首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Krucker  Säm  Christe  Steven  Lin  R.P.  Hurford  Gordon J.  Schwartz  Richard A. 《Solar physics》2002,210(1-2):445-456
The excellent sensitivity, spectral and spatial resolution, and energy coverage down to 3 keV provided by the Reuven Ramaty High-Energy Solar Spectroscopic Imager mission (RHESSI) allows for the first time the detailed study of the locations and the spectra of solar microflares down to 3 keV. During a one-hour quiet interval (GOES soft X-ray level around B6) on 2 May, 1:40–2:40 UT, at least 7 microflares occurred with the largest peaking at A6 GOES level. The microflares are found to come from 4 different active regions including one behind the west limb. At 7′′ resolution, some events show elongated sources, while others are unresolved point sources. In the impulsive phase of the microflares, the spectra can generally be fitted better with a thermal model plus power law above ∼ 6–7 keV than with a thermal only. The decay phase sometimes can be fitted with a thermal only, but in some events, power-law emission is detected late in the event indicating particle acceleration after the thermal peak of the event. The behind-the-limb microflare shows thermal emissions only, suggesting that the non-thermal power law emission originates lower, in footpoints that are occulted. The power-law fits extend to below 7 keV with exponents between −5 and −8, and imply a total non-thermal electron energy content between 1026–1027 erg. Except for the fact that the power-law indices are steeper than what is generally found in regular flares, the investigated microflares show characteristics similar to large flares. Since the total energy in non-thermal electrons is very sensitive to the value of the power law and the energy cutoff, these observations will give us better estimates of the total energy input into the corona. (Note that color versions of figures are on the accompanying CD-ROM.) Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1022404512780  相似文献   

2.
We report observations by the Large Angle Spectrometric Coronagraph (LASCO) on the SOHO spacecraft of three coronal green-line transients that could be clearly associated with coronal mass ejections (CMEs) detected in Thomson-scattered white light. Two of these events, with speeds >25 km s-1, may be classified as ‘whip-like’ transients. They are associated with the core of the white-light CMEs, identified with erupting prominence material, rather than with the leading edge of the CMEs. The third green-line transient has a markedly different appearance and is more gradual than the other two, with a projected outward speed <10 km s-1. This event corresponds to the leading edge of a ‘streamer blowout’ type of CME. A dark void is left behind in the emission-line corona following each of the fast eruptions. Both fast emission-line transients start off as a loop structure rising up from close to the solar surface. We suggest that the driving mechanism for these events may be the emergence of new bipolar magnetic regions on the surface of the Sun, which destabilize the ambient corona and cause an eruption. The possible relationship of these events to recent X-ray observations of CMEs is briefly discussed. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1004981125702  相似文献   

3.
We analyse data from Hinode spacecraft taken over two 54-minute periods during the emergence of AR 11024. We focus on small-scale portions within the observed solar active region and discover the appearance of very distinctive small-scale and short-lived dark features in Ca ii H chromospheric filtergrams and Stokes I images. The features appear in regions with close-to-zero longitudinal magnetic field, and are observed to increase in length before they eventually disappear. Energy release in the low chromospheric line is detected while the dark features are fading. Three complete series of these events are detected with remarkably similar properties, i.e. lifetime of ≈ 12 min, maximum length and area of 2 – 4 Mm and 1.6 – 4 Mm2, respectively, and all with associated brightenings. In time series of magnetograms a diverging bipolar configuration is observed accompanying the appearance of the dark features and the brightenings. The observed phenomena are explained as evidencing elementary flux emergence in the solar atmosphere, i.e. small-scale arch filament systems rising up from the photosphere to the lower chromosphere with a length scale of a few solar granules. Brightenings are explained as being the signatures of chromospheric heating triggered by reconnection of the rising loops (once they have reached chromospheric heights) with pre-existing magnetic fields, as well as being due to reconnection/cancellation events in U-loop segments of emerging serpentine fields. The characteristic length scale, area and lifetime of these elementary flux emergence events agree well with those of the serpentine field observed in emerging active regions. We study the temporal evolution and dynamics of the events and compare them with the emergence of magnetic loops detected in quiet Sun regions and serpentine flux emergence signatures in active regions. The physical processes of the emergence of granular-scale magnetic loops seem to be the same in the quiet Sun and active regions. The difference is the reduced chromospheric emission in the quiet Sun attributed to the fact that loops are emerging in a region of lower ambient magnetic field density, making interactions and reconnection less likely to occur. Incorporating the novel features of granular-scale flux emergence presented in this study, we advance the scenario for serpentine flux emergence.  相似文献   

4.
We present a study of 10 microflares observed in 4–30 keV by SOXS mission simultaneously with Hα observations made at NAOJ, Japan during the interval between February and August 2004. The X-ray and Hα light curves showed that the lifetime of microflares varies between 4 and 25 min. We found that the X-ray emission in all microflares under study in the dynamic energy range of 4–30 keV can be fitted by thermal plus non-thermal components. The thermal spectrum appeared to start from almost 4 keV, low level discriminator (LLD) of both Si and CZT detectors, however it ends below 8 keV. We also observed the Fe line complex features at 6.7 keV in some microflares and attempted to fit this line by isothermal temperature assumption. The temperature of isothermal plasma of microflares varies in the range between 8.6 and 10.1 MK while emission measure between 0.5 and 2x1049 cm-3. Non-thermal (NT) emission appeared in the energy range 7–15 keV with exponent -6.8 ≤γ-4.8. Our study of microflares that had occurred on 25 February 2004 showed that sometimes a given active region produces recurrent microflare activity of a similar nature. We concluded from X-ray and simultaneous Hα observations that the microflares are perhaps the result of the interaction of low lying loops. It appears that the electrons that accelerated during reconnection heat the ambient coronal plasma as well as interact with material while moving down along the loops and thereby produce Hα bright kernels.  相似文献   

5.
We investigate the properties of acoustic events (AEs), defined as spatially concentrated and short duration energy flux, in the quiet Sun, using observations of a 2D field of view (FOV) with high spatial and temporal resolution provided by the Solar Optical Telescope (SOT) onboard Hinode. Line profiles of Fe i 557.6 nm were recorded by the Narrow-band Filter Imager (NFI) on a 82″×82″ FOV during 75 min with a time step of 28.75 s and 0.08″ pixel size. Vertical velocities were computed at three atmospheric levels (80, 130, and 180 km) using the bisector technique, allowing the determination of energy flux to be made in the range 3 – 10 mHz using two complementary methods (Hilbert transform and Fourier power spectrum). Horizontal velocities were computed using local correlation tracking (LCT) of continuum intensities providing divergences. We found that the net energy flux is upward. In the range 3 – 10 mHz, a full FOV space and time averaged flux of 2700 W m−2 (lower layer 80 – 130 km) and 2000 W m−2 (upper layer 130 – 180 km) is concentrated in less than 1 % of the solar surface in the form of narrow (0.3″) AE. Their total duration (including rise and decay) is of the order of 103 s. Inside each AE, the mean flux is 1.6×105 W m−2 (lower layer) and 1.2×105 W m−2 (upper). Each event carries an average energy (flux integrated over space and time) of 2.5×1019 J (lower layer) to 1.9×1019 J (upper). More than 106 events could exist permanently on the Sun, with a birth and decay rate of 3500 s−1. Most events occur in intergranular lanes, downward velocity regions, and areas of converging motions.  相似文献   

6.
Properties of even and odd 11-year solar cycles as part of the 22-year magnetic cycle have been studied on the basis of the data on the zonal structure of the large-scale magnetic field, of polar faculae activity cycles, duration of 11-year cycles, high-latitude prominence areas, inclinations of the coronal streamers, velocity of magnetic neutral line migration, and peculiarities of the polar magnetic field reversal. It is shown that the properties of the odd cycle depend on those of the preceding even cycle. The 22-year magnetic cycle, consisting of an even and odd cycle, is a unified dynamic process. The new data obtained show that the poloidal magnetic fieldB(p) of ‘+’ and ‘−’ polarity for the new 22-year magnetic cycle is formed simultaneously, possibly in deep layers of the Sun in the form of a certain magnetic configuration, containing alternating ‘+’ and ‘−’ polarities of the field.  相似文献   

7.
The coronal magnetic field above a particular photospheric region will vanish at a certain number of points, called null points. These points can be found directly in a potential field extrapolation or their density can be estimated from the Fourier spectrum of the magnetogram. The spectral estimate, in which the extrapolated field is assumed to be random and homogeneous with Gaussian statistics, is found here to be relatively accurate for quiet Sun magnetograms from SOHO’s MDI. The majority of null points occur at low altitudes, and their distribution is dictated by high wavenumbers in the Fourier spectrum. This portion of the spectrum is affected by Poisson noise, and as many as five-sixths of null points identified from a direct extrapolation can be attributed to noise. The null distribution above 1500 km is found to depend on wavelengths that are reliably measured by MDI in either its low-resolution or high-resolution mode. After correcting the spectrum to remove white noise and compensate for the modulation transfer function we find that a potential field extrapolation contains, on average, one magnetic null point, with altitude greater than 1.5 Mm, above every 322 Mm2 patch of quiet Sun. Analysis of 562 quiet Sun magnetograms spanning the two latest solar minima shows that the null point density is relatively constant with roughly 10% day-to-day variation. At heights above 1.5 Mm, the null point density decreases approximately as the inverse cube of height. The photospheric field in the quiet Sun is well approximated as that from discrete elements with mean flux 〈|φ|〉=1.0×1019 Mx distributed randomly with density n=0.007 Mm−2.  相似文献   

8.
Much of the magnetic field in solar and stellar photospheres is arranged into clusters of ‘flux tubes’, i.e., clustered into compact areas in which the intrinsic field strength is approximately a kilogauss. The flux concentrations are constantly evolving as they merge with or annihilate against other concentrations, or fragment into smaller concentrations. These processes result in the formation of concentrations containing widely different fluxes. Schrijver et al. (1997, Paper I) developed a statistical model for this distribution of fluxes, and tested it on data for the quiet Sun. In this paper we apply that model to a magnetic plage with an average absolute flux density that is 25 times higher than that of the quiet network studied in Paper I. The model result matches the observed distribution for the plage region quite accurately. The model parameter that determines the functional form of the distribution is the ratio of the fragmentation and collision parameters. We conclude that this ratio is the same in the magnetic plage and in quiet network. We discuss the implications of this for (near-)surface convection, and the applicability of the model to stars other than the Sun and as input to the study of coronal heating.  相似文献   

9.
By solving a Wheeler-De Witt ‘extended’ equation in the Brans-Dicke theory, we have found that the probability distribution predicts: i) An initial value for the Brans-Dicke scalar field φ ∼ ρ1/2_VAC in the beginning of the inflation, where ρVAC is the vacuum density energy (this gives a planck mass ∼ ρ1/4_VAC) ii) Large values for the Brans-Dicke parameter w. On the other hand it is shown that by taking into account the dynamical behaviour of φ and the matter scalar field σ we can formulate a ‘creation boundary condition’ where in the ‘beginning’ of the Universe (R =0, ‘nothing’ for some authors) we have a dynamical σ already ‘created’. This could be the energetic mechanism which makes Universe tunnels the potential barrier to evolve classically after. Besides we have found the possibility of a cosmological uncertainty principle. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The Extreme ultraviolet Imaging Spectrometer (EIS) onboard Hinode is the first solar telescope to obtain wide-slit spectral images that can be used for detecting Doppler flows in transition region and coronal lines on the Sun and to relate them to their surrounding small-scale dynamics. We select EIS lines covering the temperature range 6×104 to 2×106 K that give spectrally pure images of the Sun with the 40-arcsec slit. In these images Doppler shifts are seen as horizontal brightenings. Inside the image it is difficult to distinguish shifts from horizontal structures but emission beyond the image edge can be unambiguously identified as a line shift in several lines separated from others on their blue or red side by more than the width of the spectrometer slit (40 pixels). In the blue wing of He ii, we find a large number of events with properties (size and lifetime) similar to the well-studied explosive events seen in the ultraviolet spectral range. Comparison with X-Ray Telescope (XRT) images shows many Doppler shift events at the footpoints of small X-ray loops. The most spectacular event observed showed a strong blue shift in the transition region and lower corona lines from a small X-ray spot that lasted less than 7 min. The emission appears to be near a cool coronal loop connecting an X-ray bright point to an adjacent region of quiet Sun. The width of the emission implies a line-of-sight velocity of 220 km s−1. In addition, we show an example of an Fe xv shift with a velocity of about 120 km s−1, coming from what looks like a narrow loop leg connecting a small X-ray brightening to a larger region of X-ray emission.  相似文献   

11.
The plasma conditions in the solar atmosphere and, in particular, in coronal holes are summarized, before space-borne instrumentation for observing these regions in vacuum-ultraviolet light is briefly introduced with the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer on the Solar and Heliospheric Observatory (SOHO) as example. Spectroscopic measurements of small plasma jets are then analyzed in detail. Magnetic reconnection is thought to be responsible for heating the corona of the Sun as well as accelerating the solar wind by converting magnetic energy into thermal and kinetic energies. The continuous outflow of the fast solar wind from coronal holes on ‘open’ field lines, which reach out into interplanetary space, then requires many reconnection events of very small scale sizes – most of them probably below the resolution capabilities of present-day instruments. Our observations of such an event have been obtained with the Solar and Heliospheric Observatory (SOHO) providing both high-resolution imaging and spectral information for structural and dynamical studies. We find whirling or rotating motions as well as jets with acceleration along their propagation paths in close spatial and temporal vicinity to the coronal jet. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The Kamioka liquid scintillator antineutrino detector (KamLAND), which consists of 1000 tones of ultra-pure liquid scintillator surrounded by 1879 photo-multiplier tubes (PMT), is the first detector sensitive enough to detect geoneutrinos. Earth models suggest that KamLAND observes geoneutrinos at a rate of 30 events/1032-protons/year from the 238U decay chain, and 8 events/1032-protons/year from the 232Th decay chain. With 7.09×1031 proton-years of detector exposure and detection efficiency of 0.687 ± 0.007, the ‘rate-only’ analysis gives geoneutrino candidates. Assuming a Th/U mass concentration ratio of 3.9, the ‘rate + shape’ analysis gives the 90% confidence interval for the total number of geoneutrinos detected to be from 4.5 to 54.2. This result is consistent with predictions from the Earth models. The 99% C.L. upper limit is set at 1.45×10−31 events per target proton per year, which is 3.8 times higher than the central value of the model prediction that gives 16 TW of radiogenic heat production from 238U and 232Th. Although the present data have limited statistical power, they provide by direct means an upper limit for the Earth’s radiogenic heat of U and Th. Sanshiro Enomoto (on behalf of the KamLAND Collaboration)  相似文献   

13.
The power of solar acoustic waves is reduced inside sunspots mainly due to absorption, emissivity reduction, and local suppression. The coefficients of these power-reduction mechanisms can be determined by comparing time – distance cross-covariances obtained from sunspots and from the quiet Sun. By analyzing 47 active regions observed by SOHO/MDI without using signal filters, we have determined the coefficients of surface absorption, deep absorption, emissivity reduction, and local suppression. The dissipation in the quiet Sun is derived as well. All of the cross-covariances are width corrected to offset the effect of dispersion. We find that absorption is the dominant mechanism of the power deficit in sunspots for short travel distances, but gradually drops to zero at travel distances longer than about 6°. The absorption in sunspot interiors is also significant. The emissivity-reduction coefficient ranges from about 0.44 to 1.00 within the umbra and 0.29 to 0.72 in the sunspot, and accounts for only about 21.5% of the umbra’s and 16.5% of the sunspot’s total power reduction. Local suppression is nearly constant as a function of travel distance with values of 0.80 and 0.665 for umbrae and whole sunspots respectively, and is the major cause of the power deficit at large travel distances.  相似文献   

14.
Ch. V. Sastry 《Solar physics》1994,150(1-2):285-294
We have mapped the continuum emission from the undisturbed Sun at a wavelength of 8.7 m during 1981–1985 using the large decameter-wave radiotelescope at Gauribidanur, India with a resolution of 26 #x00D7; 38 arc min. During the period August 6–30, 1983, the Sun was exceptionally quiet at meter and decameter wavelengths, and we were able to make maps on several consecutive days. On these days the position of the centroid of the radio Sun agreed quite closely with the center of the optical Sun indicating that there is very little or no contribution from active regions. But the observed peak brightness temperature varied from 100 000 to 700 000 K. The half-power widths of the brightness distribution were in the range of 3 to 4R . The variations of the brightness temperature and the half-power widths are not correlate. It is therefore suggested that the variations of the brightness temperature are not caused by uniform density variations or due to scattering by an irregular corona.  相似文献   

15.
A study is made of Lyman continuum observations of solar flares, using data obtained by the Harvard College Observatory EUV spectroheliometer on the Apollo Telescope Mount. We find that there are two main types of flare regions: an overall mean flare coincident with the H flare region, and transient Lyman continuum kernels which can be identified with the H and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet Sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density m 5/sx 10–6 g cm–2 in the quiet Sun to m 3/sx 10–4 g cm–2 in the mean flare, and to m 10–3g cm–2 in kernels. From these results we derive the amount of chromospheric material evaporated into the high temperature region, which is found to be - 1015g, in agreement with observations of X-ray emission measures. A comparison is made between kernel observations and the theoretical predictions made by model heating calculations, available in the literature; significant discrepancies are found between observation and current particle-heating models.  相似文献   

16.
This paper is the second in a series of studies working towards constructing a realistic, evolving, non-potential coronal model for the solar magnetic carpet. In the present study, the interaction of two magnetic elements is considered. Our objectives are to study magnetic energy build-up, storage and dissipation as a result of emergence, cancellation, and flyby of these magnetic elements. In the future these interactions will be the basic building blocks of more complicated simulations involving hundreds of elements. Each interaction is simulated in the presence of an overlying uniform magnetic field, which lies at various orientations with respect to the evolving magnetic elements. For these three small-scale interactions, the free energy stored in the field at the end of the simulation ranges from 0.2 – 2.1×1026 ergs, whilst the total energy dissipated ranges from 1.3 – 6.3×1026 ergs. For all cases, a stronger overlying field results in higher energy storage and dissipation. For the cancellation and emergence simulations, motion perpendicular to the overlying field results in the highest values. For the flyby simulations, motion parallel to the overlying field gives the highest values. In all cases, the free energy built up is sufficient to explain small-scale phenomena such as X-ray bright points or nanoflares. In addition, if scaled for the correct number of magnetic elements for the volume considered, the energy continually dissipated provides a significant fraction of the quiet Sun coronal heating budget.  相似文献   

17.
The newly developed C1 coronagraph as part of the Large-Angle Spectroscopic Coronagraph (LASCO) on board the SOHO spacecraft has been operating since January 29, 1996. We present observations obtained in the first three months of operation. The green-line emission corona can be made visible throughout the instrument's full field of view, i.e., from 1.1 R⊙ out to 3.2 R⊙ (measured from Sun center). Quantitative evaluations based on calibrations cannot yet be performed, but some basic signatures show up even now: (1) There are often bright and apparently closed loop systems centered at latitudes of 30° to 45° in both hemispheres. Their helmet-like extensions are bent towards the equatorial plane. Farther out, they merge into one large equatorial ‘streamer sheet’ clearly discernible out to 32 R⊙. (2) At mid latitudes a more diffuse pattern is usually visible, well separated from the high-latitude loops and with very pronounced variability. (3) All high-latitude structures remain stable on time scales of several days, and no signature of transient disruption of high-latitude streamers was observed in these early data. (4) Within the first 4 months of observation, only one single ‘fast’ feature was observed moving outward at a speed of 70 km s-1 close to the equator. Faster events may have escaped attention because of data gaps. (5) The centers of high-latitude loops are usually found at the positions of magnetic neutral lines in photospheric magnetograms. The large-scale streamer structure follows the magnetic pattern fairly precisely. Based on our observations we conclude that the shape and stability of the heliospheric current sheet at solar activity minimum are probably due to high-latitude streamers rather than to the near-equatorial activity belt. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1004948913883  相似文献   

18.
Prediction Test for the Two Extremely Strong Solar Storms in October 2003   总被引:2,自引:0,他引:2  
In late October and early November 2003, a series of space weather hazard events erupted in solar-terrestrial space. Aiming at two intense storm (shock) events on 28 and 29 October, this paper presents a Two-Step method, which combines synoptic analysis of space weather–`observing’ and quantitative prediction – ‘palpating’, and uses it to test predictions. In the first step, ‘observing’, on the basis of observations of the source surface magnetic field, interplanetary scintillation (IPS) and ACE spacecraft, we find that the propagation of the shock waves is asymmetric and northward relative to the normal direction of their solar sources due to the large-scale configuration of the coronal magnetic fields, and the Earth is located near the direction of the fastest speed and greatest energy of the shocks. Being two fast ejection shock events, the fast explosion of extremely high temperature and strong magnetic field, and background solar wind velocity as high as 600 and 1000 km s−1, are also helpful to their rapid propagation. According to the synoptic analysis, the shock travel times can be estimated as 21 and 20 h, which are close to the observational results of 19.97 and 19.63 h, respectively. In the second step, ‘palpating’, we adopt a new membership function of the fast shock events for the ISF method. The predicted results here show that for the onset time of the geomagnetic disturbance, the relative errors between the observational and the predicted results are 1.8 and 6.7%, which are consistent with the estimated results of the first step; and for the magnetic disturbance magnitude, the relative errors between the observational and the predicted results are 4.1 and 3.1%, respectively. Furthermore, the comparison among the predicted results of our Two-Step method with those of five other prevailing methods shows that the Two-Step method is advantageous in predicting such strong shock event. It can predict not only shock arrival time, but also the magnitude of magnetic disturbance. The results of the present paper tell us that understanding the physical features of shock propagation thoroughly is of great importance in improving the prediction efficiency.  相似文献   

19.
It is argued that the iron nucleosynthesis rate in the universe due to SNI outbursts is dependent on the mass function of star formation. Since the mass function depends on the chemical composition and since the masses of SNI precursors have upper limits, the iron nucleosynthesis rate was low at an earlier evolutionary epoch of the universe when mainly massive stars were formed. The iron nucleosynthesis rate should reach a maximum near z ∼ 0.5. At such or similar value of z the well-known ‘step’ in the cosmic γ-ray background spectrum may be explained by the presence of γ-gray quanta accompanying the radioactive56Co →56Fe decay. An argument is presented against the identification of the hidden mass of the universe with black-hole remnants of ‘type III’ stars.  相似文献   

20.
Electron velocity distribution functions (VDF) observed in the low speed solar wind flow are generally characterized by ‘core’ and ‘halo’ electrons. In the high speed solar wind, a third population of ‘strahl’ electrons is generally observed. New collisional models based on the solution of the Fokker-Planck equation can be used to determine the importance of the different electron populations as a function of the radial distance. Typical electron velocity distribution functions observed at 1 AU from the Sun are used as boundary conditions for the high speed solar wind and for the low speed solar wind. Taking into account the effects of external forces and Coulomb collisions with a background plasma, suprathermal tails are found to be present in the electron VDF at low altitudes in the corona when they exist at large radial distances. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号