首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palynological analysis of a core from the Atlantic rain forest region in Brazil provides unprecedented insight into late Quaternary vegetational and climate dynamics within this southern tropical lowland. The 576-cm-long sediment core is from a former beach-ridge “valley,” located 3 km inland from the Atlantic Ocean. Radio-carbon dates suggest that sediment deposition began prior to 35,000 14C yr B.P. Between ca. 37,500 and ca. 27,500 14C yr B.P. and during the last glacial maximum (LGM; ca. 27,500 to ca. 14,500 14C yr B.P.), the coastal rain forest was replaced by grassland and patches of cold-adapted forest. Tropical trees, such as Alchornea, Moraceae/Urticaceae, and Arecaceae, were almost completely absent during the LGM. Furthermore, their distributions were shifted at least 750 km further north, suggesting a cooling between 3°C and 7°C and a strengthening of Antarctic cold fronts during full-glacial times. A depauperate tropical rain forest developed as part of a successional sequence after ca. 12,300 14C yr B.P. There is no evidence that Araucaria trees occurred in the Atlantic lowland during glacial times. The rain forest was disturbed by marine incursions during the early Holocene period until ca. 6100 14C yr B.P., as indicated by the presence of microforaminifera. A closed Atlantic rain forest then developed at the study site.  相似文献   

2.
Pollen analysis on a 9.54-m sediment core from lake Chignahuapan in the upper Lerma basin, the highest intermontane basin in Central Mexico (2570 m asl), documents vegetation and limnological changes over the past ∼23,000 14C yr. The core was drilled near the archaeological site of Santa Cruz Atizapán, a site with a long history of human occupation, abandoned at the end of the Epiclassic period (ca. 900 AD). Six radiocarbon AMS dates and two well-dated volcanic events, the Upper Toluca Pumice with an age of 11,600 14C yr B.P. and the Tres Cruces Tephra of 8500 14C yr B.P., provide the chronological framework for the lacustrine sequence. From ca. 23,000 14C yr B.P. to ca. 11,600 14C yr B.P. the plant communities were woodlands and grasslands based on the pollen data. The glacial advances MII-1 and MII-2 correlate with abundant non-arboreal pollen, mainly grasses, from ca. 21,000 to 16,000 14C yr B.P., and at ca. 12,600 14C yr B.P. During the late Pleistocene, lake Chignahuapan was a shallow freshwater lake with a phase of lower level between 19,000 and 16,000 14C yr B.P. After 10,000 14C yr B.P., tree cover in the area increased, and a more variable lake level is documented. Late Holocene (ca. 3100 14C yr B.P.) deforestation was concurrent with human population expansion at the beginning of the Formative period (1500 B.C.). Agriculture and manipulation of the lacustrine environment by human lakeshore populations appear at 1200 14C yr B.P. (550 A.D.) with the appearance of Zea mays pollen and abundant charcoal particles.  相似文献   

3.
A 33,000-yr pollen record from Carp Lake provides information on the vegetation history of the forest/steppe border in the southwestern Columbia Basin. The site is located in the Pinus ponderosa Zone but through much of late Quaternary time the area was probably treeless. Pollen assemblages in sediments dating from 33,000 to 23,500 yr B.P. suggest a period of temperate climate and steppe coinciding with the end of the Olympia Interglaciation. The Fraser Glaciation (ca. 25,000–10,000 yr B.P.) was a period of periglacial steppe or tundra vegetation and conditions too dry and cold to support forests at low altitudes. Aridity is also inferred from the low level of the lake between 21,000 and 8500 yr B.P., and especially after about 13,500 yr B.P. About 10,000 yr B.P. Chenopodiineae and other temperate taxa spread locally, providing palynological evidence for a shift from cold, dry to warm, dry conditions. Pine woodland developed at the site with the onset of humid conditions at 8500 yr B.P.; further cooling is suggested at 4000 yr B.P., when Pseudotsuga and Abies were established locally.  相似文献   

4.
Pollen diagrams from Joe and Niliq Lakes date to ca. 28,000 and 14,000 yr B.P., respectively. Mesic shurb tundra grew near Joe Lake ca. 28,000 to 26,000 yr B.P. with local Populus populations prior to ca. 27,000 yr B.P. Shrub communities decreased as climate changed with the onset of Itkillik II glaciation (25,000 to 11,500 yr B.P.), and graminoid-dominated tundra characterized vegetation ca. 18,500 to 13,500 yr B.P. Herb tundra was replaced by shrub Betula tundra near both sites ca. 13,500 yr B.P. with local expansion of Populus ca. 11,000 to 10,000 yr B.P. and Alnus ca. 9000 yr B.P. Mixed Picea glauca/P. mariana woodland was established near Joe Lake ca. 6000 yr B.P. These pollen records when combined with others from northern Alaska and northwestern Canada indicate (1) mesic tundra was more common in northwestern Alaska than in northeastern Alaska or northwestern Canada during the Duvanny Yar glacial interval (25,000 to 14,000 yr B.P.); (2) with deglaciation, shrub Betula expanded rapidly in northwestern Alaska but slowly in areas farther east; (3) an early postglacial thermal maximum occurred in northwestern Alaska but had only limited effect on vegetation; and (4) pollen patterns in northern Alaska and northwestern Canada suggest regional differences in late Quaternary climates.  相似文献   

5.
Lithology, pollen, macrofossils, and stable carbon isotopes from an intermontane basin bog site in southern New Zealand provide a detailed late-glacial and early Holocene vegetation and climate record. Glacial retreat occurred before 17,000 cal yr B.P., and tundra-like grassland–shrubland occupied the basin shortly after. Between 16,500 and 14,600 cal yr B.P., a minor regional expansion of forest patches occurred in response to warming, but the basin remained in shrubland. Forest retreated between 14,600 and 13,600 cal yr B.P., at about the time of the Antarctic Cold Reversal. At 13,600 cal yr B.P., a steady progression from shrubland to tall podocarp forest began as the climate ameliorated. Tall, temperate podocarp trees replaced stress-tolerant shrubs and trees between 12,800 and 11,300 cal yr B.P., indicating sustained warming during the Younger Dryas Chronozone (YDC). Stable isotopes suggest increasing atmospheric humidity from 11,800 to 9300 cal yr B.P. Mild (annual temperatures at least 1°C higher than present), and moist conditions prevailed from 11,000 to 10,350 cal yr B.P. Cooler, more variable conditions followed, and podocarp forest was completely replaced by montane Nothofagus forest at around 7500 cal yr B.P. with the onset of the modern climate regime. The Cass Basin late-glacial climate record closely matches the Antarctic ice core records and is in approximate antiphase with the North Atlantic.  相似文献   

6.
Middle Park, a high‐altitude basin in the Southern Rocky Mountains of north‐central Colorado, contains at least 59 known Paleoindian localities. At Barger Gulch Locality B, an extensive Folsom assemblage (˜10,500 14C yr B.P.) occurs within a buried soil. Radiocarbon ages of charcoal and soil organic matter, as well as stratigraphic positions of artifacts, indicate the soil is a composite of a truncated, latest‐Pleistocene soil and a younger mollic epipedon formed between ˜6000 and 5200 14C yr B.P. and partially welded onto the older soil following erosion and truncation. Radiocarbon ages from an alluvial terrace adjacent to the excavation area indicate that erosion followed by aggradation occurred between ˜10,200 and 9700 14C yr B.P., and that the erosion is likely related to truncation of the latest‐Pleistocene soil. Erosion along the main axis of Barger Gulch occurring between ˜10,000 and 9700 14C yr B.P. was followed by rapid aggradation between ˜9700 and 9550 14C yr B.P., which, along with the erosion at Locality B, coincides with the abrupt onset of monsoonal precipitation following cooling in the region ˜11,000–10,000 14C yr B.P. during the Younger Dryas oscillation. Buried soils dated between ˜9500 and 8000 14C yr B.P. indicate relative landscape stability and soil formation throughout Middle Park. Morphological characteristics displayed by early Holocene soils suggest pedogenesis under parkland vegetation in areas currently characterized by sagebrush steppe. The expansion of forest cover into lower elevations during the early Holocene may have resulted in lower productivity in regards to mammalian fauna, and may partly explain the abundance of early Paleoindian sites (˜11,000–10,000 14C yr B.P., 76%) relative to late Paleoindian sites (˜10,000–8000 14C yr B.P., 24%) documented in Middle Park. © 2005 Wiley Periodicals, Inc.  相似文献   

7.
Haploxylon pine(s) and Artemisia dominated the initial vegetation in front of the receding Okanogan Lobe until ca. 10,000 yr B.P., as revealed by two pollen records in north-central Washington. After 10,000 yr B.P. the macroclimate became warmer throughout the Okanogan drainage as diploxylon pines and Artemisia increased. The Mount Mazama eruption at ca. 6700 yr B.P. is recorded as two stratigraphically separate and petrographically distinct tephra units at Bonaparte Meadows. While there are apparent short-term changes in the vegetation coincident with the ashfall(s), Artemisia continues to dominate the Okanogan Valley until ca. 5000 yr B.P. By 4700 yr B.P. the modern vegetation, dominated by Pseudotsuga menziesii, had become established around Bonaparte Meadows.  相似文献   

8.
Sediments from Rapid Lake document glacial and vegetation history in the Temple Lake valley of the Wind River Range, Wyoming over the past 11,000 to 12,000 yr. Radiocarbon age determinations on basal detrital organic matter from Rapid Lake (11,770 ± 710 yr B.P.) and Temple Lake (11,400 ± 630 yr B.P.) bracket the age of the Temple Lake moraine, suggesting that the moraine formed in the late Pleistocene. This terminal Pleistocene readvance may be represented at lower elevations by the expansion of forest into intermontane basins 12,000 to 10,000 yr B.P. Vegetation in the Wind River Range responded to changing environmental conditions at the end of the Pleistocene. Following deglaciation, alpine tundra in the Temple Lake valley was replaced by a Pinus albicaulis parkland by about 11,300 14C yr B.P. Picea and Abies, established by 10,600 14C yr B.P., grew with Pinus albicaulis in a mixed conifer forest at and up to 100 m above Rapid Lake for most of the Holocene. Middle Holocene summer temperatures were about 1.5°C warmer than today. By about 5400 14C yr B.P. Pinus albicaulis and Abies became less prominent at upper treeline because of decreased winter snowpack and higher maximum summer temperatures. The position of the modern treeline was established by 3000 14 C yr B.P. when Picea retreated downslope in response to Neoglacial cooling.  相似文献   

9.
Palynologic and stratigraphic data from Laguna Tahui (42°50′S, 73°30′W) indicate cool-temperate and humid conditions there between 14,000 and 10,000 14C yr B.P., followed by warmer and drier-than-present conditions between 10,000 and 7000 14C yr B.P., and subsequent cooling and rise in precipitation over the last 5800 14C yr. The thermophilous Valdivian trees Eucryphia cordifolia and Caldcluvia paniculata reached their maximum abundance during the early Holocene warm-dry phase (10,000-7000 14C yr B.P.), followed by a rise in lake levels and reexpansion of North Patagonian conifers starting at 7000 and 5800 14C yr B.P., respectively. Variations in the stratigraphic and geographic distribution of temperate rainforests in southern Chile suggest multimillennial trends in temperature and westerly activity, which are spatially and temporally coherent with paleoclimate records from neighboring regions. Climate variability at millennial and submillennial time scales may account for the establishment and persistence of fine-scale mosaics of Valdivian and North Patagonian rainforest species in low- to mid-elevation communities since ∼5800 14C yr B.P.  相似文献   

10.
The record of Almoloya Lake in the Upper Lerma basin starts with the deposition of the late Pleistocene Upper Toluca Pumice layer. The data from this interval indicate a period of climatic instability that lasted until 8500 cal yr B.P., when temperature conditions stabilized, although moisture fluctuations continued until 8000 cal yr B.P. Between 8500 and 5000 cal yr B.P. a temperate climate is indicated by dominance of Pinus. From 5000 to 3000 cal yr B.P. Quercus forest expanded, suggesting a warm temperate climate: a first indication of drier environmental conditions is an increase in grassland between 4200 and 3500 cal yr B.P. During the Late Holocene (3300 to 500 cal yr B.P.) the increase of Pinus and grassland indicates temperate dry conditions, with a considerable increase of Pinus between 1100 and 950 cal yr B.P. At the end of this period, humidity increased. The main tendency during the Holocene was a change from humid to dry conditions. During the Early Holocene, Almoloya Lake was larger and deeper; the changing humidity regime resulted in a fragmented marshland, with the presence of aquatic and subaquatic vegetation types.  相似文献   

11.
Stratigraphic exposures in natural profiles, archaeological excavation units, backhoe trenches, and an uncased water well from the Laguna Seca Chapala basin in the Central Desert of Baja California (29°N, 115°W) record lake level and climate changes and provide a context for prehistoric occupation predating 9070 yr B.P. and extending through the Holocene. Lithofacies analysis points to the presence of a large (ca. 66 km2) lake prior to 9070 yr B.P., which desiccated by 7.45 ka yr B.P., promoting rapid dune growth. New dating and redefinition of stratigraphic units in the basin refutes earlier models of lacustrine history and prehistoric occupation including a proposed series of Pleistocene lake levels with associated cultural occupations. The geologic record from the Laguna Seca Chapala basin compares well with other paleoenvironmental records in southwestern North America, supporting interpretations of wet and cool conditions in Baja California during the late Pleistocene and early Holocene. © 2003 Wiley Periodicals, Inc.  相似文献   

12.
Two sediment cores from Kaiyak and Squirrel lakes in northwestern Alaska yielded pollen records that date to ca. 39,000 and 27,000 yr B.P., respectively. Between 39,000 and 14,000 yr B.P., the vegetation around these lakes was dominated by Gramineae and Cyperaceae with some Salix and possibly Betula nana/glandulosa forming a local, shrub component of the vegetation. Betula pollen percentages increased about 14,000 yr B.P., indicating the presence of a birchdominated shrub tundra. Alnus pollen appeared at both sites between 9000 and 8000yr B.P., and Picea pollen (mostly P. mariana) arrived at Squirrel Lake about 5000 yr B.P. The current foresttundra mosaic around Squirrel Lake was established at this time, whereas shrub tundra existed near Kaiyak Lake throughout the Holocene. When compared to other pollen records from north-western North America, these cores (1) represent a meadow component of lowland. Beringian tundra between 39,000 and 14,000 yr B.P., (2) demonstrate an early Holocene arrival of Alnus in northwestern Alaska that predates most other Alnus horizons in northern Alaska or northwestern Canada, and (3) show an east-to-west migration of Picea across northern Alaska from 9000 to 5000 yr B.P.  相似文献   

13.
Sediments of Balsam Meadow have produced a 11,000-yr pollen record from the southern Sierra Nevada of California. The Balsam Meadow diagram is divided into three zones. (1) The Artemisia zone (11,000–7000 yr B.P.) is characterized by percentages of sagebrush (Artemisia) and other nonarboreal pollen higher than can be found in the modern local vegetation. Vegetation during this interval was probably similar to the modern vegetation on the east slope of the Sierra Nevada and the climate was drier than that of today. (2) Pinus pollen exceeded 80% from 7000 to 3000 yr B.P. in the Pinus zone. The climate was moister than during the Artemisia zone. (3) Fir (Abies, Cupressaceae, and oak (Quercus) percentages increased after 3000 yr B.P. in the Abies zone as the modern vegetation at the site developed and the present cool-moist climatic regime was established. Decreased fire frequency after 1200 yr B.P. is reflected in decreased abundance of macroscopic charcoal and increased concentration of Abies magnifica and Pinus murrayana needles.  相似文献   

14.
As the late Wisconsin Cordilleran Ice Sheet retreated, sediment accumulated in shallow depressions at the Manis Mastodon Archaeological site on the Olympic Peninsula, near Sequim, Washington. Pollen, plant macrofossils, and bones of mastodon, caribou, and bison occur within the lower 47 cm of these deposits. The fossil pollen and seed assemblages indicate persistence for 1000 yr (11,000–12,000 yr B.P.) of an herb-and-shrub-dominated landscape at a time when forest species appear elsewhere in Washington and in adjacent British Columbia.At present, Sequim is near the northern coastal limits of both Cactaceae and Ceratophyllum. Mean annual precipitation is 42.7 cm and summer temperatures average 15°–16°C in July. The absence of coniferous trees and the presence of cactus and Ceratophyllum in late-glacial sediments are explained by a regional climate that was drier and at least as warm as today. These conditions persisted in the rain shadow of the Olympic Mountains until at least 11,000 yr B.P.  相似文献   

15.
AMS-dated sediment cores combined with ground-penetrating radar profiles from two lakes in southeastern Massachusetts demonstrate that regional water levels rose and fell multiple times during the Holocene when the known climatic controls (i.e., ice extent and insolation) underwent unidirectional changes. The lakes were lowest between 10,000 and 9000 and between 5500 and 3000 cal yr B.P. Using a heuristic moisture-budget model, we explore the hypothesis that changes in seasonal precipitation regimes, driven by monotonic trends in ice extent and insolation, plausibly explain the multiple lake-level changes. Simulated lake levels resulting from low summer precipitation rates match observed low lake levels of 10,000-9000 cal yr B.P., whereas a model experiment that simply shifts the seasonality of the modern Massachusetts precipitation regime (i.e., moving the peak monthly precipitation from winter to summer) produces levels that are ∼2 m lower than today as observed for 5500-3000 cal yr B.P. The influence of the Laurentide ice sheet could explain dry summers before ca. 8000 cal yr B.P. A later shift from a summer-wet to a winter-wet moisture-balance regime could have resulted from insolation-driven changes in the influence of the Bermuda subtropical high. Temperature changes probably further modified lake levels by affecting snowmelt and transpiration.  相似文献   

16.
Two sedimentary units are recognized by means of stratigraphic and sedimentological analyses at Monte Verde, a late Pleistocene archeological site with stone tools and well-preserved wood artifacts and botanical remains, that lies southwest of Lago Llanquihue and north of the Golfo de Reloncavi in the southern end of the Chilean Central graben. the geological evidence shows that at no time after 33,000 yr B.P., and perhaps since the first Llanquihue advance (before 56,000 yr B.P.), was the Monte Verde area covered by ice. Influences of two glacial advances at 20,000 and 15,000-14,500 yr B.P. are recognized at the site; effects of the Varas Interstade, however, are not identified. Rapid climatic change took place after the end of the Llanquihue Glaciation. It was shortly interrupted by a cool, wet period around 10,000 yr B.P., after which a well-documented Hypsithermal (8270-4750 yr B.P.) accompanied by pyroclastic vulcanism followed. The evidence indicates that around 13,000 yr B.P. 1) the site occupants settled on the sandy point bars and beaches of the old creek channel and 2) the area was habitated during cool and wet conditions similar to those that prevail in the area today. Evidence for reconstruction of the paleo-environment and climate of the terminal Pleistocene and the preliminary implications of these findings for understanding the human occupation at Monte Verde are discussed.  相似文献   

17.
Geoarchaeological investigations in western Middle Park provide important information for understanding the soil‐stratigraphic context of Paleoindian components, as well as the latest Quaternary environmental change and landscape evolution in a Southern Rocky Mountain intermontane basin. Paleoindian components are associated with the oldest two of four latest Quaternary stratigraphic units (1–4) recognized in co‐alluvial mantles (combined slopewash and colluvium) in uplands and in alluvial valley fills. Limited data suggest accumulation of unit 1 as early as ∼12,500 14C yr B.P. in alluvial valleys and by at least ∼11,000 14C yr B.P. in uplands was followed by brief stability and soil formation. A relatively widespread disconformity marks earliest Holocene erosion and substantial removal of latest Pleistocene deposits in upland and alluvial settings followed by unit 2 deposition ∼10,000–9000 14C yr B.P., perhaps signaling the abrupt onset of an intensified summer monsoon. In situ Paleoindian components in uplands are found in a moderately developed buried soil (the Kremmling soil) formed in units 1 and 2 in thin (≤1m) hillslope co‐alluvial mantles. The Kremmling soil reflects geomorphic stability in upland and alluvial settings ∼9000–4500 14C yr BP, and represents a buried landscape with the potential to contain additional Paleoindian components, although elsewhere in western Middle Park Early Archaic components are documented in morphologically similar soils. Kremmling soil morphology, the relative abundance of charcoal in unit 2 relative to younger units, and charcoal morphology indicate the expansion of forest cover, including Pinus, and grass cover during the early and middle Holocene, suggesting conditions moister than present. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
Using modern pollen and radiolarian distributions in sediments from the northwest Pacific and seas adjacent to Japan to interpret floral and faunal changes in core RC14-103 (44°02′N, 152°56′E), we recognize two major responses of the biota of eastern Hokkaido and the northwest Pacific to climatic changes since the last interglaciation. Relatively stable glacial environments (~80,000–20,000 yr B.P.) were basically cold and wet (<4°C and ~1000 mm mean annual temperature and precipitation, respectively) with boreal conijers and tundra/park-tundra on Hokkaido, and cool (<16°C) summer and cold (<1.0°C) winter surface temperatures offshore. Contrasting nonglacial environments (~10,000–4000 yr B.P.) were warm and humid (>8°C and >1200 mm mean annual temperature and precipitation, respectively), supporting climax broadleaf deciduous forest with Quercus and Ulmus/Zelkova, with surface waters in the northwest Pacific characterized by warm (>1.5°C) winter and cold (10.4°–14.3°C) summer temperatures. Climatic evidence from RC14-103 shows a high degree of local and regional variation within the context of global climatic change. Correlative ocean and land records provide the detailed input necessary to assess local/regional responses to variations in other key elements (i.e., solar radiation, monsoonal variations) of the northeast Asian climate system.  相似文献   

19.
The composition of Hippidion diet, and possible changes that could relate to its extinction, were evaluated in the Argentinean-Chilean Central Andes, a Neotropical environment characterized by arid to semiarid conditions (Andean hot and cold deserts). Microhistological analyses were made on feces of Hippidion found at Los Morrillos (31°43′S–68°42′W, 3000 m a.s.l.) and Gruta del Indio (34°35′S, 68°22′W, 660 m a.s.l.). At Gruta del Indio the diet of Hippidion was based mainly on woody species. At Los Morrillos, it was based on herbaceous species.This flexibility in diet composition could be a relative adaptive advantage allowing a longer permanence of this species in comparison to others recorded in the region (such as Megatheriumand Mylodon). Nevertheless, this advantage was not enough to guarantee its survival during the Holocene. Extinction could have been affected by diverse agents, such as growing aridification of the area, increasing competition with other species (mainly Lama guanicoe), and human presence, along with a relatively low population density (as expected from the limited presence of Hippidion at the archaeological and palaeontological sites of South America. At Gruta del Indio significant changes in the diet of Hippidion corresponding to different intervals of the period 31,000–9000 14C BP are not evident. Given this evidence for similar diets for Hippidion throughout the late Quaternary, other factors need to be considered to explain the extinction of this horse.  相似文献   

20.
Mollusks were studied from six sites in Lake Algonquin deposits (12,000-10,000 yr B.P.), five transitional (Lake Stanley low stage; 10,000 – 6000 yr B.P.), and six Nipissing stage sites (6000-4000 yr B.P.) east of Lake Huron in southwestern Ontario. The sites represent a variety of near-shore, lagoonal, estuarine, and fluvial environments. Eighteen species were limited to occurrences in Algonquin stage deposits; 8 were found only in the transitional age sites; and 14 species were restricted to Nipissing stage localities. With the possible exception of Goniobasis livescens, which occurred at five of the six Nipissing stage sites, the remaining stratigraphically limited species were usually restricted to one or two localities and probably cannot be used as zone fossils. Some cold-tolerant species (e.g., Anodonta grandis simpsoniana) were very early migrants into the study area, while others arrived later, apparently from eastern, southern, and western sources. Mollusks proved useful in paleoenvironmental reconstructions and to a lesser extent in biostratigraphic zonation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号