首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
吴桂平  尹钊 《天文学报》1993,34(4):380-388
集中分析了几个具有螺旋结构的爆发日珥的观测资料,用相同的理论框架,讨论它们内部电流分布的演化特征,以及与活动区背景磁场相互作用的动力学性质;并探讨日珥爆发时的磁能转化机制。结果表明:(i)爆发日珥内部的磁场和电流分布具有无力性质;(ii)利用Kuperus-Raadu日珥模型可以较好地日珥电流和背景磁场相互作用的基本特征;(iii)日珥等离子体的宏观kink不稳定性可能是日珥磁能转化的主要机制。理  相似文献   

2.
日珥上升运动和日冕物质抛射的关系   总被引:1,自引:0,他引:1  
吴桂平  许敖敖 《天文学报》1997,38(2):160-166
本文基于观测日珥上升运动与日冕物质抛射(CME)之间的紧密联系和我们对日珥动力学特征的理解,探讨了在背景场作用下,日珥上升时其上方盔状冕流的动力学演化规律;分析了1980年8月18日爆发日珥与对应的CME事件之间的内在关系.结果表明:(1)缓慢上升的日珥只引起盔状冕流缓慢演化;(2)加速上升日珥的加速度和末速度的大小决定形成CME事件的激烈程度;(3)CME事件的能量可能来源于爆发日环释放的磁能.理论分析与观测结果基本一致.  相似文献   

3.
本文比较了1982年2月9日同时观测到的两个爆发日珥及一次白光日冕物质抛射事件。比较表明,在研究日冕物质抛射事件与爆发日珥的关系时,爆发日珥的形状可能是一个重要的因素,它体现了局部区域磁场结构的变化。作者提出了一种可能的磁场结构模型,对观测结果给以解释。  相似文献   

4.
竞赛试卷     
竞赛试卷一、选择题(共16题):①1994年6月~9月飞临太阳极区的宇宙探测器发现了太阳高纬区域,日球磁场的极性是紊乱的,磁场强度几乎不随日面纬度的不同而变化。这个探测器是。(A)太阳峰年使者(SMM);(B)太阳神(Helios);(C)尤利西斯(...  相似文献   

5.
本文根据无黑子双带耀斑发生前暗条周围色球纤维形态的观测特征,讨论了这类耀斑的储能过程。文中还讨论了这类日珥磁场结构的不稳定性问题。当宁静日珥中磁场梯度和顶部磁力线曲率超过一定的阈值时,会引起日珥磁场结构中的Rayleigh-Tayler不稳定性的发生,导致暗条突然消失,发生这种不稳定性时,日珥支撑磁场中会产生中性电流片,并能引起两边的磁流向中心部分集中。磁力线的快速重连导致双带耀斑的产生。  相似文献   

6.
一个拱桥状爆发日珥   总被引:2,自引:2,他引:0  
1991年3月7日在太阳东北边缘产生了一个爆发日珥。它产生在没有耀斑、暗条、黑子等其它太阳活动现象的一个相对宁静的日面区域。日珥抛射的最大高度为6.97×104km,最大长度为11.6×104km,从形态的大小来看它属于中等偏小的爆发日珥。抛射的时间过程,上升阶段非常快,而下降阶段则较缓慢,有类似于耀斑爆发的时间过程。日珥爆发后的绝大部分物质基本上在磁场作用下沿磁力线作抛物线运动形成拱桥形状,并保持到消失。日珥下降前后,顶端有少部分物质被抛射脱离日珥主体部分,扩散到行星际空间。  相似文献   

7.
分析了1991年3月7日太阳东北边缘一个拱桥状爆发日珥上升、下降和半径膨胀的运动情况。该日珥的上升阶段和下降的开始阶段高度随时间的变化比较迅速,而且基本是线性的变化,但在下降的结束阶段则比较缓慢,也基本是线性的变化。它的下降运动不仅受到重力作用自由下落,而且还受到不均匀的大气阻力,磁场等力的共同作用而下落。而速度,喷射出以后总的在逐渐减弱,上升阶段减弱较快。下降阶段初期有一次跳跃式的变化,先迅速减弱,然后又很快增加,在下降后期速度减弱较慢。日珥到达最大高度的时间比日珥半径膨胀到达最大尺度的时间早4min左右。上升下降速度最大时半径膨胀速度最小,而上升下降速度最小时半径膨胀的速度最大。  相似文献   

8.
本文对1980年10月15日产生在小黑子区的3级大耀斑作了详细的形态分析,,结果表明:1)耀斑无闪相,耀斑的最大强度为周围来扰区的2.4倍。2)耀斑有M带结构,双带的分离速度为5公里/秒。3)和耀斑有关的暗条位于大尺度磁场的极性分界线上,它在耀斑前和耀斑期间有明显变化,最终全部消失。4)耀斑的微波爆发增量小,上升下降缓慢,米波段有Ⅱ、Ⅲ、Ⅳ型爆发。5)耀斑的x射线辐射引起电离层2级骚扰(SLD)。耀斑无地磁暴对应。6)产生耀斑的活动区在日面存在3周,耀斑产生在活动区的衰亡阶段。以上结果基本与文献相同。 在本文的最后一节,对无黑子或小黑子区的耀斑形成作了简短的讨论,指出由日珥物质下落形成大耀斑所遇到的能量亏缺;日珥物质下落形成的激波,由于磁场的存在而强度削弱,磁场不能通过激波转化为辐射能;无黑子(或小黑子)区的耀斑的形成,在机理上可能与黑子区形成的耀斑类同。  相似文献   

9.
本研究了1990年3月25日活动区AR5988和1990年8月30日活动区AR6233中太阳磁场的分形特征,主要结果如下:(1)两个活动区中的纵向磁场分布不满足分形布朗曲面;(2)两个活动区中磁场的分形特征十分不同;(3)描述两个活动区磁场分形特征的四个统计参量随时间演化,本扼要讨论了这些结果的物理意义。  相似文献   

10.
本文利用完全线性化方法处理了一个日珥的光谱资料,得到其物理参数的二维分布。结果表明:在日珥中心,运动温度和中性氢密度随高度增加而减少,湍动速度随高度增加而增加;而在日珥边缘,运动温度不随高度变化。从中心到边缘,运动温度是增加的。日珥中不存在流体静力学平衡,磁场对日珥支撑起重要作用。  相似文献   

11.
The Hanle effect method has been applied to the determination of the magnetic field in 120 prominences of the polar crown observed during the 1974–1980 period, which is the ascending phase of cycle XXI. The average field strength which was about 6 G at the beginning of the cycle reached twice this value just before the maximum. There is also a clear trend for a increase of the prominence field with the altitude. We confirm the fact that the magnetic vector makes a small angle (25 °) with the long axis of the prominence. As to the field orientation, we show that the most striking feature lies in the regular pattern of the component which is parallel to the axis of the filament; its direction seems to depend closely on the polarities of the high latitude photospheric field.  相似文献   

12.
Bardakov  V. M. 《Solar physics》1998,179(2):327-347
This paper offers an evolution scenario for a simple magnetic arcade where the frozen-in magnetic field decreases with the ascent of its arches together with the plasma. Uplift is produced by the movement of photospheric plasma with a frozen-in magnetic field, which is divergent with respect to a neutral line. A decrease in magnetic field leads to the appearance in the arcade of a height range of arches, with no high-temperature thermal equilibrium present, and to a variation of the nonequilibrium range with time. Uplift of the arcade is accompanied by the consecutive entry of new arches into this range. All arches entering the nonequilibrium range experience a transient process. Some of the earlier inquiries into the physics of this process were instrumental, in the first place, in identifying those arches which – through the production of an ascending plasma flow from the base of the arcade – are involved in the formation of a prominence (with magnetic dips appearing and evolving at the tops of these arches) and, secondly, in synthesizing a computational algorithm for the final state of the transient process, the quasi-steady-state dynamic structure of the prominence. The arcade evolution scenario, combined with the computational algorithm, constitutes a unified prominence model, a model for the transition from a simple static magnetic arcade to a quasi-steady dynamic prominence structure. The model has been used in numerical calculations of parameters of two classes of prominences: in and outside active regions. Results of the calculations are in good agreement with observations.  相似文献   

13.
We analyse the magnetic support of solar prominences in two-dimensional linear force-free fields. A line current is added to model a helical configuration, well suited to trap dense plasma in its bottom part. The prominence is modeled as a vertical mass-loaded current sheet in equilibrium between gravity and magnetic forces.We use a finite difference numerical technique which incorporates both vertical photospheric and horizontal prominence magnetic field measurements. The solution of this mixed boundary problem generally presents singularities at both the bottom and top of the model prominence. The removal of the singularities is achieved by superposition of solutions. Together with the line current equilibrium, these three conditions determine the amplitude of the magnetic field in the prominence, the flux below the prominence and the current intensity, for a given height of the line current. A numerical check of accuracy in the removal of singularities, is done by using known analytical solutions in the potential limit.We have investigated both bipolar and quadrupolar photospheric regions. In this mixed boundary problem the polarity of the field component orthogonal to the prominence is mainly fixed by the imposed height of the line current. For bipolar regions above (respectively below) a critical height the configuration is inverse (respectively normal). For quadrupolar regions the polarity is reversed if we refer the prominence polarity to the closest photospheric polarities. We introduce the polarity of the component parallel to the prominence axis with reference to a sheared arcade. Increasing the shear with fixed boundary conditions can increase or decrease the mass supported depending on the configuration.  相似文献   

14.
Using analytical approximations we study the effects of different external magnetic configurations on the half-width, mass, and internal magnetic structure of a quiescent solar prominence, modelled as a thin vertical sheet of cool plasma. Firstly, we build up a zeroth-order model and analyse the effects produced by a potential coronal field or a constant- force-free field. This model allows us to obtain the half-width and mass of the prominence for different values of the external field, pressure and shear angle. Secondly, the effects of these external magnetic configurations on a two-dimensional model proposed by Ballester and Priest (1987) are studied. The main effects are a change of the half-width with height, an increase of the mass, a decrease of the magnetic field strength with height and a change in the shape of the magnetic field lines.  相似文献   

15.
This paper treats the prominence model of Low (1993) to examine more complicated sheet currents than those used in the original model. Nonlinear force-free field solutions, in Cartesian coordinates, invariant in a given direction, are presented to show the possibility of an inverse-polarity prominence embedded in a large twisted flux tube. The force-free solution is matched to an external, unsheared, potential coronal magnetic field. These new solutions are mathematically interesting and allow an investigation of different profiles of the current intensity, magnetic field vector and mass density in the sheet. These prominence models show a general increase in magnetic field strength with height in agreement with observations. Other prominence properties are shown to match the observed values.  相似文献   

16.
In this paper the twisted flux-tube model for the support of a prominence sheet with constant axial current density, given by Ridgway, Priest, and Amari (1991), is considered.The model is extended in Section 2 to incorporate a current sheet of finite height. The sheet is supported in a constant current density force-free field in the configuration of a twisted flux tube. The mass of the prominence sheet, using a typical height and field strength, is computed. Outside the flux tube the background magnetic field is assumed to be potential but the matching of the flux tube onto this background field is not considered here.Instead our attention is focussed, in Section 3, on the interior of the prominence. An expanded scale is used to stretch the prominence sheet to a finite width. We analytically select solutions for the internal magnetic field in this region which match smoothly onto the external force-free solutions at the prominence edge.The force balance equation applied inside the prominence then yields expressions for the pressure and density and a corresponding temperature may be computed.  相似文献   

17.
Simple models for the MHD eruption of a solar prominence are presented, in which the prominence is treated as a twisted magnetic flux tube that is being repelled from the solar surface by magnetic pressure forces. The effects of different physical assumptions to deal with this magneto-hydrodynamically complex phenomenon are evaluated, such as holding constant the prominence current, radius, flux or twist or modelling the prominence as a current sheet. Including a background magnetic field allows the prominence to be in equilibrium initially with an Inverse Polarity and then to erupt due to magnetic non-equilibrium when the background magnetic field is too small or the prominence twist is too great. The electric field at the neutral point below the prominence rapidly increases to a maximum value and then declines. Including the effect of gravity also allows an equilibrium with Normal Polarity to exist. Finally, an ideal MHD solution is found which incorporates self-consistently a current sheet below the prominence and which implies that a prominence will still erupt and form a current sheet even if no reconnection occurs. When reconnection is allowed it is, therefore, driven by the eruption.  相似文献   

18.
We describe the results of a model dynamic simulation of the formation and support of a narrow prominence at the apex of a coronal magnetic loop or arcade. The condensation process proceeds via an initial radiative cooling and pressure drop, and a secondary siphon flow from the dense chromospheric ends. The anti-buoyancy effect as the prominence forms causes a bending of the confining magnetic field, which propagates toward the semi-rigid ends of the magnetic loop. Thus, a wide magnetic hammock or well (of the normal-polarity Kippenhahn-Schlüter-type) is formed, which supports the prominence at or near the field apex. The simplicity of this 1.5-dimensional model, with its accompanying diagnostics, allows one to comprehend the various contributions to the nonlinear dynamics of prominence condensation and levitation.  相似文献   

19.
We present a theoretical study of the formation of a coronal cavity and its relation to a quiescent prominence. We argue that the formation of a coronal cavity is initiated by the condensation of plasma which is trapped by the coronal magnetic field in a closed streamer and which then flows down to the chromosphere along the field lines due to lack of stable magnetic support against gravity. The existence of a coronal cavity depends on the coronal magnetic field strength; with low strength, the plasma density is not high enough for condensation to occur. Furthermore, we suggest that prominence and cavity material is supplied from the chromospheric level. Whether a coronal cavity and a prominence coexist depends on the magnetic field configuration; a prominence requires stable magnetic support.We initiate the study by considering the stability of condensation modes of a plasma in the coronal streamer model obtained by Steinolfson et al. (1982) using a 2-D, time dependent, ideal MHD computer simulation; they calculated the dynamic interaction between outward flowing solar wind plasma and a global coronal magnetic field. In the final steady state, they found a density enhancement in the closed field region with the enhancement increasing with increasing strength of the magnetic field. Our stability calculation shows that if the density enhancement is higher than a critical value, the plasma is unstable to condensation modes. We describe how, depending on the magnetic field configuration, the condensation may produce a coronal cavity and/or initiate the formation of a prominence.NRC Research Associate.  相似文献   

20.
We investigate the formation and support of solar prominences in a quadrupolar magnetic configuration. The prominence is modeled as a current sheet with mass in equilibrium in a two-dimensional field. The model possesses an important property which is now thought to be necessary, namely that the prominence forms within the dip, rather than the dip being created by the prominence.The approach of two bipolar regions of the same sign gives a natural way to form a dip in the magnetic field in a horizontal band above the photospheric polarity inversion line. As the approach proceeds, the height of the dip region decreases but, in agreement with observations, a corridor, free of significant magnetic field, is needed in order to obtain a dip at low heights.Support is achieved locally just as for normal-polarity configurations, so the model avoids the strong self-pinching effect of several inverse-polarity configurations (such as the Kuperus and Raadu model). The role of the strong field component along the prominence axis, which is here modelled by a uniform field in that direction, may well be to provide the necessary thermal properties for prominence formation.The model thus has several attractive features which make it credible for inverse polarity prominences: (i) both the dip and the inverse orientation are naturally present; (ii) prominence formation is by converging rather than shearing motions, in agreement with observations; converging photospheric motions induce a horizontal upward motion in the filament; (iii) the orientation of the axial field, opposite to what is expected from differential rotation, is naturally accounted for; (iv) the observed relation between chromospheric and prominence magnetic field strengths is naturally reproduced; (v) the field configuration is more complex than a simple bipole, in agreement with observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号