首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Quaternary Science Reviews》1999,18(10-11):1213-1246
This paper describes the landform and sediment assemblage produced by a surge (in 1948) of the Kongsvegen/Kronebreen tidewater glacier complex in northwest Spitsbergen. The main geomorphological products of this advance are two large thrustmoraine complexes on opposite sides of the fjord, and a system of geometrical ridges revealed on glacier decay. The thrust-moraines are composed largely of diamicton, sandy and muddy gravel, gravelly sand, sand and mud, with minor laminites. All of these appear to be derived from the fjord floor and represent both fine fjord basin sediments and coarse grounding-line fan deposits. Thrusting was the principal mode of emplacement of the sediment onto the adjacent land areas during the 1948 advance. However, the geomorphology of the thrust-moraine complexes on either side of the fjord is quite different, reflecting a transpressive regime on the southwest side (mainly long ridges) and a normal compressive regime on the northeast side (short ridges and pinnacles of a ‘hummocky’ nature). The advance which produced the moraine complex has previously been attributed to a surge of Kongsvegen, but the glaciological and geomorphological evidence suggests that the advance involved both Kongsvegen and Kronebreen. Comparison of the landform assemblage produced by this event with that produced by other tidewater glacier surges demonstrates the diverse range of landform assemblages associated with glacier surges, or other episodes of rapid flow, within glaciomarine environments.  相似文献   

2.
Englacial debris structures, morphology and sediment distribution at the frontal part and at the proglacial area of the Scott Turnerbreen glacier have been studied through fieldwork and aerial photograph interpretation. The main emphasis has been on processes controlling the morphological development of the proglacial area. Three types of supraglacial ridges have been related to different types of englacial debris bands. We suggest that the sediments were transported in thrusts, along flow lines and in englacial meltwater channels prior to, and during a surge in, the 1930s, before the glacier turned cold. Melting-out of englacial debris and debris that flows down the glacier front has formed an isolating debris cover on the glacier surface, preventing further melting. As the glacier wasted, the stagnant, debris-covered front became separated from the glacier and formed icecored moraine ridges. Three moraine ridges were formed outside the present ice-front. The further glacier wastage formed a low-relief proglacial area with debris-flow deposits resting directly on glacier ice. Melting of this buried ice initiated a second phase of slides and debris flows with a flow direction independent of the present glacier surface. The rapid disintegration of the proglacial morphology is mainly caused by slides and stream erosion that uncover buried ice and often cause sediments to be transported into the main river and out of the proglacial area. Inactive stream channels are probably one of the morphological elements that have the best potential for preservation in a wasting ice-cored moraine complex and may indicate former ice-front positions.  相似文献   

3.
Traditionally, geometrical ridge networks are interpreted as the product of the flow of subglacial sediment into open basal crevasses at the cessation of a glacier surge (‘crevasse-fill’ ridges). They are widely regarded as a characteristic landform of glacier surges. Understanding the range of processes by which these ridge networks form is therefore of importance in the recognition of palaeosurges within the landform record. The geometrical ridge network at the surge-type glacier Kongsvegen in Svalbard, does not form by crevasse filling. The networks consist of transverse and longitudinal ridges that can be seen forming at the current ice margin. The transverse ridges form as a result of the incorporation of basal debris along thrust planes within the ice. The thrusts were apparently formed during a glacier surge in 1948. Longitudinal ridges form through the meltout of elongated pods of debris, which on the glacier surface are subparallel to the ice foliation and pre-date the surge. This work adds to the range of landforms associated with glacier surges.  相似文献   

4.
The deglaciation history and Holocene environmental evolution of northern Wijdefjorden, Svalbard, are reconstructed using sediment cores and acoustic data (multibeam swath bathymetry and sub-bottom profiler data). Results reveal that the fjord mouth was deglaciated prior to 14.5±0.3 cal. ka BP and deglaciation occurred stepwise. Biomarker analyses show rapid variations in water temperature and sea ice cover during the deglaciation, and cold conditions during the Younger Dryas, followed by minimum sea ice cover throughout the Early Holocene, until c. 7 cal. ka BP. Most of the glaciers in Wijdefjorden had retreated onto land by c. 7.6±0.2 cal. ka BP. Subsequently, the sea-ice extent increased and remained high throughout the last part of the Holocene. We interpret a high Late Holocene sediment accumulation rate in the northernmost core to reflect increased sediment flux to the site from the outlet of the adjacent lake Femmilsjøen, related to glacier growth in the Femmilsjøen catchment area. Furthermore, increased sea ice cover, lower water temperatures and the re-occurrence of ice-rafted debris indicate increased local glacier activity and overall cooler conditions in Wijdefjorden after c. 0.5 cal. ka BP. We summarize our findings in a conceptual model for the depositional environment in northern Wijdefjorden from the Late Weichselian until present.  相似文献   

5.
This paper presents the first detailed sedimentological study of annual moraines formed by an alpine valley glacier. The moraines have been forming since at least AD 1980 by a subsidiary lobe of Gornergletscher, Switzerland that advances up a reverse bedrock slope. They reach heights of 0.5–1.5 m, widths of up to 6 m and lengths of up to several hundreds of metres. Sediments in these moraines are composed of proglacial outwash and debris flow units; subglacial traction till is absent entirely. Based on four representative sections, three genetic process combinations have been identified: (i) inefficient bulldozing of a gently sloping ice margin transfers proglacial sediments onto the ice, causing differential ablation and dead‐ice incorporation upon retreat; (ii) terrestrial ice‐contact fans are formed by the dumping of englacial and supraglacial material from point sources such as englacial conduit fills; debris flows and associated fluvial sediments are stacked against a temporarily stationary margin at the start, and deformed during glacier advance in the remainder, of the accumulation season; (iii) a steep ice margin without supraglacial input leads to efficient bulldozing and deformation of pre‐existing foreland sediments by wholesale folding. Ice‐surface slope appears to be a key control on the type of process responsible for moraine formation in any given place and year. The second and third modes result in stable and higher moraines that have a higher preservation potential than those containing dead ice. Analysis of the spacing and climatic records at Gornergletscher reveals that winter temperature controls marginal retreat and hence moraine formation. However, any climatic signal is complicated by other factors, most notably the presence of a reverse bedrock slope, so that the extraction of a clear climatic signal is not straightforward. This study highlights the complexity of annual moraine formation in high‐mountain environments and suggests avenues for further research.  相似文献   

6.
Clast fabric and morphological data have been used to determine the origin of fluted subglacial tills exposed by recent retreat of the Slettmarkbreen glacier, Norway. A new method for the interpretation of clast fabric data allows aspects of the strain and depositional history of the till to be reconstructed. The till formed by a combination of lodgement and subsole deformation by slip along discrete shear planes. Lodgement was dominant for the larger size fractions (>125 mm), while the smaller material was more susceptible to deformation. The fluted till surface reflects the tendency for the till matrix to deform into regions of low confining pressure in the lee of lodged boulders. Downglacier components of till flow are thought to have resulted in significant sediment transfer towards the margin.  相似文献   

7.
8.
The foreground of Elisebreen, a retreating valley glacier in West Svalbard, exhibits a well-preserved assemblage of subglacial landforms including ice-flow parallel ridges (flutings), ice-flow oblique ridges (crevasse-fill features), and meandering ridges (infill of basal meltwater conduits). Other landforms are thrust-block moraine, hummocky terrain, and drumlinoid hills. We argue in agreement with geomorphological models that this landform assemblage was generated by ice-flow instability, possibly a surge, which took place in the past when the ice was thicker and the bed warmer. The surge likely occurred due to elevated pore-water pressure in a thin layer of thawed and water-saturated till that separated glacier ice from a frozen substratum. Termination may have been caused by a combination of water drainage and loss of lubricating sediment. Sedimentological investigations indicate that key landforms may be formed by weak till oozing into basal cavities and crevasses, opening in response to accelerated ice flow, and into water conduits abandoned during rearrangement of the basal water system. Today, Elisebreen may no longer have surge potential due to its diminished size. The ability to identify ice-flow instability from geomorphological criteria is important in deglaciated terrain as well as in regions where ice dynamics are adapting to climate change.  相似文献   

9.
Ice‐cored lateral and frontal moraine complexes, formed at the margin of the small, land‐based Rieperbreen glacier, central Svalbard, have been investigated through field observations and interpretations of aerial photographs (1936, 1961 and 1990). The main focus has been on the stratigraphical and dynamic development of these moraines as well as the disintegration processes. The glacier has been wasting down since the ‘Little Ice Age’ (LIA) maximum, and between 1936 and 1990 the glacier surface was lowered by 50–60 m and the front retreated by approximately 900 m. As the glacier wasted, three moraine ridges developed at the front, mainly as melting out of sediments from debris‐rich foliation and debris‐bands formed when the glacier was polythermal, probably during the LIA maximum. The disintegration of the moraines is dominated by wastage of buried ice, sediment gravity‐flows, meltwater activity and some frost weathering. A transverse glacier profile with a northward sloping surface has developed owing to the higher insolation along the south‐facing ice margin. This asymmetric geometry also strongly affects the supraglacial drainage pattern. Lateral moraines have formed along both sides of the glacier, although the insolation aspect of the glacier has resulted in the development of a moraine 60 m high along its northern margin. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
基于冰川物质平衡和平衡线高度数据,对北极斯瓦尔巴、高亚洲和阿尔卑斯山的冰川物质平衡变化和平衡线高度空间分布特征进行了对比分析,得出以下结论:(1)阿尔卑斯山冰川年均负物质平衡值最大,为-907 mm;斯瓦尔巴为-431 mm;高亚洲最小,为-264 mm。(2)高亚洲和斯瓦尔巴冰川物质平衡年振幅较小,年际变化较小;阿尔卑斯山冰川物质平衡年振幅较大,年际变化较大。斯瓦尔巴冰川物质平衡趋向正平衡,阿尔卑斯山和高亚洲冰川物质平衡趋向负平衡。(3)斯瓦尔巴内陆的冰川平衡线高度高于沿海地区,高亚洲冰川平衡线高度呈纬向地带性、经向地带性和区域地带性的分布规律,阿尔卑斯山的冰川平衡线高度主要受冰川所处海拔的影响。  相似文献   

11.
The influence of large bedrock landslides (“rock avalanches”) on the behaviour of glaciers is incompletely recognised. Here we present an example from an active tectonic margin in South Island, New Zealand where large earthquakes leave a significant imprint on glacial records. We demonstrate that terminal moraines on the western side of the Southern Alps record both ‘ordinary’ (i.e. climate-driven) and landslide-initiated glacial advances. Following consideration of the processes involved in rock avalanche-initiated moraine construction we suggest ways of determining the nature of the advance that built the terminal moraine. The implications of these observations are important in breaking the conventional linkage of individual terminal moraines with climate forcing.  相似文献   

12.
Chemical analyses on water from dated strata of a south Greenland permanent ice sheet revealed that there is a larger amount of sulfate in samples accumulated during the past decade than in those 60 or more years older. This increase is attributed to combustion of fossil fuel. With the exception of mercury, cadmium and possibly copper, the heavy metal distributions in the glacial waters are similar to those in atmospheric dusts. Previously reported higher mercury values in recently deposited strata were not confirmed.  相似文献   

13.
The landscape of northeast Norfolk is dominated by a high (>50 m) ridge which has been interpreted as an end moraine (Cromer Ridge). This feature is truncated by coastal erosion at Trimingham. Evidence of large- and small-scale compressive styles of deformation is found throughout the sequence, except at the very top, where late Anglian/early Hoxnian lake sediments are found within an undeformed kettle hole. The deformation consists of open folds (including chevron folds) and listric thrust faults. It is suggested that these are the result of a single compressive event, which was caused by proglacial glaciotectonic deformation. It is inferred that this deformation is due to a combination of frontal pushing and compressive stresses transmitted through a subglacial deforming wedge. It is also shown that strain increases towards the ice sheet margin, as reflected by the deformational styles (from open folding up-glacier to listric thrust faulting down-glacier). The Cromer Ridge is shown to be a push moraine complex related to an actively retreating ice margin.  相似文献   

14.
Kongsvegen, a surge‐type glacier in Spitsbergen, Svalbard, shares a tide‐water margin with the glacier Kronebreen. The complex has been in retreat since a surge advance of Kongsvegen around 1948. The surface of Kongsvegen displays suites of deformational structures highlighted by debris‐rich folia. These structures are melting out to form a network of sediment ridges in the grounded terminal area. The structures are also visible in a marginal, 1 km long, 5–20 m high cliff‐face at the terminus. Current models for the evolution of deformational structures at Kongsvegen divide the structures into suites based on their orientation and dip, before assigning a mechanism for genesis based on structure geometry. Interpretation of aerial photographs and field mapping of surface structures suggest that many structures were reorientated or advected during the surge. We suggest that many of the deformational structures highlighted by debris‐rich folia represent reorientated, sediment‐filled crevasses. Some evidence of thrusting is apparent but the process is not as ubiquitous as previously suggested. Many deformational structures also appear to have been offset by more recent structures. Mechanisms of structural development must, therefore, be considered within the context of distinct stages of glacier flow dynamics and multiple surge episodes. Furthermore, evidence for thrusting and folding within the glacier systems of Svalbard has been used as the basis for interpreting Quaternary glacial landforms in the UK. The findings of this paper, therefore, have implications for interpretations of the Quaternary record. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
近50年来北极斯瓦尔巴地区冰川物质平衡变化特征   总被引:1,自引:2,他引:1  
利用长时间序列的冰川物质平衡资料,详细分析了北极斯瓦尔巴地区冰川的物质平衡变化特征以及气候因子对物质平衡的影响。结果表明:近50年来斯瓦尔巴地区冰川物质平衡变化主要呈负平衡、零平衡/略微增长两种状态。冰川净平衡一般为负值,年际变化波动幅度较大且呈负平衡趋势,累积物质平衡表现出长期稳定的负平衡增长态势。除Kongsvegen冰川外,其他冰川不存在短期内的平衡波动。季节变化表现为夏季消融、冬季积累,且夏季消融比冬季积累波动更大,冰川净平衡与夏季消融保持同步变化趋势。冰川净平衡与平衡线高度(ELA)呈负相关(平均相关系数为-0.89),与积累区面积比率(AAR)呈正相关(平均相关系数为0.84),该地区大多数冰川AAR减小,说明冰川物质补给处于劣势,冰川物质平衡向负平衡发展。夏季气温升高是斯瓦尔巴地区冰川表面物质加速亏损的直接原因。  相似文献   

16.
17.
18.
During the Younger Dryas cold event, the Scandinavian ice sheet readvanced in southwest Sweden and formed the Middle Swedish end-moraine zone (MSEMZ). Recent highway construction near Skara has created an exposure through the prominent ridge at Ledsjö. Through sketching and measurement of structural information, we have documented the internal character of the Ledsjö moraine. The moraine consists predominantly of clay with numerous sand pods and lenses, which show undeformed, brittle deformed, or fluidized structures. Based on geomorphology and structural geology, it is clear the moraine was made during two advances. As ice advanced, proglacial marine clay was subglacially mobilized by the ice and extruded at the ice margin forming a ramp of debris-flow sediment. Contemporaneously, subglacial meltwater transported sand to the margin, where the meltwater became a buoyant plume, and sand was deposited near the ice margin by currents moving away from as well as toward the ice margin. These processes resulted in interbedded sand and clay. Continued advance of the ice margin deformed this package and further pushed the assemblage into a ridge form with gravity sliding of portions of the ridge. Prior to the second advance, sand was deposited on the proximal side of the initial ridge. During readvance, this sand was thrust faulted and intruded by mobilized clay. Up ice of the intruded sands, subglacial, extensional deformation created a complex shear zone of faulted sand and clay. The Ledsjö moraine represents a subaerial example of submarine push moraines like the submerged moraines recently documented in Svalbard.  相似文献   

19.
20.
On the basis of the data of glacier mass balance during 1946?C2005 over Svalbard, Northern Scandinavia, and Southern Norway, the characteristics of glacier mass-balance are analyzed, and its sensitivity to climate change is calculated using a simple degree-day model. The mass balance of glaciers in these three regions reached maximum or comparatively high values in the late 1980s or the early 1990s. After that there was an accelerating negative tendency. A glacier with more positive mass balance has a higher sensitivity to equilibrium-line altitude (or climate) change and vice versa. On average, the mass loss during the entire period in these three regions was equivalent to the result of an air temperature rise of 0.32°C relative to zero net balance state. The highest temperature increase is found in Svalbard, and is 0.55°C; however, a rise of only 0.12°C is found in Southern Norway. The net balance sensitivity to a hypothetical air temperature increase of +1°C ranges from ?0.31 to ?1.03?m?w.e.?a?1, and the net balance sensitivity to an assumed increase in snow precipitation of +10% varies from +0.05 to +0.37?m?w.e.?a?1; thus, a 31% increase in snow precipitation is needed to compensate for the net mass loss induced by an air temperature increase of +1°C. The summer balance sensitivity to a hypothetical air temperature increase of +1°C varies from ?0.39 to ?0.95?m?w.e.?a?1, and the winter balance sensitivity to an assumed increase in snow precipitation of +10% ranges from +0.02 to +0.38?m?w.e.?a?1. This study confirms early findings that maritime glaciers have comparatively higher mass balance sensitivity than continental glaciers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号