首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The motion of a point mass in the J 2 problem has been generalized to that of a rigid body in a J 2 gravity field for new high-precision applications in the celestial mechanics and astrodynamics. Unlike the original J 2 problem, the gravitational orbit-rotation coupling of the rigid body is considered in the generalized problem. The existence and properties of both the classical and non-classical relative equilibria of the rigid body are investigated in more details in the present paper based on our previous results. We nondimensionalize the system by the characteristic time and length to make the study more general. Through the study, it is found that the classical relative equilibria can always exist in the real physical situation. Numerical results suggest that the non-classical relative equilibria only can exist in the case of a negative J 2, i.e., the central body is elongated; they cannot exist in the case of a positive J 2 when the central body is oblate. In the case of a negative J 2, the effect of the orbit-rotation coupling of the rigid body on the existence of the non-classical relative equilibria can be positive or negative, which depends on the values of J 2 and the angular velocity Ω e . The bifurcation from the classical relative equilibria, at which the non-classical relative equilibria appear, has been shown with different parameters of the system. Our results here have given more details of the relative equilibria than our previous paper, in which the existence conditions of the relative equilibria are derived and primarily studied. Our results have also extended the previous results on the relative equilibria of a rigid body in a central gravity field by taking into account the oblateness of the central body.  相似文献   

2.
In this paper the problem of two, and thus, after a generalization, of an arbitrary finite number, of rigid bodies is considered. We show that the Newton-Euler equations of motion are Hamiltonian with respect to a certain non-canonical structure. The system possesses natural symmetries. Using them we shown how to perform reduction of the number of degrees of freedom. We prove that on every stage of this process equations of motion are Hamiltonian and we give explicite form corresponding of non-canonical Poisson bracket. We also discuss practical consequences of the reduction. We prove the existence of 36 non-Lagrangean relative equilibria for two generic rigid bodies. Finally, we demonstrate that our approach allows to simplify the general form of the mutual potential of two rigid bodies.  相似文献   

3.
The following theorem is proved. THEOREM.For any n2, the set of collinear relative equilibria classes of the n-body problem generates by analytical continuation a total of n!(n+3)/2 relative equilibria classes of the n+1 body problem.Together with Arenstorf's results we state a general theorem for the 4 body problem with 3 arbitrary masses and 1 inferior mass.Research supported in part by NSF grant MCS-78-00395 A01.Paper presented at the 1981 Oberwolfach Conference on Mathematical Methods in Celestial Mechanics.  相似文献   

4.
In this work we will describe the sets in the rigid body phase space where the energy and angular momentum are constant, and it will turn out that in nontrivial cases they will simply take the form of cartesian products of the polhodes byS 1. These sets are important for the global study of said geodesic mechanical system for being invariant under Euler's equations (energy and momentum are constant along their solutions).To motivate from something more familiar in celestial mechanics, we will begin to relate the problem to Smale's study of the planarn-body problem (Smale, 1970) and Easton's study of the planar 3-body problem (Easton, 1971), exemplifying in particular with the central force problem.In the last Sections 4 and 5, we extent our methods to give results for generalized solids on Lie groups, mentioning the further extensions to transitive mechanical systems.Proceedings of the Sixth Conference on Mathematical Methods in Celestial Mechanics held at Oberwolfach (West Germany) from 14 to 19 August, 1978.This work was partially supported by the Consejo Nacional de Ciencia y Tecnología (México) under grant PNCB-049.  相似文献   

5.
In this paper we consider the two-body problem of a spherical pseudo-rigid body and a rigid sphere. Due to the rotational and “re-labelling” symmetries, the system is shown to possess conservation of angular momentum and circulation. We follow a reduction procedure similar to that undertaken in the study of the two-body problem of a rigid body and a sphere so that the computed reduced non-canonical Hamiltonian takes a similar form. We then consider relative equilibria and show that the notions of locally central and planar equilibria coincide. Finally, we show that Riemann’s theorem on pseudo-rigid bodies has an extension to this system for planar relative equilibria.  相似文献   

6.
7.
Relative equilibria occur in a wide variety of physical applications, including celestial mechanics, particle accelerators, plasma physics, and atomic physics. We derive sufficient conditions for Lyapunov stability of circular orbits in arbitrary axisymmetric gravitational (electrostatic) and magnetic fields, including the effects of local mass (charge) and current density. Particularly simple stability conditions are derived for source‐free regions, where the gravitational field is harmonic (∇2U = 0) or the magnetic field irrotational (∇ × B = 0). In either case the resulting stability conditions can be expressed geometrically (coordinate‐free) in terms of dimensionless stability indices. Stability bounds are calculated for several examples, including the problem of two fixed centers, the J2 planetary model, galactic disks, and a toroidal quadrupole magnetic field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
We consider the two-body problem on surfaces of constant nonzero curvature and classify the relative equilibria and their stability. On the hyperbolic plane, for each \(q>0\) we show there are two relative equilibria where the masses are separated by a distance q. One of these is geometrically of elliptic type and the other of hyperbolic type. The hyperbolic ones are always unstable, while the elliptic ones are stable when sufficiently close, but unstable when far apart. On the sphere of positive curvature, if the masses are different, there is a unique relative equilibrium (RE) for every angular separation except \(\pi /2\). When the angle is acute, the RE is elliptic, and when it is obtuse the RE can be either elliptic or linearly unstable. We show using a KAM argument that the acute ones are almost always nonlinearly stable. If the masses are equal, there are two families of relative equilibria: one where the masses are at equal angles with the axis of rotation (‘isosceles RE’) and the other when the two masses subtend a right angle at the centre of the sphere. The isosceles RE are elliptic if the angle subtended by the particles is acute and is unstable if it is obtuse. At \(\pi /2\), the two families meet and a pitchfork bifurcation takes place. Right-angled RE are elliptic away from the bifurcation point. In each of the two geometric settings, we use a global reduction to eliminate the group of symmetries and analyse the resulting reduced equations which live on a five-dimensional phase space and possess one Casimir function.  相似文献   

9.
We study a highly symmetric nine-body problem in which eight positive masses, called the primaries, move four by four, in two concentric circular motions such that their configuration is always a square for each group of four masses. The ninth body being of negligible mass and not influencing the motion of the eight primaries. We assume all the nine masses are in the same plane and that the masses of the primaries are \(m_{1}=m_{2}=m_{3}=m_{4}=\tilde{m}\) and m 5=m 6=m 7=m 8=m and the radii associated to the circular motion of the bodies with mass \(\tilde{m}\) is λ∈[λ 0,1] and for the bodies with mass m is 1. We prove the existence of central configurations which characterize such arrangement of the primaries and we study the influence of the parameter λ, the ratio of the radii of the two circles, on the masses m and \(\tilde{m}\) . We use a synodical system of coordinates to eliminate the time dependence on the equations of motion. We show the existence of equilibria solutions symmetrically distributed on the four quadrants and their dependence on the parameter λ. Finally, we show that there can be 13, 17 or 25 equilibria solutions depending on the size of λ and we investigate their linear stability.  相似文献   

10.
In the analytical approach to the main problem in satellite theory, the consideration of the physical parameters imposes a lower bound for normalized Hamiltonian. We show that there is no elliptic frozen orbits, at critical inclination, when we consider small values of H, the third component of the angular momentum. The argument used suggests that it might be applied also to more realistic zonal and tesseral models. Moreover, for almost polar orbits, when H may be taken as another small parameter, a different approach that will simplify the ephemerides generators is proposed.  相似文献   

11.
We study Harrington's Hamiltonian in the Hill approximation of the stellar problem of three bodies in order to clarify and sharpen a qualitative analysis made by Lidov and Ziglin. We show how the orbital space after four reductions is a two-dimensional sphere, Harrington's Hamiltonian defining a biparametric dynamical system. We produce the diagrams corresponding to each type of phase flow according to a complete discussion of all possible local and global bifurcations determined by the four integrals of the system.  相似文献   

12.
This paper is based on the restricted problem of three bodies with the unusual feature that the lightest particle is replaced by a rigid body. The attitude stability of the body is considered when its centre of mass is located at one of the equilibrium points. The stable attitude is determined when the satellite is stationary relative to the primaries. It is found that for some bodies there are two such attitudes, and these are determined.  相似文献   

13.
Quaternions and the rotation of a rigid body   总被引:1,自引:0,他引:1  
The orientation of an arbitrary rigid body is specified in terms of a quaternion based upon a set of four Euler parameters. A corresponding set of four generalized angular momentum variables is derived (another quaternion) and then used to replace the usual three-component angular velocity vector to specify the rate by which the orientation of the body with respect to an inertial frame changes. The use of these two quaternions, coordinates and conjugate moments, naturally leads to a formulation of rigid-body rotational dynamics in terms of a system of eight coupled first-order differential equations involving the four Euler parameters and the four conjugate momenta. The equations are formally simple, easy to handle and free of singularities. Furthermore, integration is fast, since only arithmetic operations are involved.  相似文献   

14.
It is well known that the equations governing the motion of a freely-rotating rigid body possess an exact analytical solution, involving Jacobi's elliptic functions. Andoyer (1923) and Deprit (1967) have shown that the problem may be very usefully reduced to a one-degree-of-freedom Hamiltonian system. When two of the body's principal moments of inertia are very nearly equal, the Hamiltonian system has the same form as the Ideal Resonance Problem. In earlier publications (Jupp, 1969, 1972, 1973), the author has constructed formal power-series solutions of the latter problem.In this article, the general solution of the Ideal Resonance Problem is employed to formulate a second-order formal series solution of the problem of a freely-rotating rigid body which has two of its principal moments of inertia differing by a small quantity. This solution is firstly expressed in terms of the mean elements, and then in terms of the initial conditions. The latter solution is global in nature being applicable over the whole phase plane. It is demonstrated that the exact solution and the second-order formal series solution, written in terms of the initial conditions, differ by terms of at most third order in the small parameter, over the whole domain of possible motions. This serves as an important check on the general results published in the earlier articles.  相似文献   

15.
The restricted problem of a tri-axial rigid body and two spherical bodies with variable masses be considered. The general solution of the equations of motion of the tri-axial body be obtained in which the motion of the spherical bodies is determined by the classic nonsteady Gyldén-Meshcherskii problem.  相似文献   

16.
The equations of motion of the 2+2 body problem (two interacting particles in the gravitational field of two much more massive primaries m1 and m2 in circular keplerian orbit) have an integral analogous to the Jacobi integral of the circular 2+1 body problem. We show here that with 2+2 bodies this integral does not give rise to Hill stability, i.e. to confinement for all time in a portion of the configuration space not allowing for some close approaches to occur. This is because all the level manifolds are connected and all exchanges of bodies between the regions surroundingm 1,m 2 and infinity do not contradict the conservation of the integral. However, it is worth stressing that some of these exchanges are physically meaningless, because they involve either unlimited extraction of potential energy from the binary formed by the small bodies (without taking into account their physical size) or significant mutual perturbations between the small masses without close approach, a process requiring, for the Sun-Jupiter-two asteroids system, timescales longer than the age of the Solar System.  相似文献   

17.
The motion of two mutually attracting triaxial rigid bodies has been considered. Thirty six particular solutions corresponding to the libration points and analogous to the points Spoke, Arrow and Float (Duboshin, 1959) have been found. The stability of these libration points has been discussed in two categories of cases. In the first category, different shapes of the bodies have been taken and in the second category, the mass and the linear dimensions of one of the bodies have been taken small in comparison to the other.  相似文献   

18.
The restricted problem of 2 + 2 homogenous axisymmetric ellipsoids such that their equatorial planes coincide with the orbital plane of the centers of mass is considered. The equilibrium solutions of this problem are shown to exist. Six of these solutions are located about the collinear points of the restricted problem of three axisymmetric ellipsoids. A special case of this problem is studied and sixteen solutions are found in the neighborhood of the triangular Lagrangian points.  相似文献   

19.
Celestial Mechanics and Dynamical Astronomy - In this paper, Poincare (1971) method has been developed to prove the non-existence of additional analytical integral in the degeneration case.  相似文献   

20.
Most existing satellite relative motion theories utilize mean elements, and therefore cannot be used for calculating long-term bounded perturbed relative orbits. The goal of the current paper is to find an integrable approximation for the relative motion problem under the J 2 perturbation, which is adequate for long-term prediction of bounded relative orbits with arbitrary inclinations. To that end, a radial intermediary Hamiltonian is utilized. The intermediary Hamiltonian retains the original structure of the full J 2 Hamiltonian, excluding the latitude dependence. This formalism provides integrability via separation, a fact that is utilized for finding periodic relative orbits in a local-vertical local-horizontal frame and determine an initialization scheme that yields long-term boundedness of the relative distance. Numerical experiments show that the intermediary-based computation of orbits provides long-term bounded orbits in the full J 2 problem for various inclinations. In addition, a test case is shown in which the radial intermediary-based initial conditions of the chief and deputy satellites yield bounded relative distance in a high-precision orbit propagator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号