首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study investigates the space–time evolution of the East Asian winter monsoon (EAWM) and its relationship with other climate subsystems. Cyclostationary Empirical Orthogonal Function (CSEOF) analysis and the multiple regression method are used to delineate the detailed evolution of various atmospheric and surface variables in connection with the EAWM. The 120 days of winter (November 17–March 16) per year over 62 years (1948–2010) are analyzed using the NCEP daily reanalysis dataset. The first CSEOF mode of 850-hPa temperatures depicts the seasonal evolution of the EAWM. The contrast in heat capacity between the continent and the northwestern Pacific results in a differential heating in the lower troposphere. Its temporal evolution drives the strengthening and weakening of the Siberian High and the Aleutian Low. The anomalous sea level pressure pattern dictates anomalous circulation, in compliance with the geostrophic relationship. Thermal advection, in addition to net surface radiation, partly contributes to temperature variations in winter. Latent and sensible heat fluxes (thermal forcing from the ocean to the atmosphere) increase with decreased thermal advection. Anomalous upper-level circulation is closely linked to the low-level temperature anomaly in terms of the thermal wind equation. The interannual variability of the seasonal cycle of the EAWM is strongly controlled by the relative strength of the Siberian High to the Aleutian Low. A stronger than normal gradient between the two pressure systems amplifies the seasonal cycle of the EAWM. The EAWM seasonal cycle in the mid-latitude region exhibits a weak negative correlation with the Arctic Oscillation and the East Atlantic/West Russia indices.  相似文献   

3.
Summary The interannual variability of the monthly mean upper layer thickness for the central Arabian Sea (5°N-15° N and 60° E-70° E) from a numerical model of the Indian Ocean during the period 1954–1976 is investigated in relation to Indian monsoon rainfall variability. The variability in the surface structure of the Somali Current in the western Arabian Sea is also briefly discussed. It is found that these fields show a great deal of interannual variability that is correlated with variability in Indian monsoon rainfall. Model upper layer thickness (H) is taken as a surrogate variable for thermocline depth, which is assumed to be correlated with sea surface temperature. In general, during the period 1967 to 1974, which is a period of lower than normal monsoon rainfall, the upper ocean warm water sphere is thicker (deeper thermocline which implies warmer surface water); in contrast, during the period 1954–1966, which is a period of higher than normal monsoon rainfall, the upper warm water sphere is thinner (shallower thermocline which implies cooler surface water). The filtered time series of uppper layer thickness indieates the presence of a quasi-biennial oscillation (QBO) during the wet monsoon period, but this QBO signal is conspicuously absent during the dry monsoon period.Since model H primarily responds to wind stress curl, the interannual variability of the stress curl is investigated by means of an empirical orthogonal function (EOF) analysis. The first three EOF modes represent more than 72% of the curl variance. The spatial patterns for these modes exhibit many elements of central Arabian Sea climatology. Features observed include the annual variation in the intensity of the summer monsoon ridge in the Arabian Sea and the annual zonal oscillation of the ridge during pre- and post-monsoon seasons. The time coefficients for the first EOF amplitude indicate the presence of a QBO during the wet monsoon period only, as seen in the ocean upper layer thickness.The variability in the model upper layer thickness is a passive response to variability in the wind field, or more specifically to variability in the Findlater Jet. When the winds are stronger, they drive stronger currents in the ocean and have stronger curl fields associated with them, driving stronger Ekman pumping. They transport more moisture from the southern hemisphere toward the Indian subcontinent, and they also drive a greater evaporative heat flux beneath the Findlater Jet in the Arabian Sea. It has been suggested that variability in the heat content of the Arabian Sea drives variability in Indian monsoon rainfall. The results of this study suggest that the opposite is true, that the northern Arabian Sea responds passively to variability in the monsoon system.With 10 Figures  相似文献   

4.
ModelStudyontheInterannualVariabilityofAsianWinterMonsoonandItsInfluenceJiLiren(纪立人),SunShuqing(孙淑清)InstituteofAtmosphericPhy...  相似文献   

5.
Summary The present study examines the long term trend in sea surface temperatures (SSTs) of the Arabian Sea, Bay of Bengal and Equatorial South India Ocean in the context of global warming for the period 1901–2002 and for a subset period 1971–2002. An attempt has also been made to identify the relationship between SST variations over three different ocean areas, and All-India and homogeneous region summer monsoon rainfall variability, including the role of El-Ni?o/Southern Oscillation (ENSO). Annual sea surface temperatures of the Arabian Sea, Bay of Bengal and Equatorial South India Ocean show a significant warming trend of 0.7 °C, 0.6 °C and 0.5 °C per hundred years, respectively, and a relatively accelerated warming of 0.16 °C, 0.14 °C and 0.14 °C per decade during the 1971–2002 period. There is a positive and statistically significant relationship between SSTs over the Arabian Sea from the preceding November to the current February, and Indian monsoon rainfall during the period 1901–2002. The correlation coefficient increases from October and peaks in December, decreasing from February to September. This significant relationship is also found in the recent period 1971–2002, whereas, during 1901–70, the relationship is not significant. On the seasonal scale, Arabian Sea winter SSTs are positively and significantly correlated with Indian monsoon rainfall, while spring SSTs have no significant positive relationship. Nino3 spring SSTs have a negative significant relationship with Indian monsoon rainfall and it is postulated that there is a combined effect of Nino3 and Arabian Sea SSTs on Indian monsoon. If the Nino3 SST effect is removed, the spring SSTs over the Arabian Sea also have a significant relationship with monsoon rainfall. Similarly, the Bay of Bengal and Equatorial South Indian Ocean spring SSTs are significantly and positively correlated with Indian monsoon rainfall after removing the Nino3 effect, and correlation values are more pronounced than for the Arabian Sea. Authors’ address: Dr. D. R. Kothawale, A. A. Munot, H. P. Borgaonkar, Climatology and Hydrometeorology divisions, Indian Institute of Tropical Meteorology, Pune 411008, India.  相似文献   

6.
Continuous periodogram analyses of 115 years (1871-1985) summer monsoon rainfall over the Indian region show that the power spectra follow the universal and unique inverse power law form of the statistical normal distribution with the percentage contribution to total variance representing the eddy probability corresponding to the normalized standard deviation equal to [(log L/log T50) – 1] where L is the period length in years and T50 the period up to which the cumulative percentage contribution to total variance is equal to 50. The above results are con-sistent with a recently developed non-deterministic cell dynamical model for atmospheric flows. The implications of the above result for prediction of interannual variability of rainfall is discussed.  相似文献   

7.
8.
The interannual variability of East Asian winter monsoon(EAWM) circulation from the Development of a European Multi-Model Ensemble(MME) System for Seasonal to Inter-Annual Prediction(DEMETER) hindcasts was evaluated against observation reanalysis data.We evaluated the DEMETER coupled general circulation models(CGCMs)’ retrospective prediction of the typical EAWM and its associated atmospheric circulation.Results show that the EAWM can be reasonably predicted with statistically significant accuracy,yet the major bias of the hindcast models is the underestimation of the related anomalies.The temporal correlation coefficient(TCC) of the MME-produced EAWM index,defined as the first EOF mode of 850hPa air temperature within the EAWM domain(20-60 N,90-150 E),was 0.595.This coefficient was higher than those of the corresponding individual models(range:0.39-0.51) for the period 1969-2001;this result indicates the advantage of the super-ensemble approach.This study also showed that the ensemble models can reasonably reproduce the major modes and their interannual variabilities for sea level pressure,geopotential height,surface air temperature,and wind fields in Eurasia.Therefore,the prediction of EAWM interannual variability is feasible using multimodel ensemble systems and that they may also reveal the associated mechanisms of the EAWM interannual variability.  相似文献   

9.
In order to assess how the Bonin high affects interannual variability of the East Asian summer monsoon (EASM) around the Korean Peninsula, the pulsation of the Bonin high and its association with teleconnection patterns was examined. The major factor for the interannual intensity of the EASM is the center position of the Bonin high rather than its center pressure. Up to 12 harmonics over time can be used to reconstruct the Bonin high, demonstrating its intraseasonal variation. The interannual variability of the Bonin high correlates with the Tibet high. This correlation is dominant for the EASM onset time, though not its retreat. The primary teleconnection pattern, reliant up on the interannual variability of the Bonin high, is the Western Pacific oscillation (WPO) in April. In relation to long-term variability, the correlation between the WPO and the Bonin high appears to contribute to the retreat stage of the EASM, which has itself increased since the mid-1970s. Furthermore, the WPO in May and the Tibet correlation has marked the onset rather than the retreat of the EASM since the 1970s. This highly correlated pattern since the mid-1970s may be the result of El Niño.  相似文献   

10.
ClimatologyandInterannualVariabilityoftheSoutheastAsianSummerMonsoonK.-M.LauLaboratoryforAtmospheres,Code913,NASA-GoddardSpac...  相似文献   

11.
The simulation of precipitation in a general circulation model relying on relaxed mass flux cumulus parameterization scheme is sensitive to cloud adjustment time scale (CATS). In this study, the frequency of the dominant intra-seasonal mode and interannual variability of Indian summer monsoon rainfall (ISMR) simulated by an atmospheric general circulation model is shown to be sensitive to the CATS. It has been shown that a longer CATS of about 5 h simulates the spatial distribution of the ISMR better. El Niño Southern Oscillation–ISMR relationship is also sensitive to CATS. The equatorial Indian Ocean rainfall and ISMR coupling is sensitive to CATS. Our study suggests that a careful choice of CATS is necessary for adequate simulation of spatial pattern as well as interannual variation of Indian summer monsoon precipitation.  相似文献   

12.
Decadal and interannual variability of the Indian Ocean Dipole   总被引:1,自引:1,他引:1  
This study investigates the decadal and interannual variability of the Indian Ocean Dipole (IOD). It is found that the long-term IOD index displays a decadal phase variation. Prior to 1920 negative phase dominates but after 1960 positive phase prevails. Under the warming background of the tropical ocean, a larger warming trend in the western Indian Ocean is responsible for the decadal phase variation of the IOD mode. Due to reduced latent heat loss from the local ocean, the western Indian Ocean warming may be caused by the weakened Indian Ocean westerly summer monsoon. The interannual air-sea coupled IOD mode varies on the background of its decadal variability. During the earlier period (1948-1969), IOD events are characterized by opposing SST anomaly (SSTA) in the western and eastern Indian Ocean, with a single vertical circulation above the equatorial Indian Ocean. But in the later period (1980-2003), with positive IOD dominating, most IOD events have a zonal gradient perturbation on a uniform positive SSTA. However, there are three exceptionally strong positive IOD events (1982, 1994, and 1997), with opposite SSTA in the western and eastern Indian Ocean, accompanied by an El Nifio event. Consequently, two anomalous reversed Walker cells are located separately over the Indian Ocean and western-eastern Pacific; the one over the Indian Ocean is much stronger than that during other positive IOD events.  相似文献   

13.
Based on the Simple Ocean Data Assimilation (SODA) reanalysis product, the interannual variability of the upper-ocean ITF volume transport from 1958 to 2001 is investigated. The wavelet analysis shows a second prominent interannual oscillation with a period of about 2–4 years. To reveal any relationship between this band-scale oscillation of the upper-ocean ITF and Indian Ocean Dipole (IOD), correlation and wavelet analyses are used. The correlation coefficient between the upper-ocean ITF and IOD reaches –0.35 with the upper-ocean ITF lagging the IOD index by 8 months. The dipole structure of IOD event is reproduced by the correlation with the upper-ocean ITF lagging the SST anomaly over the tropical Indian Ocean by 8 months from 1958 to 2001. The upper-ocean ITF and IOD show high coherency from about 1975 to 2001. The fact that the wavelet power spectrum of the upper-ocean ITF shows similar structure to that of IOD index supports this high coherency. These analyses suggest that the 2–4-year band-scale oscillation of the upper-ocean ITF is uniquely related to IOD over the tropical Indian Ocean.  相似文献   

14.
The variability of the Indian Ocean on interannual and decadal timescales is investigated in observations, coupled model simulation and model experiment. The Indian Ocean Dipole (IOD) mode was specifically analyzed using a data-adaptive method. This study reveals one decadal mode and two interannual modes in the sea surface temperature (SST) of the IOD. The decadal mode in the IOD is associated with the Pacific Decadal Oscillation (PDO) of the North Pacific SST. The two interannual modes are related to the biennial and canonical components of El Niño-Southern Oscillation (ENSO), consistent with previous studies. This study hypothesizes that the relation between the Indian Ocean and the North Pacific on decadal scale may be through the northerly winds from the western North Pacific. The long simulation of Community Climate System Model version 4 also indicates the presence of IOD modes associated with the decadal PDO and canonical ENSO modes. However, the model fails to simulate the biennial ENSO mode in the Indian Ocean. The relation between the Indian Ocean and North Pacific Ocean is further supported by the regionally de-coupled model experiment.  相似文献   

15.
16.
Theoretical and Applied Climatology - The Indian subcontinent, due to its enormous variety of geographical features, is associated with inhomogeneity. Hence, in the present study, we have...  相似文献   

17.
Summary ?During winter season, atmospheric systems, which traverse from west to east interact with the Himalayan massif and produce widespread rainfall over North India. In this study, we made an endeavor to examine the mean circulation features and large-scale budgets of kinetic energy, heat and moisture over Himalayas and the adjoining domain for winter season. The time-mean circulation is bifurcated into stable mean and transient eddy parts and examined the mean component of the circulation. The uninitialized daily analyses of European Centre for Medium range Weather Forecasts (ECMWF) for five winter seasons (1986–90) comprising December, January and February (DJF) have been used for the purpose. We noticed certain zones of strong activity over Iran, Afghanistan, and West China regions during winter season. These are characterized by intense vertical motions, cyclonic vorticity and adiabatic generation of kinetic energy. The features noticed over these zones include strong horizontal convergence of heat and moisture. These zones are further characterized by massive adiabatic conversion of available potential energy to kinetic energy. These features are conducive for the growth of atmospheric systems, which traverse over the zones and produce precipitation subsequently. Received November 16, 2000; revised February 5, 2002  相似文献   

18.
In September 2009, the Indian Space Research Organisation launched a Ku-band microwave scatterometer (OSCAT) onboard the polar orbiting satellite ‘Oceansat-2’. In this article, the capabilities of the newly available OSCAT sea-surface winds are demonstrated by studying the monsoon intra-seasonal variabilities during the 2010 summer monsoon season. A preliminary validation of OSCAT surface winds with European Centre for Medium Range Weather Forecasting (ECMWF) analysis surface winds carried out during June to August 2010 suggests that the quality of the OSCAT winds are able to meet the mission specifications. The observed mean monthly features of the Indian summer monsoon in July and August 2010 from OSCAT match well with those of ECMWF reanalysis winds. The OSCAT winds capture the known characteristics of the Indian summer monsoon, such as the northward propagation of a low level jet, and its preferred locations during active and break monsoon conditions, reasonably well. The Morlet wavelet transform is used for time series analysis. The OSCAT measured sea-surface winds were found to possess two dominant modes of variability during the 2010 monsoon season: one with a periodicity between 32 and 64?days, and another with a periodicity between 8 and 16?days. Rainfall activity over the Indian summer monsoon region is closely associated with the phases of the two above-mentioned dominant intra-seasonal variabilities. This study demonstrates that the OSCAT winds can be used very well and with confidence for meteorological studies.  相似文献   

19.
The modern Asian monsoon system exhibits strong interannual variation, which has profound environmental and economical impacts. It has been well-documented that the mean Asian monsoon state underwent significant changes in the Late Miocene (11–5 Ma ago). But how the interannual variability of the monsoon climate evolved during this period is still largely unknown. In this study, a long-term simulation of the Late Miocene with a fully coupled atmosphere–ocean general circulation model (ECHAM5/MPI-OM) at T31L19 resolution is used to explore the interannual variation of the Indian summer monsoon (ISM) in the Late Miocene. The regional climate model COSMO–CLM with a higher spatial resolution (~1° × 1°) is further employed to better characterize the spatial patterns of these variations. Our results show that although the mean ISM circulation is weaker in the Late Miocene runs, its interannual variation is as strong as or even stronger than at present and the dominant periods (~2.6–2.7 years) are shorter than at present (~3.4–8.4 years). It is noticed that while the extratropical influence on the ISM variability is weaker-than-present, a persistent El Niño-Southern Oscillation with stronger-than-present interannual variability is observed in our Late Miocene run. This may have maintained a strong interannual variation of the ISM with a shorter period in the Late Miocene. Our findings do not only improve our understanding of the Asian monsoon evolution in the Late Miocene, but also shed light on the future changes in the interannual variability of the ISM.  相似文献   

20.
A new method of analysis namely, Singular Spectrum Analysis (SSA) is applied to the Indian Summer Monsoon (June-September) Rainfall (ISMR) series. The method is efficient in extracting the statistically significant oscillations with periods 2.8 and 2.3 year from the white noise of the ISMR series. The study shows that 2.8 / 2.3 year cycle captures the variability of the ISMR related to Southern Oscillation / Quasi Biennial Oscillation. The temporal structure of these oscillations show that these are in phase in extreme (excess and drought) monsoon conditions as well as in El Nino Southern Oscillation (ENSO) years. Both these oscillations show minimum variability during the period 1920-1940 and there is an increasing trend in the variability of these oscillations in the recent decades. The study enables to obtain pure signal consisting of reconstructed time series using these two Oscillations, from the original white noise series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号