首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘燕君  刘凯  曹晶晶 《测绘通报》2023,(12):136-141
由于湿地类别多样且结构复杂,湿地遥感分类工作极具挑战性。本文以珠江口滨海湿地为研究区,基于珠海一号高光谱影像获取的光谱特征、形状特征、纹理特征和指数特征构建优选特征集,采用极端梯度提升(XGBoost)算法和面向对象技术提取湿地类型和空间分布,并对比分析基于支持向量机(SVM)算法和随机森林(RF)算法的湿地分类结果。结果表明:(1)珠海一号高光谱影像能够有效应用于湿地分类,且光谱特征在湿地分类中发挥了重要作用;(2)使用的机器学习算法中XGBoost算法的湿地分类效果最佳,总体精度为87.2%,Kappa系数为0.84;(3)优选的影像特征能够保证更高的湿地类型识别精度,验证了特征筛选有助于提高分类效果。本文发展了一种基于珠海一号高光谱影像和集成学习的大区域湿地类型识别方法,可为湿地资源调查提供有效的技术参考,服务于湿地的保护与开发利用。  相似文献   

2.
利用高光谱遥感影像识别精细化农作物类型,已经成为农业遥感的热点领域。本文以绥化市北林区内的水稻、玉米、大豆、烤烟等典型农作物为分类对象,以ZH-1高光谱数据为主要数据源,结合外业采集样本,探讨利用高光谱数据对精细化农作物类型信息提取的方法。针对高光谱数据的冗余问题,对其进行PAC降维处理,采用支持向量机分类方法对农作物种植结构进行提取。最后,采用混淆矩阵方法对分类结果进行验证,分类总体精度达到87.08%,Kappa系数为0.86。分类结果表明,高光谱数据在精细化农业分类研究上得到较好的应用。  相似文献   

3.
刘渊  郑向涛  卢孝强 《遥感学报》2024,28(1):306-319
高空间分辨率、高光谱分辨率、大幅宽与大数据量是高光谱卫星数据发展趋势,传统高光谱影像的像素级分类面临难以处理海量数据、无法高效获取复杂海量影像中隐含信息的困境。已有研究开始关注高光谱影像的场景级分类,并逐步建立完善高光谱遥感场景分类数据集。然而,目前的数据集制作过程多参考高空间分辨率可见光遥感场景数据集的制作方法,主要采用遥感影像的空间信息进行场景类别解译,忽视了高光谱场景的光谱信息。因此,为构建高光谱影像的遥感场景分类数据集,本文利用“珠海一号”高光谱卫星拍摄的西安地区高光谱数据,使用无监督光谱聚类辅助定位、裁剪与标注待选场景样本,结合GoogleEarth高分影像进行目视筛选,构建6类场景类型和737幅场景样本的珠海一号高光谱场景分类数据集。并基于光谱与空间两个视角开展场景分类实验,通过视觉词袋、卷积神经网络等方法的基准测试结果,对不同算法在现有多光谱和高光谱遥感场景分类数据集下的性能进行深入分析。本研究可为后续的高光谱影像解译研究提供了有力的数据支撑。  相似文献   

4.
高磊 《北京测绘》2020,(5):593-595
传感器波段平均太阳辐照度是计算表观反射率等辐射参量的必要参数,是开展定量遥感分析的重要基础。通过中国气象局发布的零大气条件下太阳光谱辐照度数据和遥感数据运营商提供的珠海一号高光谱传感器光谱响应函数资料,计算了珠海一号三颗高光谱卫星上三组传感器的波段平均太阳辐照度。以中国资源卫星应用中心发布的高分一号资料为参考,确定结果具有较高的准确度,可为珠海一号高光谱数据的推广和使用提供参考。  相似文献   

5.
“珠海一号”02组和03组高光谱卫星分别于2018年4月26日和2019年9月19日发射成功。数据辐射质量评价是遥感数据应用的基础之一,针对珠海一号高光谱卫星数据,基于辐射精度、清晰度、信噪比和信息熵4个客观指标,对珠海高光谱L1B级数据辐射质量进行评价,并与GF-5高光谱遥感数据相同谱段(440—1000nm)数据辐射质量进行对比。结果表明:GF-5高光谱数据的辐射精度和清晰度均优于珠海高光谱数据,并且珠海高光谱数据的清晰度为GF-5数据清晰度的54.5%左右;在信息熵方面,两者能力近似,均在6—10;在信噪比方面,珠海高光谱数据的信息熵为GF-5数据信息熵的86.5%左右。因此,珠海高光谱数据和GF-5高光谱数据在一定程度上可以补充使用,同时珠海高光谱数据可通过提高量化级数、降低光谱分辨率和优化传感器探元响应提高数据辐射质量。  相似文献   

6.
珠海一号高光谱卫星影像部分波段存在着噪声干扰,严重影响了数据的质量与信息利用.本文分析了珠海一号高光谱卫星数据噪声的特点,在矩匹配算法的基础上,使用移动窗格对影像进行分段处理,并采用距离加权计算与去除极端值统计数据的方法提高参考值的准确度,实现了基于影像的相对辐射校正.实验结果表明,与传统矩匹配法和傅里叶滤波法相比,本文方法能有效去除遥感影像中存在的噪声,并能较好保留原影像的辐射特征.  相似文献   

7.
城市水环境污染监测是水色遥感研究中的热点,有色可溶性有机物CDOM(Chromophoric Dissolved Organic Matter)为水体有机污染物含量遥感反演的基础参数之一.以郑州天德湖水域为例,利用珠海一号高光谱卫星数据和实测水样数据,研究构建CDOM遥感反演模型,绘制天德湖水体CDOM空间分布专题图....  相似文献   

8.
高光谱遥感数据具有光谱信息丰富、图谱合一的特点,目前已经广泛地应用在对地观测中。传统的高光谱分类模型大多过分依赖影像光谱信息,没有充分利用空间特征信息,这使得分类精度还有很大的提升空间。条件随机场是一种概率模型,能够较好地融合空间上下文信息,在高光谱影像分类中已经得到越来越多的关注,但大部分条件随机场模型存在超平滑的现象,会导致影像细节丢失。针对该问题,本文提出了一种优化融合影像空-谱信息的高分辨率/高光谱影像分类方法,该方法将影像的纹理信息与原始光谱信息进行融合,利用SVM分类器对其进行预分类,并将各类概率定义为一元势函数,以融合空间特征信息;然后将空间平滑项和局部类别标签成本项加入二元势函数中,以考虑空间背景信息,并保留各类别中的详细信息。最后,通过两组的高分辨率/高光谱影像数据进行试验。结果表明,与SVM算法、传统的条件随机场方法和面向对象的分类方法相比,本文提出的算法在整体分类精度上分别提高了10%、9%和8%以上,同时在保持地物边缘完整性、避免“同谱异物”与“同物异谱”的现象方面有较明显的优势。  相似文献   

9.
高光谱遥感影像优化分类波段选择   总被引:3,自引:0,他引:3  
利用粗糙集关于属性依赖性公式,本文给出一种定义遥感影像波段间相似度的方法,通过模糊聚类,得到对高光谱遥感影像原始波段集合的模糊等价划分,在每个模糊等价波段组中,选择一个代表性波段完成对原始波段集合的初步降维,基于遗传算法并结合粗糙集理论,在降维中的波段集合中进一步进行的分类波段组合的优化选择,实验结果表明,本文给出的高光谱遥感影像优化分类波段组合选择方法是非常有效的。  相似文献   

10.
高光谱遥感影像多级联森林深度网络分类算法   总被引:1,自引:1,他引:0       下载免费PDF全文
高光谱遥感技术在环境监测、应急保障、精细地物提取等方面有着广泛的应用,随着高分五号高光谱数据的正式发布,高光谱遥感技术将发挥更重要的作用。遥感影像分类作为高光谱遥感影像信息处理的重要部分,已成为当前研究重点。本文针对传统多级联森林深度学习中模型复杂、无法利用基分类器差异信息、对类间差异较小的样本无法正确区分等不足,提出了一种改进的多级联森林深度学习模型,在模型框架中,分别采用了随机森林和旋转森林作为基分类器,并引入逻辑回归分类器作为判别器用于训练层扩展。相较于传统的深度神经网络,改进的多级联森林深度网络超参数较少且能够自适应确定训练层,更方便进行模型优化。实验采用了高分五号数据集及两个公开的高光谱数据集(Indian Pines数据集及Pavia University数据集)进行精度评定,同时选择了传统分类器支持向量机、深度置信网等模型作为对比分析。实验结果表明,改进的多级联森林深度学习模型能有效地进行高光谱遥感影像分类,且较传统的分类方法精度有所提升。  相似文献   

11.
王俊淑  江南  张国明  李杨  吕恒 《测绘学报》2015,44(9):1003-1013
提出了一种融合光谱和空间结构信息的高光谱遥感影像增量分类算法INC_SPEC_MPext。通过主成分分析(PCA)提取高光谱影像的若干主成分,利用数学形态学提取各主分量影像对应的形态学剖面(MP),再将所有主分量影像的形态学剖面归并联结,组成扩展的形态学剖面(MPext)。将MPext与光谱信息相结合以增加知识,最大限度地挖掘未标记样本的有用信息,优化分类器的学习能力。不断从分类器对未标记样本的预测结果中甄选置信度高的样本加入训练集,并迭代地利用扩大的训练集进行分类器构建和样本预测。以不同地表覆盖类型的AVIRIS Indian Pines和Hyperion EO-1Botswana作为测试数据,分别与基于光谱、MPext、光谱和MPext融合的分类方法进行比对。试验结果表明,在训练样本数量有限情况下,INC_SPEC_MPext算法在降低分类成本的同时,分类精度和Kappa系数都有不同程度的提高。  相似文献   

12.
城市地区地表覆盖分类在城市研究中是一个十分重要的方向。遥感作为获取地物物理属性的一种重要技术手段,已初步应用于分类研究中。然而,随着城镇化的不断推进,城市内部地物类型越来越复杂,单一的遥感影像已无法满足城区地表覆盖分类中高精度的要求。高光谱影像和LiDAR数据能够分别表征地物的光谱信息及高程而被广泛应用。因此,根据两者之间互补的优势,本文提出了基于高光谱影像和LiDAR数据多级融合的城区地表覆盖分类方法。首先对两幅影像分别进行特征提取,将提取到的光谱、空间及高程信息进行层叠实现特征级融合。对得到的特征影像的所有像素点进行分类,然后利用LiDAR点云数据提取的建筑物掩膜,对非建筑物部分进行分类,再次实现特征级融合,以此改善建筑物区域与非建筑物区域的混淆。然后将未使用掩膜得到的分类结果与利用掩膜得到的分类结果进行投票实现决策级融合。最后利用条件随机场模型对分类结果进行后处理操作,达到平滑图像去除噪声点的目的。  相似文献   

13.
传统的高光谱分类方法通常基于单一像元的光谱或纹理特征,很少考虑地物空间结构信息与空间相关特征.本文将面向对象规则与基于像元的分类进行融合,利用对象的空间结构特征和光谱特征进行混合分类,旨在克服像元层次分类的不足.本文尝试性的提出了两种混合分类方法:(1)基于分形网络演化的多尺度分割支持向量机分类(2)基于多层分水岭分割的SVM分类,并将这两种方法应用到天宫一号高光谱数据上.结果表明:基于面向对象规则的混合分类方法有效地提高了分类精度,不仅能够改善同谱异物现象,而且解决分类结果中地物破碎的问题.  相似文献   

14.
为充分利用高光谱遥感影像中丰富的光谱和空间信息,提出了一种基于多核支持向量机(multiple kernel support vector machine,MKSVM)和马尔科夫随机场(markov random field,MRF)的影像分类方法。该方法首先利用MKSVM分类器对影像进行分类处理,再利用MRF对初始分类结果进行空间结构规则化,得到最终分类结果。通过对AVIRIS高光谱影像的分类实验表明,该方法有效地消除了分类结果中同质区域内的"噪声",分类精度提高了3%左右。  相似文献   

15.
根据高光谱遥感影像数据特点,首先利用光谱相关性进行特征选择,然后引进SVM进行高光谱遥感影像分析解译,最后利用AVIRIS影像进行试验,结果显示分类精度和时间比常规方法都有很大改善。  相似文献   

16.
高光谱影像的冗余信息给影像的分类效果带来一定的负面影响。本文利用CB法(CfsSubsetEval评估器结合Best-First搜索策略)与PCA变换两种降维方法,分别结合随机森林分类器对4种多特征融合方案(共8种组合)进行高光谱影像分类对比,基于分类的总体精度、Kappa系数探究提高高光谱影像分类的最佳组合方法。结果表明:①多特征融合可提升高光谱影像的分类效果,两种降维方法的分类精度均随地理特征、纹理特征、指数特征的加入而逐渐提高。②两种降维方法中,经CB法降维后的分类精度均比通过PCA变换降维的分类精度高。在构造的8种组合中,基于所有特征信息(光谱特征、地理特征、纹理特征、指数特征)的CB法分类精度最高,其总体精度为98.01%;Kappa系数为0.969 9。  相似文献   

17.
针对高光谱影像非线性分类问题,根据高光谱影像光谱分辨率高且光谱具有非线性的特点,结合深度学习理论,提出了一种采用降噪自动编码器(DAE)的高光谱影像分类方法。该方法结合降噪自动编码器与SOFTMAX分类器,构造深层网络分类模型;然后,利用加噪后的光谱数据,采用Dropout方法对分类模型进行预训练和微调;最后,利用训练得到的网络模型学习高光谱影像光谱的隐含特征,实现高光谱影像的分类。采用该方法对AVIRIS和PHI的高光谱影像分别进行分类对比实验,结果表明该方法能有效提高高光谱影像分类精度。  相似文献   

18.
以南京市天绘一号卫星影像为实验数据,运用IHS变换、Brovey变换、Wavelet变换、PCA、Pansharp等遥感影像融合方法对其全色和多光谱影像进行融合,并对5种方法的融合结果进行了定性和定量分析。实验结果表明,IHS变换法和Pansharp法能显著增强融合影像的光谱信息,提高融合影像的空间分辨率。  相似文献   

19.
谭熊  余旭初  秦志远  张鹏强  魏祥坡 《测绘学报》2015,44(11):1227-1234
信息向量机是一种基于贝叶斯理论的稀疏高斯过程方法,其模型训练速度快、内存耗费小、稀疏性强,具有良好的预测性能。本文从高斯过程回归模型出发,提出了一种基于信息向量机的高光谱影像分类方法,针对高斯过程分类中的非高斯噪声模型,采用假定概率滤波算法将分类问题转化为回归问题,通过最大化边缘似然函数进行模型训练,选择活动子集中的信息向量数量达到了稀疏的目的。通过ROSIS影像试验,表明了基于信息向量机的高光谱影像分类方法的优势。  相似文献   

20.
高分辨率遥感影像因其所含较为丰富的影像信息,在城市规划、环境评价、林业测量等领域得到了广泛应用。然而,由于遥感影像具有背景复杂、地物结构多样、细节丰富等特点,往往存在分割精度低的问题。此外,遥感影像中目标如建筑物、河流和林地等地物通常存在尺寸大小不一致的问题,难以做到精细化分割。针对以上问题,本文提出了基于多特征融合的卷积神经网络模型。该模型分为编码器和解码器两部分。在编码阶段,本文使用跨卷积层级的多尺度特征融合策略提取特征;在解码阶段,为了准确地恢复影像的细节信息,本文设计了能够融合不同层级卷积特征的解码器。同时,本文对成都市的高分系列遥感卫星影像标注,设计对比实验验证了本文模型的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号