首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Ma  Youwei  Li  Jianping  Zhang  Shaoqing  Zhao  Haoran 《Climate Dynamics》2021,56(11):3489-3509

Of great importance for guiding numerical weather and climate predictions, understanding predictability of the atmosphere in the ocean − atmosphere coupled system is the first and critical step to understand predictability of the Earth system. However, previous predictability studies based on prefect model assumption usually depend on a certain model. Here we apply the predictability study with the Nonlinear Local Lyapunov Exponent and Attractor Radius to the products of multiple re-analyses and forecast models in several operational centers to realize general predictability of the atmosphere in the Earth system. We first investigated the predictability characteristics of the atmosphere in NCEP, ECMWF and UKMO coupled systems and some of their uncoupled counterparts and other uncoupled systems. Although the ECMWF Integrated Forecast System shows higher skills in geopotential height over the tropics, there is no certain model providing the most precise forecast for all variables on all levels and the multi-model ensemble not always outperforms a single model. Improved low-frequency signals from the air − sea and stratosphere − troposphere interactions that extend predictability of the atmosphere in coupled system suggests the significance of air − sea coupling and stratosphere simulation in practical forecast development, although uncertainties exist in the model representation for physical processes in air − sea interactions and upper troposphere. These inspire further exploration on predictability of ocean and stratosphere as well as sea − ice and land processes to advance our understanding of interactions of Earth system components, thus enhancing weather − climate prediction skills.

  相似文献   

2.
Tardif  Robert  Hakim  Gregory J.  Snyder  Chris 《Climate Dynamics》2015,45(5-6):1415-1427
Climate Dynamics - Coupled atmosphere–ocean data assimilation (DA) experiments are performed for estimating the Atlantic meridional overturning circulation (AMOC). Recovery of the AMOC with...  相似文献   

3.
A simple idealized atmosphere–ocean climate model and an ensemble Kalman filter are used to explore different coupled ensemble data assimilation strategies. The model is a low-dimensional analogue of the North Atlantic climate system, involving interactions between large-scale atmospheric circulation and ocean states driven by the variability of the Atlantic meridional overturning circulation (MOC). Initialization of the MOC is assessed in a range of experiments, from the simplest configuration consisting of forcing the ocean with a known atmosphere to performing fully coupled ensemble data assimilation. “Daily” assimilation (that is, at the temporal frequency of the atmospheric observations) is contrasted with less frequent assimilation of time-averaged observations. Performance is also evaluated under scenarios in which ocean observations are limited to the upper ocean or are non-existent. Results show that forcing the idealized ocean model with atmospheric analyses is inefficient at recovering the slowly evolving MOC. On the other hand, daily assimilation rapidly leads to accurate MOC analyses, provided a comprehensive set of oceanic observations is available for assimilation. In the absence of sufficient observations in the ocean, the assimilation of time-averaged atmospheric observations proves to be more effective for MOC initialization, including the case where only atmospheric observations are available.  相似文献   

4.
Predictability of the subtropical dipole modes is assessed using the SINTEX-F coupled model. Despite the known difficulty in predicting subtropical climate due to large internal variability of the atmosphere and weak ocean–atmosphere coupling, it is shown for the first time that the coupled model can successfully predict the South Atlantic Subtropical Dipole (SASD) 1 season ahead, and the prediction skill is better than the persistence in all the 1–12 month lead hindcast experiments. There is a prediction barrier in austral winter due to the seasonal phase locking of the SASD to austral summer. The prediction skill is lower for the Indian Ocean Subtropical Dipole (IOSD) than for the SASD, and only slightly better than the persistence till 6-month lead because of the low predictability of the sea surface temperature anomaly in its southwestern pole. However, for some strong IOSD events in the last three decades, the model can predict them 1 season ahead. The co-occurrence of the negative SASD and IOSD in 1997/1998 austral summer can be predicted from July 1st of 1997. This is because the negative sea level pressure anomalies over the South Atlantic and the southern Indian Ocean in September–October (November–December) that trigger the occurrence of the negative SASD and IOSD are related to the well predicted tropical Indian Ocean Dipole (El Niño/Southern Oscillation). Owing to the overall good performances of the SINTEX-F model in predicting the SASD, some strong IOSD, and El Niño/Southern Oscillation, the prediction skill of the southern African summer precipitation is high in the SINTEX-F model.  相似文献   

5.
The sensitivity of the predictive skill of a decadal climate prediction system is investigated with respect to details of the initialization procedure. For this purpose, the coupled ocean–atmosphere UCLA/MITgcm climate model is initialized using the following three different initialization approaches: full state initialization (FSI), anomaly initialization (AI) and FSI employing heat flux and freshwater flux corrections (FC). The ocean initial conditions are provided by the German contribution to Estimating the Circulation and Climate of the Ocean state estimate (GECCO project), from which ensembles of decadal hindcasts are initialized every 5 years from 1961 to 2001. The predictive skill for sea surface temperature (SST), sea surface height (SSH) and the Atlantic meridional overturning circulation (AMOC) is assessed against the GECCO synthesis. In regions with a deep mixed layer the predictive skill for SST anomalies remains significant for up to a decade in the FC experiment. By contrast, FSI shows less persistent skill in the North Atlantic and AI does not show high skill in the extratropical Southern Hemisphere, but appears to be more skillful in the tropics. In the extratropics, the improved skill is related to the ability of the FC initialization method to better represent the mixed layer depth, and the highest skill occurs during wintertime. The correlation skill for the spatially averaged North Atlantic SSH hindcasts remains significant up to a decade only for FC. The North Atlantic MOC initialized hindcasts show high correlation values in the first pentad while correlation remains significant in the following pentad too for FSI and FC. Overall, for the current setup, the FC approach appears to lead to the best results, followed by the FSI and AI procedures.  相似文献   

6.
This study examines mid-latitude climate variability in a model that couples turbulent oceanic and atmospheric flows through an active oceanic mixed layer. Intrinsic ocean dynamics of the inertial recirculation regions combines with nonlinear atmospheric sensitivity to sea-surface temperature (SST) anomalies to play a dominant role in the variability of the coupled system.Intrinsic low-frequency variability arises in the model atmosphere; when run in a stand-alone mode, it is characterized by irregular transitions between preferred high-latitude and less frequent low-latitude zonal-flow states. When the atmosphere is coupled to the ocean, the low-latitude state occurrences exhibit a statistically significant signal in a broad 5–15-year band. A similar signal is found in the time series of the model ocean's energy in this coupled simulation. Accompanying uncoupled ocean-only and atmosphere-only integrations are characterized by a decrease in the decadal-band variability, relative to the coupled integration; their spectra are indistinguishable from a red spectrum.The time scale of the coupled interdecadal oscillation is set by the nonlinear adjustment of the ocean's inertial recirculations to the high-latitude and low-latitude atmospheric forcing regimes. This adjustment involves, in turn, SST changes resulting in long-term ocean–atmosphere heat-flux anomalies that induce the atmospheric regime transitions.  相似文献   

7.
We analyze how the characteristics of El Niño-Southern Oscillation (ENSO) are changed in coupled ocean–atmosphere simulations of the mid-Holocene (MH) and the Last Glacial Maximum (LGM) performed as part of the Paleoclimate Modeling Intercomparison Project phase 2 (PMIP2). Comparison of the model results with present day observations show that most of the models reproduce the large scale features of the tropical Pacific like the SST gradient, the mean SST and the mean seasonal cycles. All models simulate the ENSO variability, although with different skill. Our analyses show that several relationships between El Niño amplitude and the mean state across the different control simulations are still valid for simulations of the MH and the LGM. Results for the MH show a consistent El Niño amplitude decrease. It can be related to the large scale atmospheric circulation changes. While the Northern Hemisphere receives more insolation during the summer time, the Asian summer monsoon system is strengthened which leads to the enhancement of the Walker circulation. Easterlies prevailing over the central eastern Pacific induce an equatorial upwelling that damps the El Niño development. Results are less conclusive for 21ka. Large scale dynamic competes with changes in local heat fluxes, so that model shows a wide range of responses, as it is the case in future climate projections.  相似文献   

8.
This study examines a future climate change scenario over California in a 10-km coupled regional downscaling system of the Regional Spectral Model for the atmosphere and the Regional Ocean Modeling System for the ocean forced by the global Community Climate System Model version 3.0 (CCSM3). In summer, the coupled and uncoupled downscaled experiments capture the warming trend of surface air temperature, consistent with the driving CCSM3 forcing. However, the surface warming change along the California coast is weaker in the coupled downscaled experiment than it is in the uncoupled downscaling. Atmospheric cooling due to upwelling along the coast commonly appears in both the present and future climates, but the effect of upwelling is not fully compensated for by the projected large-scale warming in the coupled downscaling experiment. The projected change of extreme warm events is quite different between the coupled and uncoupled downscaling experiments, with the former projecting a more moderate change. The projected future change in precipitation is not significantly different between coupled and uncoupled downscaling. Both the coupled and uncoupled downscaling integrations predict increased onshore sea breeze change in summer daytime and reduced offshore land breeze change in summer nighttime along the coast from the Bay area to Point Conception. Compared to the simulation of present climate, the coupled and uncoupled downscaling experiments predict 17.5 % and 27.5 % fewer Catalina eddy hours in future climate respectively.  相似文献   

9.
This work evaluates the added value of the downscaling technique employed with the Eta model nested in the CPTEC atmospheric general circulation model and in the CPTEC coupled ocean?Catmosphere general circulation model (CGCM). The focus is on the austral summer season, December?CJanuary?CFebruary, with three members each year. Precipitation, latent heat flux, and shortwave radiation flux at the surface hindcast by the models are compared with observational data and model analyses. The global models generally overestimate the precipitation over South America and tropical Atlantic. The CGCM and the nested Eta (Eta + C) both produce a split in the ITCZ precipitation band. The Eta + C produces better precipitation pattern for the studied season. The Eta model reduces the excessive latent heat flux generated by these global models, in particular the Eta + C. Comparison against PIRATA buoys data shows that the Eta + C results in the smallest precipitation and shortwave radiation forecast errors. The Eta + C comparatively best results are though as a consequence of both: the regional model resolution/physics and smaller errors on the lateral boundary conditions provided by the CGCM.  相似文献   

10.
The impacts of diurnal atmosphere–ocean (air–sea) coupling on tropical climate simulations are investigated using the SNU coupled GCM. To investigate the effect of the atmospheric and oceanic diurnal cycles on a climate simulation, a 1-day air–sea coupling interval experiment is compared to a 2-h coupling experiment. As previous studies have suggested, cold temperature biases over equatorial western Pacific regions are significantly reduced when diurnal air–sea coupling strategy is implemented. This warming is initiated by diurnal rectification and amplified further by the air–sea coupled feedbacks. In addition to its effect on the mean climatology, the diurnal coupling has also a distinctive impact on the amplitude of the El Nino-Southern Oscillation (ENSO). It is demonstrated that a weakening of the ENSO magnitude is caused by reduced (increased) surface net heat fluxes into the ocean during El Nino (La Nina) events. Primarily, decreased (increased) incoming shortwave radiation during El Nino (La Nina) due to cloud shading is responsible for the net heat fluxes associated with ENSO.  相似文献   

11.
An ocean–atmosphere–sea ice model is developed to explore the time-dependent response of climate to Milankovitch forcing for the time interval 5–3 Myr BP. The ocean component is a zonally averaged model of the circulation in five basins (Arctic, Atlantic, Indian, Pacific, and Southern Oceans). The atmospheric component is a one-dimensional (latitudinal) energy balance model, and the sea-ice component is a thermodynamic model. Two numerical experiments are conducted. The first experiment does not include sea ice and the Arctic Ocean; the second experiment does. Results from the two experiments are used to investigate (1) the response of annual mean surface air and ocean temperatures to Milankovitch forcing, and (2) the role of sea ice in this response. In both experiments, the response of air temperature is dominated by obliquity cycles at most latitudes. On the other hand, the response of ocean temperature varies with latitude and depth. Deep water formed between 45°N and 65°N in the Atlantic Ocean mainly responds to precession. In contrast, deep water formed south of 60°S responds to obliquity when sea ice is not included. Sea ice acts as a time-integrator of summer insolation changes such that annual mean sea-ice conditions mainly respond to obliquity. Thus, in the presence of sea ice, air temperature changes over the sea ice are amplified, and temperature changes in deep water of southern origin are suppressed since water below sea ice is kept near the freezing point.  相似文献   

12.
The interplay between the North Atlantic Oscillation (NAO) and the large scale ocean circulation is inspected in a twentieth century simulation conducted with a state-of-the-art coupled general circulation model. Significant lead–lag covariance between oceanic and tropospheric variables suggests that the system supports a damped oscillatory mode involving an active ocean–atmosphere coupling, with a typical NAO-like space structure and a 5 years timescale, qualitatively consistent with a mid-latitude delayed oscillator paradigm. The two essential processes governing the oscillation are (1) a negative feedback between ocean gyre circulation and the high latitude SST meridional gradient and (2) a positive feedback between SST and the NAO. The atmospheric NAO pattern appears to have a weaker projection on the ocean meridional overturning, compared to the gyre circulation, which leads to a secondary role for the thermohaline circulation in driving the meridional heat transport, and thus the oscillatory mode.  相似文献   

13.
The overall skill of ENSO prediction in retrospective forecasts made with ten different coupled GCMs is investigated. The coupled GCM datasets of the APCC/CliPAS and DEMETER projects are used for four seasons in the common 22 years from 1980 to 2001. As a baseline, a dynamic-statistical SST forecast and persistence are compared. Our study focuses on the tropical Pacific SST, especially by analyzing the NINO34 index. In coupled models, the accuracy of the simulated variability is related to the accuracy of the simulated mean state. Almost all models have problems in simulating the mean and mean annual cycle of SST, in spite of the positive influence of realistic initial conditions. As a result, the simulation of the interannual SST variability is also far from perfect in most coupled models. With increasing lead time, this discrepancy gets worse. As one measure of forecast skill, the tier-1 multi-model ensemble (MME) forecasts of NINO3.4 SST have an anomaly correlation coefficient of 0.86 at the month 6. This is higher than that of any individual model as well as both forecasts based on persistence and those made with the dynamic-statistical model. The forecast skill of individual models and the MME depends strongly on season, ENSO phase, and ENSO intensity. A stronger El Niño is better predicted. The growth phases of both the warm and cold events are better predicted than the corresponding decaying phases. ENSO-neutral periods are far worse predicted than warm or cold events. The skill of forecasts that start in February or May drops faster than that of forecasts that start in August or November. This behavior, often termed the spring predictability barrier, is in part because predictions starting from February or May contain more events in the decaying phase of ENSO.  相似文献   

14.
The impact of ocean–atmosphere coupling on the simulation and prediction of the boreal summer intraseasonal oscillation (ISO) has been investigated by diagnosing 22-year retrospective forecasts using the Seoul National University coupled general circulation model (CGCM) and its atmospheric GCM (AGCM) forced with SSTs derived from the CGCM. Numerous studies have shown that the ocean–atmosphere coupling has a significant effect on the improvement of ISO simulation and prediction. Contrary to previous studies, this study shows similar results between CGCM and AGCM, not only in regard to the ISO simulation characteristics but also the predictability. The similarities between CGCM and AGCM include (1) the ISO intensity over the entire Asian-monsoon region; (2) the spatiotemporal evolution of the northward propagating ISO (NPISO); and (3) the potential and practical predictability. A notable difference between CGCM and AGCM is the phase relationship between precipitation and SST anomalies. The CGCM and observation exhibits a near-quadrature relationship between precipitation and SST, with the former lagging about two pentads. The AGCM shows a less realistic phase relationship. The similar structure and propagation characteristics of ISO between the CGCM and AGCM suggest that the internal atmospheric dynamics could be more essential to the ISO than the ocean–atmosphere interaction over the Indian monsoon region.  相似文献   

15.
We consider the general atmospheric circulation within the deductive framework of our climate theory. The preceding three parts of this theory have reduced the troposphere to the tropical and polar air masses and determined their temperature and the surface latitude of their dividing boundary, which provide the prior thermal constraint for the present dynamical derivation. Drawing upon its similar material conservation as the thermal property, the (columnar) potential vorticity (PV) is assumed homogenized as well in air masses, which moreover has a zero tropical value owing to the hemispheric symmetry. Inverting this PV field produces an upper-bound zonal wind that resembles the prevailing wind, suggesting that the latter may be explained as the maximum macroscopic motion extractable by random eddies – within the confine of the thermal differentiation.With the polar front determined in conjunction with the zonal wind, the approximate leveling of the isobars at the surface and high aloft specifies the tropopause, which is colder and higher in the tropics than in the polar region. The zonal wind drives the meridional circulation via the Ekman dynamics, and the preeminence of the Hadley cell stems from the singular Ekman convergence at the equator that allows it to supply the upward mass flux in the ITCZ demanded by the global energy balance.  相似文献   

16.
This study examines the oceanic and atmospheric variability over the Intra-American Seas (IAS) from a 32-year integration of a 15-km coupled regional climate model consisting of the Regional Spectral Model (RSM) for the atmosphere and the Regional Ocean Modeling System (ROMS) for the ocean. It is forced at the lateral boundaries by National Centers for Environmental Prediction-Department of Energy (NCEP-DOE R-2) atmospheric global reanalysis and Simplified Ocean Data Assimilation global oceanic reanalysis. This coupled downscaling integration is a free run without any heat flux correction and is referred as the Regional Ocean–Atmosphere coupled downscaling of global Reanalysis over the Intra-American Seas (ROARS). The paper examines the fidelity of ROARS with respect to independent observations that are both satellite based and in situ. In order to provide a perspective on the fidelity of the ROARS simulation, we also compare it with the Climate Forecast System Reanalysis (CFSR), a modern global ocean–atmosphere reanalysis product. Our analysis reveals that ROARS exhibits reasonable climatology and interannual variability over the IAS region, with climatological SST errors less than 1 °C except along the coastlines. The anomaly correlation of the monthly SST and precipitation anomalies in ROARS are well over 0.5 over the Gulf of Mexico, Caribbean Sea, Western Atlantic and Eastern Pacific Oceans. A highlight of the ROARS simulation is its resolution of the loop current and the episodic eddy events off of it. This is rather poorly simulated in the CFSR. This is also reflected in the simulated, albeit, higher variance of the sea surface height in ROARS and the lack of any variability in the sea surface height of the CFSR over the IAS. However the anomaly correlations of the monthly heat content anomalies of ROARS are comparatively lower, especially over the Gulf of Mexico and the Caribbean Sea. This is a result of ROARS exhibiting a bias of underestimation (overestimation) of high (low) clouds. ROARS like CFSR is also able to capture the Caribbean Low Level Jet and its seasonal variability reasonably well.  相似文献   

17.
We describe a coupled climate model of intermediate complexity designed for use in global warming experiments. The atmospheric component is a two-dimensional (zonally averaged) statistical-dynamical model based on the Goddard Institute for Space Study's atmospheric general circulation model (GCM). In contrast with energy-balance models used in some climate models of intermediate complexity, this model includes full representation of the hydrological and momentum cycles. It also has parameterizations of the main physical processes, including a sophisticated radiation code. The ocean component is a coarse resolution ocean GCM with simplified global geometry based on the Geophysical Fluid Dynamics Laboratory modular ocean model. Because of the simplified geometry the resolution in the western boundary layers can be readily increased compared to conventional coarse resolution models, without increasing the model's computational requirements in a significant way. The ocean model's efficiency is also greatly increased by using a moderate degree of asynchronous coupling between the oceanic momentum and tracer fields. We demonstrate that this still allows an accurate simulation of transient behavior, including the seasonal cycle. A 100 years simulation with the model requires less than 8 hours on a state-of the art workstation. The main novelty of the model is therefore a combination of computational efficiency, statistical-dynamical atmosphere and 3D ocean. Long-term present-day climate simulations are carried out using the coupled model with and without flux adjustments, and with either the Gent-McWilliams (GM) parametrization scheme or horizontal diffusion (HD) in the ocean. Deep ocean temperatures systematically decrease in the runs without flux adjustment. We demonstrate that the mismatch between heat transports in the uncoupled states of two models is the main cause for the systematic drift. In addition, changes in the circulation and sea-ice formation also contribute to the drift. Flux adjustments in the freshwater fluxes are shown to have a stabilizing effect on the thermohaline circulation in the model, whereas the adjustments in the heat fluxes tend to weaken the global "conveyor". To evaluate the model's response to transient external forcing global warming simulations are also carried out with the flux-adjusted version of the coupled model. The coupled model reproduces reasonably well the behavior of more sophisticated coupled GCMs for both current climate and for the global warming scenarios.  相似文献   

18.
The presence of large ice sheets over North America and North Europe at the Last Glacial Maximum (LGM) strongly impacted Northern hemisphere river pathways. Despite the fact that such changes may significantly alter the freshwater input to the ocean, modified surface hydrology has never been accounted for in coupled ocean–atmosphere general circulation model simulations of the LGM climate. To reconstruct the LGM river routing, we use the ICE-5G LGM topography. Because of the uncertainties in the extent of the Fennoscandian ice sheet in the Eastern part of the Kara Sea, we consider two more realistic river routing scenarios. The first scenario is characterised by the presence of an ice dammed lake south of the Fennoscandian ice sheet, and corresponds to the ICE-5G topography. This lake is fed by the Ob and Yenisei rivers. In the second scenario, both these rivers flow directly into the Arctic Ocean, which is more consistent with the latest QUEEN ice sheet margin reconstructions. We study the impact of these changes on the LGM climate as simulated by the IPSL_CM4 model and focus on the overturning thermohaline circulation. A comparison with a classical LGM simulation performed using the same model and modern river basins as designed in the PMIP2 exercise leads to the following conclusions: (1) The discharge into the North Atlantic Ocean is increased by 2,000 m3/s between 38° and 54°N in both simulations that contain LGM river routing, compared to the classical LGM experiment. (2) The ice dammed lake is shown to have a weak impact, relative to the classical simulation, both in terms of climate and ocean circulation. (3) In contrast, the North Atlantic deep convection and meridional overturning are weaker than during the classical LGM run if the Ob and Yenisei rivers flow directly into the Arctic Ocean. The total discharge into the Arctic Ocean is increased by 31,000 m3/s, relative to the classical LGM simulation. Consequentially, northward ocean heat transport is weaker, and sea ice more extensive, in better agreement with existing proxy data.  相似文献   

19.
A preindustrial climate experiment was conducted with the third version of the CNRM global atmosphere–ocean–sea ice coupled model (CNRM-CM3) for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). This experiment is used to investigate the main physical processes involved in the variability of the North Atlantic ocean convection and the induced variability of the Atlantic meridional overturning circulation (MOC). Three ocean convection sites are simulated, in the Labrador, Irminger and Greenland–Iceland–Norwegian (GIN) Seas in agreement with observations. A mechanism linking the variability of the Arctic sea ice cover and convection in the GIN Seas is highlighted. Contrary to previous suggested mechanisms, in CNRM-CM3 the latter is not modulated by the variability of freshwater export through Fram Strait. Instead, the variability of convection is mainly driven by the variability of the sea ice edge position in the Greenland Sea. In this area, the surface freshwater balance is dominated by the freshwater input due to the melting of sea ice. The ice edge position is modulated either by northwestward geostrophic current anomalies or by an intensification of northerly winds. In the model, stronger than average northerly winds force simultaneous intense convective events in the Irminger and GIN Seas. Convection interacts with the thermohaline circulation on timescales of 5–10 years, which translates into MOC anomalies propagating southward from the convection sites.  相似文献   

20.
The impact of sub-grid variability of precipitation and canopy water storage is investigated by applying a new canopy interception scheme into the Community Atmosphere Model version 3 (CAM3) coupled with the Community Land Model version 3 (CLM3). Including such sub-grid variability alters the partitioning of net radiation between sensible heat flux and latent heat flux on land surface, which leads to changes in precipitation through various pathways/mechanisms. The areas with most substantial changes are Amazonia and Central Africa where convective rain is dominant and vegetation is very dense. In these areas, precipitation during December–January–February is increased by up to 2 mm/day. This increase is due to the enhanced large-scale circulation and atmospheric instability caused by including the sub-grid variability. Cloud feedback plays an important role in modifying the large-scale circulation and atmospheric instability. Turning off cloud feedback mitigates the changes in surface convergence and boundary layer height caused by inclusion of sub-grid variability of precipitation and water storage canopy, which moderate the effect on precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号