首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
We use the slowness-azimuth station correction (SASC) method to improve the location accuracy of the Wenchuan aftershocks recorded by the Nagqu and Hotan seismic arrays. The results show that the standard deviations of back-azimuth and slowness errors of Wenchuan aftershocks recorded by the Nagqu array decreased by 32% and 58% respectively after correction. The decrease is 38 % and 71% for the Hotan array. After the correction, the location accuracy of all Wenchuan aftershocks recorded by the Nagqu array is improved. For the Hotan array, the accuracy is improved in the slowness estimation for 78 % of aftershocks and in back-azimuth estimation for all aftershocks.  相似文献   

2.
—?The first step to identify and locate a seismic event is the association of observed onsets with common seismic sources. This is especially important in the context of monitoring the Comprehensive Nuclear-Test-Ban Treaty (CTBT) at the International Data Center (IDC) being developed in Vienna, Austria. Well-defined slowness measurements are very useful for associating seismic phases to presumed seismic events.¶Shortly after installation of the first seismic arrays, systematic discrepancies between measured and theoretically predicted slowness values were observed, and therefore slowness measurements of seismic stations should be calibrated. The observed slownesses measured with small aperture arrays, some of which will be included in the International Monitoring System (IMS) now being implemented for verifying compliance with the CTBT, show large scatter and deviations from theoretically expected values. However, in this study a method is presented, by which mean slowness corrections can be derived, which show relatively stable patterns specific to each array.¶The correction of measured slowness values of these arrays clearly improved the single array location capabilities. Applying slowness corrections with seismic phases observed by ARCES, FINES, GERES, and NORES, and associated to seismic events in the bulletins of the prototype International Data Center (pIDC) in Arlington, VA, also clearly demonstrates the advantages of these corrections. For arrays with large slowness deviations that are due to the influence of a dipping layer, the corrections were modeled with a sine function depending on the measured azimuth. In addition, the measured values can be weighted with the corresponding uncertainties known from the process of deriving the mean corrections.  相似文献   

3.
The global monitoring of earthquakes and explosions at decreasing magnitudes necessitates the fully automatic detection, location and classification of an ever increasing number of seismic events. Many seismic stations of the International Monitoring System are small-aperture arrays designed to optimize the detection and measurement of regional phases. Collaboration with operators of mines within regional distances of the ARCES array, together with waveform correlation techniques, has provided an unparalleled opportunity to assess the ability of a small-aperture array to provide robust and accurate direction and slowness estimates for phase arrivals resulting from well-constrained events at sites of repeating seismicity. A significant reason for the inaccuracy of current fully-automatic event location estimates is the use of f?k slowness estimates measured in variable frequency bands. The variability of slowness and azimuth measurements for a given phase from a given source region is reduced by the application of almost any constant frequency band. However, the frequency band resulting in the most stable estimates varies greatly from site to site. Situations are observed in which regional P- arrivals from two sites, far closer than the theoretical resolution of the array, result in highly distinct populations in slowness space. This means that the f?k estimates, even at relatively low frequencies, can be sensitive to source and path-specific characteristics of the wavefield and should be treated with caution when inferring a geographical backazimuth under the assumption of a planar wavefront arriving along the great-circle path. Moreover, different frequency bands are associated with different biases meaning that slowness and azimuth station corrections (commonly denoted SASCs) cannot be calibrated, and should not be used, without reference to the frequency band employed. We demonstrate an example where fully-automatic locations based on a source-region specific fixed-parameter template are more stable than the corresponding analyst reviewed estimates. The reason is that the analyst selects a frequency band and analysis window which appears optimal for each event. In this case, the frequency band which produces the most consistent direction estimates has neither the best SNR or the greatest beam-gain, and is therefore unlikely to be chosen by an analyst without calibration data.  相似文献   

4.
In the monitoring of earthquakes and nuclear explosions using a sparse worldwide network of seismic stations, it is frequently necessary to make reliable location estimates using a single seismic array. It is also desirable to screen out routine industrial explosions automatically in order that analyst resources are not wasted upon detections which can, with a high level of confidence, be associated with such a source. The Kovdor mine on the Kola Peninsula of NW Russia is the site of frequent industrial blasts which are well recorded by the ARCES regional seismic array at a distance of approximately 300 km. We describe here an automatic procedure for identifying signals which are likely to result from blasts at the Kovdor mine and, wherever possible, for obtaining single array locations for such events. Carefully calibrated processing parameters were chosen using measurements from confirmed events at the mine over a one-year period for which the operators supplied Ground Truth information. Phase arrival times are estimated using an autoregressive method and slowness and azimuth are estimated using broadband f{-}k analysis in fixed frequency bands and time-windows fixed relative to the initial P-onset time. We demonstrate the improvement to slowness estimates resulting from the use of fixed frequency bands. Events can be located using a single array if, in addition to the P-phase, at least one secondary phase is found with both an acceptable slowness estimate and valid onset-time estimate. We evaluate the on-line system over a twelve month period; every event known to have occured at the mine is detected by the process and 32 out of 53 confirmed events were located automatically. The remaining events were classified as “very likely” Kovdor events and were subsequently located by an analyst. The false alarm rate is low; only 84 very likely Kovdor events were identified during the whole of 2003 and none of these were subsequently located at a large distance from the mine. The location accuracy achieved automatically by the single-array process is remarkably good, and is comparable to that obtained interactively by an experienced analyst using two-array observations. The greatest problem encountered in the single array location procedure is the difficulty in determining arrival times for secondary phases, given the weak Sn phase and the complexity of the P-coda. The method described here could be applied to a wide range of locations and sources for which the monitoring of seismic activity is desirable. The effectiveness will depend upon the distance between source and receiver, the nature of the seismic sources and the level of regional seismicity.  相似文献   

5.
Improving Regional Seismic Event Location in China   总被引:1,自引:0,他引:1  
—?In an effort to improve our ability to locate seismic events in China using only regional data, we have developed empirical propagation path corrections and applied such corrections using traditional location routines. Thus far, we have concentrated on corrections to observed P arrival times for crustal events using travel-time observations available from the USGS Earthquake Data Reports, the International Seismic Centre Bulletin, the preliminary International Data Center Reviewed Event Bulletin, and our own travel-time picks from regional data. Location ground truth for events used in this study ranges from 25?km for well-located teleseimic events, down to 2?km for nuclear explosions located using satellite imagery. We also use eight events for which depth is constrained using several waveform methods. We relocate events using the EvLoc algorithm from a region encompassing much of China (latitude 20°–55°N; longitude 65°–115°E). We observe that travel-time residuals exhibit a distance-dependent bias using IASPEI91 as our base model. To remedy this bias, we have developed a new 1-D model for China, which removes a significant portion of the distance bias. For individual stations having sufficient P-wave residual data, we produce a map of the regional travel-time residuals from all well-located teleseismic events. Residuals are used only if they are smaller than 10?s in absolute value and if the seismic event is located with accuracy better than 25?km. From the residual data, correction surfaces are constructed using modified Bayesian kriging. Modified Bayesian kriging offers us the advantage of providing well-behaved interpolants and their errors, but requires that we have adequate error estimates associated with the travel-time residuals from which they are constructed. For our P-wave residual error estimate, we use the sum of measurement and modeling errors, where measurement error is based on signal-to-noise ratios when available, and on the published catalog estimate otherwise. Our modeling error originates from the variance of travel-time residuals for our 1-D China model. We calculate propagation path correction surfaces for 74 stations in and around China, including six stations from the International Monitoring System. The statistical significance of each correction surface is evaluated using a cross-validation technique. We show relocation results for nuclear tests from the Balapan and Lop Nor test sites, and for earthquakes located using interferometric synthetic aperture radar. These examples show that the use of propagation path correction surfaces in regional relocations eliminates distance bias in the residual curves and significantly improves the accuracy and precision of seismic event locations.  相似文献   

6.
A notable swarm occurred in Rushan, Shandong Peninsula and its activities continue since Oct. 2013 till now. Up to Sept. 30, 2014, more than 7 000 events have been recorded, in which locatable shocks exceed 2000, and 18 events with ML≥3.0. The swarm is rarely seen in East China for its extraordinary duration time and surprising high frequency of aftershocks. 18 temporary seismometers have been deployed around the swarm since May 6, 2014, and composed a seismic array for monitoring the swarm activities. Based on data from permanent networks and temporary array, we relocated the earthquake sequence by using hypoDD method. It has been shown that, there is obvious difference between permanent network results and temporary array results. The permanent network of Shandong has a relative large coverage gap(more than 200°)for this swarm. Its location results therefore should not be reliable. There are maybe other errors in the permanent network result due to some problems in the raw data, such as too few stations for most locatable events(3 stations), and relative lower proportion of located events in final result(74.3%, while 95.1% in temporary array result). It can be found by comparing location results from permanent network and temporary array that, using temporary array's data can improve the location accuracy significantly. The results of temporary array are: aftershocks distribution of Rushan swarm is in NWW direction, the dip-direction of fitted fault plane is SW, and the strike and dip angle agree with focal mechanism of the mainshock. Focal depths of aftershocks are at 4.5~8km; the swarm is restricted in a small area about 3km×3km×1km, and has some characteristics such as clustering, staged activities, and etc; the aftershock activities are in accord with crack growth behavior pattern, hence we deduced that there may be fluid intrusion in source area. Finally, we discussed the seismogenic structures and active mechanisms of this swarm combined with relative geologic knowledge. We draw some conclusions as follows: 1)Rushan swarm probably occurred at the boundary of rock bodies of Duogu Mountain and Haiyangsuo super-unit; 2)The seismogenic structure is a blind fault, which should be a part of adjacent Heishankuang-Jilincun Fault, or might be a new fault at rock body boundaries; 3)Rushan swarm might be an evidence for the existence of the disputed Shidao Fault.  相似文献   

7.
将压缩感知方法应用于上海佘山地震台阵远震定位,对于该台阵记录的MS 5.5以上全球地震事件,根据震级大小、地震波走时、事件分布,筛选得到45个远震事件记录,采用分析压缩感知及传统方法,计算最优反方位角和慢度值,发现压缩感知方法在地震台阵的远震定位中表现良好;对于震相较为复杂的地震,在求取能量最大及超过最大能量95%以上的点,得到最终源信号,也就是震源位置,压缩感知方法具有更高的分辨率。  相似文献   

8.
The BURAR seismic array, located in Northern Romania (Bucovina region), is designed to monitor events located in an area poorly covered by other existing seismic stations. In order to use the BURAR array for single-station locations, it is crucial to calibrate the azimuth and slowness parameters, which are currently used in array techniques to locate earthquakes, blasts or nuclear explosions. The goal of this study is to apply “f–k” and plane wave fit techniques in order to constrain the slowness and azimuth parameters at BURAR for teleseismic, regional and local events. The analysis was carried out using P and S waves recorded for events occurred between 2004 and 2008 within a radius of 50° around BURAR. The azimuth values obtained applying both methods strongly deviated from the theoretical values for regions like Central Turkey, Bulgaria, Dodecanese Islands and other parts of Greece, while the ray parameter deviations with respect to a 1-D IASP91 reference model are less significant. For the local events, the anomalies are smaller, except the particular case of Vrancea intermediate-depth earthquakes for which strong azimuth deviations (33.5°), both positive and negative, are observed. We investigate how these systematic deviations in azimuth are explained by the structure lateral heterogeneities which characterize the study region.  相似文献   

9.
通过余震序列的精确定位可以较为准确地刻画主震破裂区的时空变化规律. 为了减小仪器时钟误差对地震定位精度的影响, 本文基于2011年1月19日安庆地震流动台站的S-P到时差, 通过主事件和双差地震定位法得到较为准确的主震位置和余震序列时空分布, 并评估了仪器时钟误差; 又通过对sPL近震深度震相的分析, 得到了余震序列较为可靠的深度分布. 结果表明, 安庆地震发生在宿松—枞阳断裂带附近, 余震序列大体近水平分布在5 km深度, 呈长1.5 km、 宽1 km、 高0.3 km的薄板状展布; 从时空分布来看, 随着时间的推移余震序列似乎有往北东方向扩展的趋势. 研究表明, 基于S-P到时差的定位方法可以有效消除时钟不准确带来的影响, 为中小地震和余震序列活动性的研究提供可靠的定位结果.   相似文献   

10.
A small-aperture seismic array consisting of seven three-component seismometers carried out continuous measurements of regional seismicity in a selected area of the Nizhni Novgorod nuclear power plant during four months of 2013. Automatic signal detection using beamforming was applied separately for each motion component. Two horizontal components were transformed into radial and transverse components for the given values of the velocity and azimuth of the plane wave front. We have investigated the dependence of the coherence of microseismic noise on frequency, azimuth, and slowness, as well as determining the level of cross-correlation between signals on separate channels in order to estimate expected improvement in the signal-to-noise ratio, which is crucial for signal detection. Most signals detected by the seismic array from regional sources are associated with quarry blasts. Using repetitive explosions at seven quarries, we have quantitatively estimated and compared the increase in detection efficiency of regional seismic phases using a three-component small aperture seismic array and a subarray of vertical sensors. Horizontal sensors showed a higher efficiency in the detection of transverse waves, while the subarray of vertical sensors missed S-waves from certain events. For one of the nearby quarries, the vertical subarray missed up to 25% of events (5 of 20). The results of the investigation point to the need for the use of three-component seismic arrays for the study of regional seismicity.  相似文献   

11.
Statistical tests for regional seismic phase characterizations   总被引:1,自引:0,他引:1  
In seismic analysis some assumptions are often made aboutthe data, e.g. stationarity and Gaussianity. This is not obvious for all realseismic data. Here, we use statistical tests for characterization of regionalseismic data. We apply tests for stationarity, symmetry, linearity, andtime-reversibility. In the analysis we use twelve regional seismic events inFennoscandia recorded with the seismic small-aperture arrays NORESS,ARCESS and FINESA at hypocentral distances in the range from 160 to1580 km. For the tests we use the regional phases Pn, secondary P, Sn and Lg-phases and the preceding noise. Two of the eventsare explosions, two are rockbursts and eight are earthquakes. Theperformance and possibilities of using statistical tests based on bispectra, asa complementary tool for conventional analysis of seismic phases isdemonstrated. The preceding noise recorded before the first onset of theP-wave for the twelve events is tested to be spatially stationarybetween each channel within each array and temporal stationary in 21consecutive time windows of 3.2 sec each. Also, the preceding noise issymmetric and linear. The seismic phases defined by the symmetry test asnon-Gaussian (not symmetric) are all linear. This means a linear model canbe used to characterize both the noise and the phases. The first P-phase for the two explosions is characterized as non-Gaussian at thethree arrays. For all 36 possibly first P-phase arrivals at the three arraystations, 23 are non-Gaussian. The second P-phase is non-Gaussian at13 of 36 data records, the S-phase at eleven of 36 and the Lg-phase at nine of 36. For all the four phases more than 32 of possible36 are time-reversible.  相似文献   

12.
—?An important requirement for a comprehensive seismic monitoring system is the capability to accurately locate small seismic events worldwide. Accurate event location can improve the probability of determining whether or not a small event, recorded predominantly by local and regional stations, is a nuclear explosion. For those portions of the earth where crustal velocities are not well established, reference event calibration techniques offer a method of increased locational accuracy and reduced locational bias.¶In this study, data from a set of mining events with good ground-truth data in the Powder River Basin region of eastern Wyoming are used to investigate the potential of event calibration techniques in the area. Results of this study are compared with locations published in the prototype International Data Center's Reviewed Event Bulletin (REB). A Joint Hypocenter Determination (JHD) method was applied to a s et of 23 events. Four of those events with superior ground-truth control (mining company report or Global Positioning System data) were used as JHD reference events. Nineteen (83%) of the solutions converged and the resulting set of station-phase travel-time corrections from the JHD results was then tested. When those travel-time corrections were applied individually to the four events with good ground-truth control, the average locational error reduced the original REB location error from 16.1?km to 5.7?km (65% improvement). The JHD locations indicated reduced locational bias and all of the individual error ellipses enclosed the actual known event locations.¶Given a set of well-recorded calibration events, it appears that the JHD methodology is a viable technique for improving locational accuracy of future small events where the location depends on arrival times from predominantly local and/or regional stations. In this specific case, the International Associ ation of Seismology and the Physics of the Earth's Interior (IASPEI) travel-time tables, coupled with JHD-derived travel-time corrections, may obviate the need for an accurately known regional velocity structure in the Powder River Basin region.  相似文献   

13.
—?The verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) requires the determination of accurate location of seismic events from a fixed network of seismic stations across the globe. The requirements of possible on-site inspections mean that the goal is to place the location estimate in a zone smaller than 1000 km2 that includes the true location. Because a defined set of stations will be used, corrections can be refined to represent the influence of departures from the global reference model IASPEI91. The primary stations in the International Monitoring Scheme (IMS) are mostly seismic arrays and therefore the present location scheme is based on minimisation of a misfit function built from arrival time, azimuth and array slowness residuals. The effective network will change markedly with the magnitude of the event and as a result regional information has to be integrated into the location process.  相似文献   

14.
Knowledge about backazimuth and slowness deviations at seismic arrays can be used as a tool to study subsurface lateral heterogeneity and improve the ability to locate events. Recently, Hao and Zheng (J Seismol 13:437–448, 2009) estimated the backazimuth and slowness deviations for teleseismic P waves recorded by the HILR array and the LZDM array using f–k analysis. They attributed the significant deviations at the LZDM array to dipping structures beneath the array. However, another possible factor, namely the altitude variations of array elements, was not taken into consideration during the slowness estimation process. For the LZDM array, the maximum altitude difference is ~15% of the array aperture and not negligible. In this study, we made some numerical experiments to investigate the difference between the estimated and theoretical slowness vectors when ignoring the altitude difference. The results reveal that remarkable artificial slowness shift is produced. Assuming a P-wave velocity of 5.4 km/s immediately beneath the array, the magnitude of slowness shift increases from 1.4 to 2.2 s/° when the theoretical slowness decreases from 16 to 4 s/°. For a 10° emergence angle, the backazimuth deviation reaches nearly 40°, and the relative slowness deviation can be greater than 60%. It is also shown that ignoring the altitude difference gives rise to a northeastward slowness shift, opposite to the southwestward shift proposed by Hao and Zheng, suggesting that they have heavily underestimated the slowness residuals at the LZDM array. Note that the elevation of one of the array stations is much lower than others. Avoiding the use of this station, the elevation variation range of array stations decreases by nearly one half, and the artificial backazimuth and slowness deviations decrease by more than one half.  相似文献   

15.
—?In order to improve on the accuracy of event locations at teleseismic distances it is necessary to adequately correct for lateral variations in structure along the ray paths, either through deterministic model-based corrections, empirical path/station corrections, or a combination of both approaches. In this paper we investigate the ability of current three-dimensional models of mantle P-wave velocity to accurately locate teleseismic events. We test four recently published models; two are parameterized in terms of relatively long-wavelength spherical harmonic functions up to degree 12, and two are parameterized in terms of blocks of constant velocity which have a dimension of a few hundreds of km. These models, together with detailed crustal corrections, are used to locate a set of 112 global test events, consisting of both earthquakes and explosions with P-wave travel-time data compiled by the Internation al Seismological Centre (ISC). The results indicate that the supposedly higher resolution block models do not improve the accuracy of teleseismic event locations over the longer wavelength spherical harmonic models. For some source locations the block models do not predict the range of observed travel-time residuals as well as the longer wavelength models. The accuracy of the locations largely varies randomly with geographic position although events in central Asia are particularly well located. We also tested the effect of reduced data sets on the locations. Multiple location iterations using 30 P-wave travel times indicate that teleseismic events may be located within an area of 1000?km2 of the true location 66% of the time with only the model-based corrections, and increasing to 75% if calibration information is available. If as few as 8 phases are available then this is possible only 50% of the time. Further refinement in models and/or procedure, such as the addition of P n phases, azimuth data, and consideration of P-wave anisotropy may provide further improvement in the teleseismic location of small events.  相似文献   

16.
频率-波数(F-K)谱分析是地震台阵数据处理基本方法之一。采用该分析方法,可以从地脉动背景中提取有用的地震信号,提高地震的定位精度。本文列举了F-K功率谱的不同计算方法,并将该方法应用于上海地震台阵所记录的地震事件。对地震和地脉动的F-K分析结果得出,地震的方位角和慢度值分别对记录长度的分布呈线性特征,而地脉动的方位角和慢度值则呈不规则分布。  相似文献   

17.
针对云南巧家M_S5.0地震应急流动测震台站布局规划、台址勘选、仪器设备的架设及组网方式等工作进行归纳总结,并统计分析台站架设后对震区监测能力的提升及余震事件记录的影响,结果发现,流动测震台站的架设提升了台网在震区的监测能力,提高了余震定位精度,使更多余震事件被记录到。  相似文献   

18.
本文利用Pn/Pg相对定位方法,测定了2017年8月8日四川九寨沟M7.0主震及部分余震的起始破裂深度.地震的起始破裂深度是理解地震孕震机理的重要参数,而九寨沟地区台网稀疏,地壳速度结构复杂,基于传统的到时定位方法测定地震起始破裂深度误差较大.Pn/Pg相对定位方法首先基于流动观测近台记录对2017年8月10日M4.1和11月7日M4.5余震震源位置进行测定,选择其为参考事件,再利用Pg校正主震水平位置,Pn约束震源起始深度,基于参考事件可以有效降低速度模型对震源位置测定的影响.结果显示:九寨沟主震起始破裂深度约9 km,早期余震的震源深度分布在7~13 km,主要集中在主震起始破裂深度附近.  相似文献   

19.
A fortuitous sequence of closely spaced earthquakes in the Rana region of northern Norway, during 2005, has provided an ideal natural laboratory for investigating event detectability using waveform correlation over networks and arrays at regional distances. A small number of events between magnitude 2.0 and 3.5 were recorded with a high SNR by the Fennoscandian IMS seismic arrays at distances over 600 km and three of these events, including the largest on 24 June, displayed remarkable waveform similarity even at relatively high frequencies. In an effort to detect occurrences of smaller earthquakes in the immediate geographical vicinity of the 24 June event, a multi-channel correlation detector for the NORSAR array was run for the whole calender year 2005 using the signal from the master event as a template. A total of 32 detections were made and all but 2 of these coincided with independent correlation detections using the other Nordic IMS array stations; very few correspond to signals detectable using traditional energy detectors. Permanent and temporary stations of the Norwegian National Seismic Network (NNSN) at far closer epicentral distances have confirmed that all but one of the correlation detections at NORSAR in fact correspond to real events. The closest stations at distances of approximately 10 km can confirm that the smallest of these events have magnitudes down to 0.5 which represents a detection threshold reduction of over 1.5 for the large-aperture NORSAR array and over 1.0 for the almost equidistant regional ARCES array. The incompleteness of the local network recordings precludes a comprehensive double-difference location for the full set of events. However, stable double-difference relative locations can be obtained for eight of the events using only the Lg phase recorded at the array stations. All events appear to be separated by less than 0.5 km. Clear peaks were observed in the NORSAR correlation coefficient traces during the coda of some of the larger events; the local stations confirm that these are in fact aftershocks exhibiting very similar waveforms to the main events. Many of the more marginal correlation detections are not made when the calculations are repeated using shorter signal segments, fewer sensors or more distant stations. We demonstrate in addition how these almost repeating seismic sources have been exploited to detect and measure timing anomalies at individual sites within the arrays and network.  相似文献   

20.
为监测东祁连山北缘断裂带附近的地震活动性,布设包含240台短周期地震仪的面状密集台阵,进行约30 d的连续观测。首先使用基于深度学习的多台站地震事件检测算法(CNNDetector)进行地震事件检测,然后使用震相拾取网络(PhaseNet)对地震事件进行P波和S波到时拾取,其次使用震相关联算法(REAL)进行震相关联及初定位,最后使用双差定位(hypoDD)进行地震重定位,最终的精定位地震目录中共有517个地震。在密集台阵观测期间,中国地震台网正式地震目录中共有39个位于台阵内的地震事件,相比而言,密集台阵检测到大量小于0级的地震。因此通过布设密集台阵,可提高活动断裂微地震活动性的监测能力。与历史地震空间分布相比,密集台阵地震精定位分布具有较好的一致性,表现出更明显的线性分布特征。基于地震分布,发现研究区域存在与地表断层迹线走向不同的隐伏活跃断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号