海相原油的地球化学特征   总被引:1,自引:0,他引:1  
对塔中52等井奥陶系储层产出的原油进行的分析结果表明,它们的三环萜烷系列较为特殊,主要表现为其相对丰度呈C19>C20>C21>C23>C24>C25>C26阶梯状的模式,C24四环萜烷异常丰富,且其丰度远高于C26三环萜烷,这一分布模式一般出现在淡水沼泽相和浅湖相沉积地层与原油中。在三萜烷分布特征上,其伽马蜡烷含量很低,甾烷系列和藿烷系列的分布与组成特征与该地区来源于中上奥陶统烃源岩的海相原油十分接近,同时它们的全油均具有轻的碳同位素组成,其δ13C值都小于-30‰,具有海相成因原油的特征。而塔中12井上奥陶统良里塔格组4-5段烃源岩中生物标志物的分析结果进一步证实了该类原油与那些富含宏观藻残片,且有机质类型偏腐殖型的上奥陶统海相烃源岩关系密切,是该地区油气勘探中值得关注的对象。   相似文献   

9.
Molecular data from a large set of source rock, crude oil and oil-containing reservoir rock samples from the Tarim Basin demonstrate multiple sources for the marine oils in the studied areas of this basin. Based on gammacerane/C31 hopane and C28/(C27 + C28 + C29) sterane ratios, three of the fifteen crude oils from the Tazhong Uplift correlate with Cambrian-Lower Ordovician source rocks, while the other crude oils from the Tazhong Uplift and all 39 crude oils from the Tahe oilfield in the Tabei Uplift correlate with Middle-Upper Ordovician source rocks. These two ratios further demonstrate that most of the free oils and nearly all of the adsorbed and inclusion oils in oil-containing reservoir rocks from the Tazhong Uplift correlate with Cambrian-Lower Ordovician source rocks, while the free and inclusion oils in oil-containing carbonates from the Tahe oilfield correlate mainly with Middle-Upper Ordovician source rocks. This result suggests that crude oils in the Tazhong Uplift are partly derived from the Cambrian-Lower Ordovician source rocks while those in the Ordovician carbonate reservoirs of Tahe oilfield are overwhelmingly derived from the Middle-Upper Ordovician source rocks.The scatter of C23 tricyclic terpane/(C23 tricyclic terpane + C30 17α,21β(H)-hopane) and C21/(C21 + ΣC29) sterane ratios for the free and inclusion oils from oil-containing carbonates in the Tahe oilfield possibly reflects the subtle organofacies variations in the source rocks, implying that the Ordovician reservoirs in this oilfield are near the major source kitchen. In contrast, the close and positive relationship between these two ratios for oil components in the oil-containing reservoir rocks from the Tazhong Uplift implies that they are far from the major source kitchen.  相似文献   

10.
<正>The oil source of the Tarim Basin has been controversial over a long time.This study characterizes the crude oil and investigates the oil sources in the Lunnan region,Tarim Basin by adopting compound specific isotopes of n-alkanes and biomarkers approaches.Although the crude oil has a good correlation with the Middle-Upper Ordovician(O_(2+3)) source rocks and a poor correlation with the Cambrian-Lower Ordovician((?)-O_1) based on biomarkers,theδ~(13)C data of n-alkanes of the Lunnan oils show an intermediate value between(?)-O_1 and O_(2+3) genetic affinity oils,which suggests that the Lunnan oils are actually of an extensively mixed source.A quantification of oil mixing was performed and the results show that the contribution of the Cambrian-Lower Ordovician source rocks ranges from 11%to 70%(averaging 36%),slightly less than that of the Tazhong uplift.It is suggested that the inconsistency between the biomarkers andδ~(13)C in determining the oil sources in the Lunnan Region results from multiple petroleum charge episodes with different chemical components in one or more episode(s) and different sources.The widespread marine mixed-source oil in the basin indicates that significant petroleum potential in deep horizons is possible.To unravel hydrocarbons accumulation mechanisms for the Lunnan oils is crucial to further petroleum exploration and exploitation in the region.  相似文献   

11.
Thirty one crude oil samples from Lower Cretaceous reservoirs in southern Iraq were analyzed using bulk property and molecular methods to determine their maturity and biomarker characteristics, as well as to obtain information on their respective source rocks. All the oils are unaltered, non-biodegraded, have high sulfur content and API gravity is in the range for light to heavy oil (19–40° API). They are characterized by low Pr/Ph values, even/odd predominance and front-end biased n-alkane distributions. Based on these parameters the oils were generated and expelled from a marine carbonate source rock bearing Type II-S kerogen. Compositional similarities of hopane and sterane biomarkers with those from potential source rocks allowed identification of the Upper Jurassic–Lower Cretaceous Sulaiy and Yamama carbonate succession as the effective source beds. A similar composition of normal and isoprenoid hydrocarbons among the oils suggests an origin from a common source rock. However, biomarker maturity ratios indicate a wide range of maturity. This appears to result from the type of burial history of the source rock, characterized by a slow passage through the liquid window interval during an extended period of geologic time.  相似文献   

12.
轮南地区油气相态分布非常复杂,奥陶系油气藏平面上具有西油东气的特点。西部轮古西油田、塔河油田和轮南1井区油族成熟度略低且有生物降解痕迹,主要以重油形式分布;东部地区油族成熟度略高,主要以轻质油、凝析油形式存在;中间地段桑塔木断垒带、中部平台区和轮南断垒带发生混合作用形成了中一高蜡油。各地区油气在垂向上变化很大,东部地区奥陶系和石炭系为凝析油气,三叠系又为正常油分布区;西部地区奥陶系为稠油,三叠系为正常油。轮南地区奥陶系在纵向上可能受控于岩溶和储层的发育程度,横向上受控于断裂作用。轮南地区油气成藏时间较早,不同物性的原油都是古油藏多期供油的结果。  相似文献   

13.
The absolute amounts and relative distributions of neutral nitrogen compounds in the Tabei oilfield (e. G. Blocks Ln1-Ln1 1) showed remarkable migration fractionation in the vertical direction. From Ordovician reservoirs (O) to oil legs TⅢ and T Ⅰ of Triassic reservoirs in blocks LN1-LN11, the concentrations of [a] [c] decreased from 1. 59μg/g, 0.49μg/g to 0.17 μg/g (oil). The ratios of various alkylcarbazole isomers, such as 1,8-dimethylcarbazole/nitrogenpartially shielded isomers and 1,8-dimethylcarbazole/nitrogen-exposed isomers, were adopted as the indicators of petroleum migration. The ratios increased from 0.13, 0.20 to 0.67 and from going from the south to the north of the Tabei oilfield, the absolute concentrations of neutral nitrogen compounds decreased drastically, and the nitrogen-shielded isomers were enriched relative to nitrogen-exposed isomers and nitrogen-partially shielded isomers. Crude oils in the Tabei oilfield migrated laterally from the Jilake structure to the Sangtamu fault uplift and Lunnan fault uplift, and crude oils in the same fault uplift migrated and remigrated vertically from Ordovician reservoirs, to oil legs TⅢ to TⅠ of Triassic reservoirs.  相似文献   

14.
Carbon isotopic compositions were determined by GC–IRMS for individual n-alkanes in crude oils and the free, adsorbed and inclusion oils recovered by sequential extraction from reservoir rocks in the Tazhong Uplift and Tahe oilfield in the Tabei Uplift of Tarim Basin as well as extracts of the Cambrian–Ordovician source rocks in the basin. The variations of the δ13C values of individual n-alkanes among the 15 oils from the Tazhong Uplift and among the 15 oils from the Triassic and Carboniferous sandstone reservoirs and the 21 oils from the Ordovician carbonate reservoirs in the Tahe oilfield demonstrate that these marine oils are derived from two end member source rocks. The major proportion of these marine oils is derived from the type A source rocks with low δ13C values while a minor proportion is derived from the type B source rocks with high δ13C values. Type A source rocks are within either the Cambrian–Lower Ordovician or the Middle–Upper Ordovician strata (not drilled so far) while type B source rocks are within the Cambrian–Lower Ordovician strata, as found in boreholes TD2 and Fang 1. In addition, the three oils from the Cretaceous sandstone reservoirs in the Tahe oilfield with exceptionally high Pr/Ph ratio and δ13C values of individual n-alkanes are derived, or mainly derived, from the Triassic–Jurassic terrigenous source rocks located in Quka Depression.The difference of the δ13C values of individual n-alkanes among the free, adsorbed and inclusion oils in the reservoir rocks and corresponding crude oils reflects source variation during the reservoir filling process. In general, the initial oil charge is derived from the type B source rocks with high δ13C values while the later oil charge is derived from the type A source rocks with low δ13C values.The δ13C values of individual n-alkanes do not simply correlate with the biomarker parameters for the marine oils in the Tazhong Uplift and Tahe oilfield, suggesting that molecular parameters alone are not adequate for reliable oil-source correlation for high maturity oils with complex mixing.  相似文献   

15.
东营凹陷生物降解稠油甾烷分子的选择蚀变   总被引:1,自引:0,他引:1  
为分析生物降解原油中甾烷生物标志物分子发生选择性蚀变的先后顺序及生物降解作用对甾烷分子成熟度参数的影响,在渤海湾盆地东营凹陷广饶潜山油藏选择了发生不同程度生物降解作用的原油,利用色谱质谱(GC-MS)仪对其中甾烷进行了定量测试分析和对比。结果发现在生物降解过程中,不同级别的生物降解作用对甾烷具有不同程度的影响:6级以下的生物降解作用对甾烷的降解能力有限,甾烷及其相关化合物比值没有可以识别的改变;6级以上的严重生物降解作用会对甾烷生物标志物的相关参数产生显著的影响。在严重生物降解原油中(级别≥6):甾烷系列被降解和蚀耗的先后顺序为,ααα20R>αββ20R>αββ20S≥ααα20S,C27>C29>C28,规则甾烷优先于重排甾烷发生降解,C27,C28,C29甾烷优先于C20,C21甾烷发生降解;甾烷生物标志物分子参数C2920S/(20S+20R),C29ββ/(ββ+αα)会发生显著升高,不能真实反映成熟度大小。研究结果为正确评价生物降解原油的成熟度及甾烷生物标志物分子的选择性蚀变提供了新的科学依据。  相似文献   

16.
Although the effects of biodegradation on the composition and physical properties of crude oil have been well studied, effects of in-reservoir petroleum biodegradation on molecular and isotopic compositions of crude oils are not yet clearly understood. The Alberta Basin, in western Canada, is one of the world’s largest petroleum accumulations and constitutes an ideal example of a natural suite of sequentially biodegraded oils. The basin hosts moderately to severely biodegraded petroleum, regionally distributed and in single, more or less continuous, oil columns. In this study, a series of oil samples from the Alberta heavy oil and oil sands provinces, with varying degrees of biodegradation, were analyzed to assess the impact of progressive biodegradation on the molecular and C, H, N, and S isotopic compositions of oils. The results of the molecular characterization of the hydrocarbon fraction of the studied oils show that the oils have suffered biodegradation levels from 2 to 10+ (toward the Alberta–Saskatchewan border) on the Peters and Moldowan scale of biodegradation (abbreviated PM 2 to PM 10) and from tens to hundreds on the Manco scale. Within single reservoirs, increasing biodegradation was observed from top to bottom of the oil columns at all sites studied. The whole oil stable isotopic compositions of the samples varied in the ranges δ13C = −31.2‰ to −29.0‰, δ2H = −147‰ to −133‰, δ15N = 0.3–4.7‰ and δ34S = 0.4–6.4‰. The maximum differences between δ values of samples (Δ) within single oil columns were Δ13C = 1.4‰, Δ2H = 7‰, Δ15N = 1.7‰ and Δ34S = 1.0‰. Regional variations in the isotopic compositions of oil samples from different wells (averaged values from top to bottom) were 1.2‰ for δ13C, 12‰ for δ2H, 4.1‰ for δ15N and 5.5‰ for δ34S and hence generally significantly larger variations were seen than variations observed within single oil columns, especially for N and S. It appears that even severe levels of biodegradation do not cause observable systematic variations in carbon, nitrogen or sulfur isotope composition of whole oils. This indicates that sulfur and nitrogen isotopic compositions may be used in very degraded oils as indicators for oil charge from different source rock facies.  相似文献   

17.
Forty-six crude oil samples were selected from the Ordovician in the northwestern part of the Tahe oilfield for detailed molecular geochemical and isotopic analysis, including group compositions, carbonhydrogen isotopes and gas chroma-tograms of saturated hydrocarbons, as well as the characteristics of terpane, sterane and other biomarkers, indicating that crude oils are of the same origin from different districts in the Tahe oilfield and were derived from the same source kitchen (or oil source formation), i.e., mainly stemming from marine hydrocarbons. Detailed studies of oil physical properties of 25-honpane revealed that such oils have heavy or thick oil qualities due to biodegradation. Comprehensive assessment in terms of five maturity parameters shows that the oils from the Ordovician with Ro values varying from 0.80% to 1.59% are widely distributed in the northwest of the Tahe oilfield.  相似文献   

18.
新疆巴楚地区中上奥陶统生物礁群落古生态学   总被引:8,自引:0,他引:8  
新疆巴楚东部地区良里塔格山出露有中奥陶统达瑞威尔阶一间房组和上奥陶统中部凯迪阶良里塔格组的生物礁。一间房组礁的厚度为数米到十多米,以棘屑滩为礁基,主要造礁生物为托盘类,形成典型的骨架岩,托盘类中央腔形成的原生孔隙发育,基质为灰泥,纹层状、皮壳状的藻类缠结包裹托盘类生长,可定为皮壳状藻托盘类密群落。良里塔格组的礁体主要由分枝状绿藻形成骨架岩,基质为灰泥,原有的原生或次生孔隙现被亮晶方解石充填;该组下部一些直径约1 m的小型礁由丰富的分枝状绿藻和少量乳孔藻构成,为分枝状绿藻密群落。良里塔格组上部较大的礁体(直径10~30 m)由分枝状绿藻和一种未知的球状生物(可能也是绿藻)构成,可称为“球状藻”分枝状绿藻密群落。  相似文献   

19.
塔里木盆地寒武-奥陶系烃源岩的分子地球化学特征   总被引:7,自引:5,他引:2  
对塔里木盆地下古生界样品的地球化学分析表明,上奥陶统良里塔格组、中上奥陶统却尔却克群烃源岩与其他烃源岩具有明显的差异,具有低的C28甾烷、24-降胆甾烷、甲藻甾烷、甲藻三芳甾烷与伽马蜡烷含量以及高的C24四环萜烷、重排甾烷含量等特点。柯坪地区中上奥陶统萨尔干组、印干组页岩伽马蜡烷、C28甾烷相对含量与寒武系、中下奥陶统黑土凹组烃源岩具有相似性。萨尔干组、印干组烃源岩中生物标志物的绝对含量很低。柯坪地区寒武系玉尔吐斯组、中上奥陶统萨尔干组、上奥陶统印干组、满东地区中下奥陶统黑土凹组等较强沉积环境的泥质烃源岩伽马蜡烷、C28甾烷、特殊甾烷的相对含量与海相原油主体有较大差异。上奥陶统印干组烃源岩较高含量的三芳甲藻甾烷、24-降重排胆甾烷和24-降胆甾烷化合物的检出表明,断代生物标志物的提法值得商榷。  相似文献   

20.
This study deals with a detailed geochemical characterization of three crude oils from the Upper Indus Basin, Punjab, Pakistan. The samples were obtained from three productive oil fields of the Datta Formation (Jurassic), Lochhart (Palaeocene) and the Dhak Pass zone (Palaeocene). The GC parameters for and the bulk properties of Datta Formation oils are essentially coincident with those of the oils from the Dhak Pass Formation in the Upper Indus Basin, Pakistan and the oils likely originate from a marine source rock. In contrast, the Lockhart Formation oils show different behaviors and seem to be originated from dirty carbonate rocks although all three crude oils are mature, being of non-biodegraded and somewhat mixed organic matter origin. Low Pr/Ph values and high C35 homohopane index for the Lockhart Formation oils suggest a source of anoxic environment with low Eh while oils from the Datta Formation and Dhak Pass Formation showed different trends, i.e., lower values of C35 homohopane index indicating different depositional environment than oil from the Lockhart Formation. All three crude oils from the Upper Indus Basin are mature for the hopane ratios, i.e., Ts/Ts+Tm, C3222S/(S+R) and C30 αβ/(αβ+βα) and sterane ratios, i.e., C2922S/(S+R) and C29ββ/(ββ+αα) but oils from the Lockhart Formation seem to be less mature than those from the Palaeocene and Datta Formation according to plots like API° vs. homohopane Index, Pr/Ph vs. sterane. The relative composition of 5α(H), 14β(H), 17β(H)-24-ethylecholestanes and the C2920S/20S+20R index, indicate that all three crude oils are equally mature, which makes it unlikely with respect to the above said plots. This difference is may be due to the migratory chromatography which alters the concentrations of sterane and hoapnes and hence gives different results. These oils do not exhibit UCM and have complete n-alkane profiles indicating non-biodegradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号