首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unsteady laminar free convection flow of a viscous incompressible and electrically conducting fluid past an accelerated vertical infinite porous plate subjected to a suction velocity proportional to (time)–1/2 is studied in presence of a uniform horizontal magnetic field. Results are discussed with the effects of the Grashof number Gr, and the magnetic field parameterM for Pr (the Prandtl number)=0.71 and 7.0 representing air and water respectively at 20 °C.Nomenclature a suction/injection parameter - C p specific heat at constant pressure - B 0 magnetic induction - g acceleration due to gravity - Gr Grashof number (vg(T'w-T')/U 0 3 ) - K thermal conductivity - M magnetic field parameter (B 0 2 e 2 /U 0 2 ) - Pr Prandtl number (C p/K) - T' temperature of the fluid near the plate - T' w temperature of the plate - T' temperature of the fluid at infinity - t' time variable - t dimensionless time (t' U 0 2 /v) - u non-dimensional velocity (u'/U 0) - U' velocity of the plate - U dimensionless velocity of the plate (U'/U o) - U 0 reference velocity - v' 0 suction velocity - v 0 nondimensional suction velocity (v' 0/U 0)=at–1/2 - v' normal velocity component - v dimensionless normal velocity - Ec Eckert number ((vU 0)2/3/C p(T' w -T' )) - T dimensionless temperature of the fluid near the plate ((T'-T' )/T' w –T' )) - x',y' coordinates along and normal to the plate - y dimensionless ordinate (=y' U o/v) - v kinematic viscosity - coefficient of volume expansion - electric conductivity of the fluid - similarity variable (y/2t) - w density of the fluid at the plate - density of the fluid at infinity - ' skin-friction - dimensionless skin-friction - coefficient of viscosity - e magnetic permeability  相似文献   

2.
An analysis of the mass transfer and free convection effects on the unsteady laminar accelerated flow of a viscous incompressible fluid past an infinite vertical porous limiting surface is presented when the free stream is accelerated and the limiting surface temperature and concentration changes with step-wise variations. Expressions for velocity and skin-friction are obtained by using Laplace transform, when the Prandtl number and the Schmidt number are equal to one. Graphs showing variations of velocity and skin-friction, for different values of Gr (Grashof number) and Gc (modified Grashof number) are plotted, and the results of them are discussed.  相似文献   

3.
An exact analysis of the flow caused by an oscillating vertical plate in the presence of free-convection currents and foreign mass has been presented. Solutions have been derived by Laplace-transform technique. Velocity profiles and leading edge effects have been shown for different gases present in air. During the course of discussion, the effects of Gr (Grashof number), Gm (modified Grashof number), Sc (Schmidt number), on the flow have been discussed. It has been observed that at all small values of Sc, transition from conduction to convection exists but at large values of Sc, such a transition is not present.  相似文献   

4.
In the present paper, the effects of free convection currents and the viscous dissipation on the unsteady flow of an electrically conducting and viscous incompressible fluid around an uniformly accelerated vertical porous plate subjected to a suction or injection velocity inversely proportional to the square root of time, in presence of a transverse magnetic field, have been investigated. Analytical solutions for the velocity and the temperature distributions, the skin-friction and the rate of heat transfer are obtained for small magnetic parameterM. During the course of discussion the effects of the Grashof number Gr, the Eckert number Ec, the suction/injection parametera have been considered for unit value of the Prandtl number Pr.Nomenclature a suction/injection parameter - C p specific heat at constant pressure - B 0 magnetic induction - g acceleration due to gravity - Gr Grashof number (g(T w –T )/U 0 3 ) - K thermal conductivity - M magnetic field parameter (B 0 2 /U 0 2 ) - Pr Prandtl number (C p/K) - T temperature of the fluid near the plate - T w temperature of the plate - T temperature of the fluid at infinity - t time - t dimensionless time (tU 0 2 /) - u velocity of the fluid - u non-dimensional velocity (u/U 0) - U velocity of the plate - U dimensionless velocity of the plate (U/U 0) - U 0 reference velocity - v 0 suction velocity - v 0 non-dimensional suction velocity (v 0/U 0)=at –1/2 - Ec Eckert number ((U 0)2/3/C p(T w –T )) - T dimensionless temperature of the fluid near the plate ((T–T )/(T w –T )) - x, y coordinates along and normal to the plate - x, y dimensionless coordinates (y=yU 0/) - kinematic viscosity - coefficient of volume expansion - electric conductivity of the fluid - y/2t 1/2 - density of the fluid - skin-friction - dimensionless skin-friction - q rate of heat transfer - q non-dimensional rate of heat transfer - coefficient of viscosity - e magnetic permeability On leave of absence from Department of Mathematics, University of Dhaka, Bangladesh  相似文献   

5.
The effects of free convection on the accelerated flow of a viscous, incompressible and electrically conducting fluid (e.g. of a stellar atmosphere) past a vertical, infinite, porous limiting surface (e.g. of a star) in the presence of a transverse magnetic field, is considered. The magnetic Reynolds number of the flow is taken to be small enough, so that the induced magnetic field is negligible. Expressions for velocity and skin-friction are obtained by using Laplace transform, when the Prandtl number is equal to one (P=1). Graphs showing variations of velocity and skin-friction, for different values ofG (Grashof number) andM (magnetic parameter) are plotted, and the results of them are discussed.  相似文献   

6.
Two-dimensional unsteady free convection and mass transfer, flow of an incompressible viscous dissipative and electrically conducting fluid, past an infinite, vertical porous plate, is considered, when the flow, is subjected in the action of uniform transverse magnetic field. The magnetic Reynolds number is taken to be small enough so that the induced magnetic field is negligible. The solution of the problem is obtained in the form of power series of Eckert numberE, which is very small for incompressible fluids. Analytical expressions for the velocity field and temperature field are given, as well as for the skin friction and the rate of heat transfer for the case of the mean steady flow and for the unsteady one. The influence of the magnetic parameter,M, modified Grashof numberG c , Schmidt numberS c and frequency , on the flow field, is discussed with the help of graphs, when the plate is being cooled, by the free convection currents (G r ,E>0), or heated (G r ,E<0). A comparative study with hydrodynamic case (M=0) and the hydromagnetic one (M0) is also made whenever necessary.List of symbols B0 applied magnetic field - |B| amplitude of the skin friction - C concentration inside the boundary layer - C concentration in the free stream - C w concentration at the porous plate - C p specific heat at constant pressure - D diffusion coefficient - E Eckert number - g x acceleration due to gravity - G c modified Grashof number - G r Grashof number - M magnetic parameter - N u Nusselt number - P Prandtl number - |Q| amplitude of the rate of heat transfer - S c Schmidt number - T temperature of the fluid - T w temperature of the plate - T temperature of the fluid in the free stream - T r ,T i fluctuating parts of the temperature profile - u, v velocity components in thex, y directions - u dimensionless velocity in thex direction - u 0 mean steady velocity - u 1 unsteady part of the velocity - u r ,u i fluctuating parts of the velocity profile - U dimensionless free stream volocity - U 0 mean free stream velocity - v 0 suction velocity - x, y co-rodinate system Greek Symbols phase angle of the skin-friction - coefficient of volume expansion - * coefficient of expansion with concentration - phase angle of the rate of heat transfer - dimensionless co-ordinate normal to the plate - dimensionless temperature - 0 mean steady temperature - 1 unsteady part of temperature - k thermal conductivity - v kinematic viscocity - density of fluid in the boundary layer - density of fluid in the free stream - electrical conductivity of the fluid - skin friction - 0 mean skin friction - frequency - dimensionless frequency  相似文献   

7.
An analysis of the effects of the mass transfer on the unsteady free-convection flow of a viscous incompressible fluid, past an impulsively started infinite porous vertical limiting surface with heat sources is presented, when the free-stream velocity and the suction velocity, are oscillating in the time about constant mean values. Approximate solutions for the coupled nonlinear equations are derived for the mean velocity, the mean temperature, the mean skin-friction, and the mean rate of heat transfer. All the above quantities are shown graphically followed, by a discussion.  相似文献   

8.
The effect of Hall currents on the hydromagnetic free-convection flow of an electrically conducting and incompressible viscous fluid past a uniformly accelerated infinite vertical porous plate is discussed. The magnetic Reynolds number is assumed to be small so that the induced magnetic field can be neglected. The governing equations of the flow are solved by defining a complex velocity with the help of the Laplace transform method when the Prandtl number is equal to unity. The influence of the various parameters on the unsteady flow field is presented for both the cases, cooling and heating of the porous plate by free-convection currents.  相似文献   

9.
An analysis of the two-dimensional flow of an incompressible, viscous binary fluid past an infinite, porous, vertical plate is presented under the following conditions: (i) the suction velocity is constant; (ii) the free stream oscillates in time about a constant mean; (iii) the plate moves in the upward direction in its own plane; (iv) the temperature of the plate is constant; (v) there are heat generation (absorption) in the fluid.Approximate solutions for the coupled non-linear equations are obtained for the velocity, temperature and their related quantities and the influence of the various parameters entering into the problem is discussed.  相似文献   

10.
An analysis of a two-dimensional unsteady free convective flow of an incompressible viscous fluid past an infinite vertical porous plate has been carried out under the following conditions: (i) constant suction, (ii) the plate temperature oscillating in time about a constant non-zero mean, (iii) presence of the temperature-dependent sources in the fluid. Approximate solutions have been derived for the mean velocity and temperature fields, the transient velocity and temperature fields, the amplitude and the phase of the skin-friction and the rate of heat transfer. It is shown that an increase inS (the source-strength), leads to an increase in the value of |B| (the amplitude of the skin-friction) and |Q| (the amplitude of the rate of heat transfer), in case of air, but in case of water |B| and |Q| decrease.  相似文献   

11.
In the present paper, mass transfer effect on the free-convection flow of an incompressible viscous fluid past a uniformly accelerated infinite vertical plate is discussed when there is a constant heat flux between fluid and plate. The expressions for the velocity field and the skin-friction have been obtained by the Laplace-transform technique. The influence of the various parameters entering into the problem is extensively discussed with the help of graphs and table.  相似文献   

12.
The free-convection flow of an incompressible and viscous fluid past an exponentially accelerated infinite vertical plate is analysed. The Laplace transform method is used to obtain the expressions for velocity and skin-friction. The effect of various parameters, occuring into the problem, is discussed with the help of graphs and table.  相似文献   

13.
An exact analysis of the unsteady free and forced convection flow of an incompressible viscous fluid past a porous plate has been presented in presence of a constant heat source. A solution has been derived by Laplace-transform technique. Velocity profiles, skin-friction and leading edge effects have been obtained. During the course of the discussion, the effects ofS (heat source parameter), (suction parameter) on velocity, skin-friction and leading edge effect have been extensively discussed with the help of graphs and the table.  相似文献   

14.
A study of the two-dimensional unsteady flow of a viscous, incompressible fluid past an infinite vertical plate has been carried out under the following conditions: (1) constant suction at the plate, (2) wall temperature oscillating about a constant non-zero mean, and (3) constant free-stream. Approximate solutions to coupled non-linear equations governing the flow have been carried out for the transient velocity, the transient temperature, the amplitude and phase of the skin friction, and the rate of heat transfer. The velocity, temperature and amplitude are shown graphically whereas the numerical values of the phases are given in a table. It has been observed that the amplitude of the skin friction decreases with increasing (frequency) but increases with increasingG (Grashof number), while the amplitude of the rat of heat transfer increases with increasing .  相似文献   

15.
The three-dimensional flow of an electrically conducting and incompressible viscous fluid past a uniformly accelerated infinite vertical porous plate is studied in a rotating fluid. The flow is assumed to be at small magnetic Reynolds number so that the induced magnetic field is neglected. An exact solution has been obtained by defining a complex velocity with the help of the Laplace transform method for the Prandtl number equal to unity. The effects of rotation, magnetic and free-convection parameters are discussed for the whole problem. Also, the skin-friction components on the plate are discussed.  相似文献   

16.
An analytical study is performed to examine the effects of magnetic field and temperature-dependent heat source on the free and forced convection flow past an infinite vertical plate. The expressions for the velocity field, penetration distance and skin-friction have been obtained by Laplace transform technique. The influence of the various parameters entering into the problem is extensively discussed.  相似文献   

17.
An analysis of a two-dimensional steady-free convection and mass transfer flow of an incompressible, viscous, and electrically conductive non-Newtonian fluid through a porous medium bounded by a vertical infinite limiting surface (plane wall) has been presented in the presence of a transverse magnetic field. Approximate solutions to the coupled nonlinear equations governing the flow are derived and expression for the velocity, temperature, concentration, the rate of heat transfer, and the skin-friction are derived. Effects of Gr (Grashof number), Gm (modified Grashof number),M * (non-Newtonian parameter),N (magnetic parameter), and permeabilityK of the porous medium on the velocity, the skin-friction and the rate of heat transfer are discussed when the surface is subjected to a constant suction velocity.  相似文献   

18.
the influence of radiation absorption on the flow-field of an unsteady laminar boundary layer due to free convection is considered. The flow is that of an incompressible viscous dissipative and electrically conducting fluid past an infinite vertical porous plate, when the flow is subjected to the action of a transverse magnetic field and the mainstream is oscillating around a mean value and an oscillating suction. The radiation is absorbed by a second material in a small concentration within the fluid and the absorption rate is proportional to the local concentration. The solution of the problem is obtained in the form of power series of Eckert numberE, which is very small for incompressible fluids, analytical expression for the velocity, temperature and the induced magnetic field are given for both the steady and the unsteady flows. The solution is also given in a number of figures that present the combined influence of the absorption withE,G r , and the frequency of oscillation. In addition the influence of the absorption on the skin friction the heat flux is given. The results indicate the importance of the absorption which can be significant under certain conditions.  相似文献   

19.
An analysis of the effects of free convection currents on the flow field of an incompressible viscous fluid past an infinite porous plate, which is uniformly accelerated upwards in its own plane, is presented, when the fluid is subjected to a variable suction (or injection) velocity. It is assumed that this normal velocity at the porous plate varies att–1/2, wheret denotes time. The equations governing the flow are solved numerically, using two-point boundary value shooting techniques.  相似文献   

20.
In this paper the unsteady laminar free-convection flow of a viscous incompressible fluid, past an accelerated infinite vertical porous plate subjected to a constant suction (or injection) in considered. Numerical results for the skin-friction on the plate are obtained for the class of accelerated motions whose velocity is of the formU 0 t n wheret is time,U 0 a constant, andn is a positive integer. The skin friction tends to zero with increasingt when the Grashof number Gr=2, the Prandtl number =1,n=0, and >0 which corresponds to suction.On leave of absence from the Department of Mathematics, University of Dhaka, Bangladesh.On leave from absence from the Department of Mathematics, University of Dar-es-Salaam, Tanzania.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号