共查询到20条相似文献,搜索用时 15 毫秒
1.
Scott Lamoureux 《地球表面变化过程与地形》2002,27(10):1107-1124
A 487‐year annually laminated (varved) sediment record from Nicolay Lake, Cornwall Island, in the Canadian High Arctic was evaluated to determine the impact that years with high sediment yields had on sediment yields in subsequent years. All of the 40 largest years showed evidence for increased sediment yield in the subsequent 10–30 years. The positive anomalies in lagging years were approximately scaled according to the size of the initiating year, although many intermediate years (25‐ to 100‐year recurrence) showed weak or variable responses. The smallest events considered (10‐ to 25‐year recurrence) showed a consistent, but low‐amplitude response. Additionally the 10‐year events revealed frequent negative sediment yield anomalies in the preceding decade. This behaviour was interpreted as a frequent sediment activation cycle initiated by the modest year, and leading to sediment yield hysteresis lasting 15–25 years. The largest years (greater than 50‐year recurrence) showed consistently above‐average sediment yields in the preceding decade, in part due to the frequent occurrence of moderate (Q10) years. It is hypothesized that temporary storage of sediment and previous initiation of erosion sites resulted in extraordinary sediment yields during intense summer rainfall events. This study demonstrates the potential use of varved lake sediment records to improve our understanding of long‐term sediment dynamics. These records present an opportunity to further develop and test sediment dynamic and routing models to gain insight into the interaction of time and space in fluvial and sediment delivery processes. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
2.
Carolina Boix‐Fayos Joris de Vente María Martínez‐Mena Gonzalo G. Barberá Víctor Castillo 《水文研究》2008,22(25):4922-4935
Extensive land use changes have occurred in many areas of SE Spain as a result of reforestation and the abandonment of agricultural activities. Parallel to this the Spanish Administration spends large funds on hydrological control works to reduce erosion and sediment transport. However, it remains untested how these large land use changes affect the erosion processes at the catchment scale and if the hydrological control works efficiently reduce sediment export. A combination of field work, mapping and modelling was used to test the influence of land use scenarios with and without sediment control structures (check‐dams) on sediment yield at the catchment scale. The study catchment is located in SE Spain and suffered important land use changes, increasing the forest cover 3‐fold and decreasing the agricultural land 2·5‐fold from 1956 to 1997. In addition 58 check‐dams were constructed in the catchment in the 1970s accompanying reforestation works. The erosion model WATEM‐SEDEM was applied using six land use scenarios: land use in 1956, 1981 and 1997, each with and without check‐dams. Calibration of the model provided a model efficiency of 0·84 for absolute sediment yield. Model application showed that in a scenario without check dams, the land use changes between 1956 and 1997 caused a progressive decrease in sediment yield of 54%. In a scenario without land use changes but with check‐dams, about 77% of the sediment yield was retained behind the dams. Check‐dams can be efficient sediment control measures, but with a short‐lived effect. They have important side‐effects, such as inducing channel erosion downstream. While also having side‐effects, land use changes can have important long‐term effects on sediment yield. The application of either land use changes (i.e. reforestation) or check‐dams to control sediment yield depends on the objective of the management and the specific environmental conditions of each area. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
3.
The logistical demands of coring lake sediments tend to preclude the replicate coring necessary to establish error estimates for measured sedimentary parameters. However, if such parameters are to be used to reconstruct sediment yield, and particularly to identify temporal variability of sediment yield, reasonable error estimates are required. In this paper data from a series of alpine lakes in British Columbia are applied to develop a new method for deriving such estimates. Regression surfaces fitted to point values of sediment mass are used to model the physically controlled spatial variability of sedimentation. Deviations from these surfaces are assumed to represent remaining unstructured variance, which constitutes a conservative error estimate. Application of the technique to the alpine lake dataset gives sediment yield estimates with error ranges of ±7–21 per cent. The potential error is minimized where the spatial variability of sedimentation is strongly predictable. The best fits were achieved for elongate lakes of simple basin morphology. The range of the error estimates is sufficiently low to allow detection of variability in Holocene sediment yield to one of the lakes. By using this technique, absolute sediment yields with associated error estimates may be derived. The associated gains in precision justify multicore approaches to lake sediment‐based reconstructions of sediment yield. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
4.
Soil conservation practices have been widely implemented on the Loess Plateau to reduce severe soil erosion in north‐central China over the past three decades. However, the hydrologic impacts of these practices are not well documented and understood. The objective of this study was to examine how water yield has changed after implementing soil conservation practices that resulted in changes in land use and land cover in a small agriculture‐dominated watershed, the LuErGou Watershed in Tianshui City, Gansu Province, China. We collected 23 years of hydro‐meteorological data along with three land use surveys of 1982, 1989, and 2000. The land use survey in 2000 suggested that the soil conservation efforts resulted in a 16·6%, 4%, and 16% increase in area of grassland, forested land, and terraces respectively over the two periods from 1982 to 1988 (baseline) and 1989 to 2003 (soil conservation measures implemented). Rainfall–runoff regression models developed for both time periods at the annual and monthly time steps were used to examine the significance of change in water yield in the second time period. The averaged annual run‐off coefficient over 1989–2003 did not change significantly (at the α = 0·05 level) as compared to that in the period 1982–1988. However, we found that soil conservation practices that included re‐vegetation and terracing reduced water yield during wet periods. This study highlights the importance of the precipitation regime in regulating hydrologic effects of soil conservation measures in a semi‐arid environment. We concluded that adequately evaluating the effects of land use change and soil conservation measures on water yield must consider the climatic variability under an arid environment. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
5.
Erosion and sediment yield from large and small watersheds exhibit different laws. Variations in surface runoff and sediment yield because of landuse change in four watersheds of different scales from 1 km2 to 73 km2 were analyzed. Due to reforestation and farmland terracing, surface runoff and sediment yield reduced by 20-100% and 10-100% respectively. Reductions in surface runoff were differed significantly under different precipitation regimes. For the large watershed (73 km2) landuse change had similar effects on surface runoff regardless of changing of precipitation. For the small watershed (1 km2) landuse change had fewer effects on surface runoff under high precipitation. The relative changes of sediment yield in the four watersheds under reforestation and farmland terracing decreased as precipitation increased from 350 mm to 650 mm, then increased as precipitation increased from 650 mm to 870 mm. Where initial forest coverage rate was below 45%, sediment yield decreased dramatically as forest coverage rate increased. Watershed management with aiming at reducing both surface runoff and sediment yield should be conducted both on sloping surfaces and in channels in large watersheds. 相似文献
6.
In this study we analyzed runoff and sediment yield from land under various traditional and current land uses in Mediterranean mountain areas, using long‐term data from an experimental station in the Aísa Valley, Central Spanish Pyrenees. Monitoring at this station has provided 20 years of data that can help explain the hydrological and geomorphological changes that have been observed at larger spatial scales, and also the changes that have occurred to some of the most characteristic landscapes of the Mediterranean middle mountains. In spite of the problems associated with the use of small experimental plots, the results obtained are consistent with other studies in the Mediterranean region, and confirm the strong influence of land use changes on runoff generation and sediment yield. The results indicate that: (i) cereal cultivation on steep slopes (both alternating cereal cultivation and fallow on sloping fields and shifting agriculture on the steepest slopes) represents a major problem for soil conservation. This explains the occurrence throughout the Mediterranean mountains of many degraded hillslopes, which show evidence of sheet wash erosion, rilling, gullying and shallow landsliding; (ii) farmland abandonment has led to a marked reduction in runoff and sediment yield as a consequence of rapid plant recolonization, particularly by dense shrubs; (iii) the natural transformation of abandoned fields into grazing meadows has reduced runoff and sediment yield. Land use trends in the Mediterranean mountains are mainly characterized by generalized farmland abandonment and a decrease in livestock pressure. From a hydrological and geomorphological point of view the main consequences have been a reduction in overland flow from the hillslopes, and a reduction in sediment sources, with differences up to one order of magnitude in sediment yield from dense shrub cover and grazing meadow areas compared with areas under shifting agriculture. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
7.
A suite of 27 short cores, 10 of which have been used for magnetic measurements and four for radiometric dating, provides a framework for reconstructing the processes, patterns and rates of sedimentation in Ponsonby Tarn, a small artificial impoundment created towards the end of the 19th century, close to the Sellafield nuclear reprocessing plant in NW England. Spatial and temporal changes in sedimentation are reconstructed and evidence presented for non-synchroneity in magnetic property changes from core to core in the upper part of the sequence, as a result of sorting and selective deposition at different distances from the inflow to the Tarn. Magnetic measurements alone are therefore not a secure basis upon which to quantify sediment yield for defined time intervals at this site. The chronology, established mainly from 210Pb and 134Cs analyses, allows estimates of mean sediment yield per annum for four periods: prior to AD 1940, 1940–1964, 1964–1986 and 1986–1991. The rates of sediment accumulation have increased in recent times, especially since 1964, with evidence for input from both magnetically enhanced soils and gleyed alluvial and/or podsolized subsoil sources. Pre-1940 mean annual deposition within the present area of the lake is calculated as 19·5 t a−1 and for the period since 1986 (the period of maximum sedimentation rates), as 111·3 t a−1. These represent yields of 7·0 t km−2 a−1 and 39·8 t km−2 a−1, respectively, for the catchment as a whole. Rock magnetic evidence, based on measurements of both bulk samples and the finest particle size separates, suggests that bacterial magnetite, formed within the lake, contributes to the magnetic properties of the sediments, thus modifying the signatures relating to allochthonous sediment input. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
8.
Jagdish Krishnaswamy Daniel D. Richter Patrick N. Halpin Michael S. Hofmockel 《水文研究》2001,15(12):2237-2257
An Erratum has been published for this article in Hydrological Processes 16(5) 2002, 1130–1131. Humid tropical regions are often characterized by extreme variability of fluvial processes. The Rio Terraba drains the largest river basin, covering 4767 km2, in Costa Rica. Mean annual rainfall is 3139±419sd mm and mean annual discharge is 2168±492sd mm (1971–88). Loss of forest cover, high rainfall erosivity and geomorphologic instability all have led to considerable degradation of soil and water resources at local to basin scales. Parametric and non‐parametric statistical methods were used to estimate sediment yields. In the Terraba basin, sediment yields per unit area increase from the headwaters to the basin mouth, and the trend is generally robust towards choice of methods (parametric and LOESS) used. This is in contrast to a general view that deposition typically exceeds sediment delivery with increase in basin size. The specific sediment yield increases from 112±11·4sd t km?2 year?1 (at 317·9 km2 on a major headwater tributary) to 404±141·7sd t km?2 year?1 (at 4766·7 km2) at the basin mouth (1971–92). The analyses of relationships between sediment yields and basin parameters for the Terraba sub‐basins and for a total of 29 basins all over Costa Rica indicate a strong land use effect related to intensive agriculture besides hydro‐climatology. The best explanation for the observed pattern in the Terraba basin is a combined spatial pattern of land use and rainfall erosivity. These were integrated in a soil erosion index that is related to the observed patterns of sediment yield. Estimated sediment delivery ratios increase with basin area. Intensive agriculture in lower‐lying alluvial fans exposed to highly erosive rainfall contributes a large part of the sediment load. The higher elevation regions, although steep in slope, largely remain under forest, pasture, or tree‐crops. High rainfall erosivity (>7400 MJ mm ha?1 h?1 year ?1) is associated with land uses that provide inadequate soil protection. It is also associated with steep, unstable slopes near the basin mouth. Improvements in land use and soil management in the lower‐lying regions exposed to highly erosive rainfall are recommended, and are especially important to basins in which sediment delivery ratio increases downstream with increasing basin area. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
9.
Dirk H. de Boer 《地球表面变化过程与地形》1997,22(7):623-639
Lake sediments provide an integrated record of the sediment yields and sources in the contributing basin. In the research area on the prairies of western Canada, the earliest sediments deposited in the larger lakes predate European settlement, allowing direct evaluation of basin response to settlement. Lake sediment cores were collected from an unnamed lake in the Stony Creek drainage basin in the aspen parkland region of eastern Saskatchewan. Pre- and post-settlement sediments in a central core were separated on the basis of an increase in Populus pollen associated with the southward advance of the aspen parkland ecotone caused by fire suppression following settlement. A wet chemical extraction procedure was used to separate the operationally defined organic fraction, the acid-soluble authigenic fraction, and biogenic silica from the clastic, non-carbonate, allogenic fraction of the lake sediment. Changes in the mineralogy and geochemistry of the clastic, allogenic fraction indicate that settlement resulted in an increased contribution of topsoil to the sediment load of Stony Creek. Elemental ratios, however, show that topsoil did contribute to the allogenic lake sediment fraction prior to settlement. Post-settlement changes in deposition rates of the allogenic fraction resulted from changes in land use rather than from climatic variability. Allogenic deposition rates reached a maximum in the 1950s and 1960s owing to an increase in the area under field crops and the increased use of high-powered agricultural machinery. Allogenic deposition rates decreased in more recent years because of a more extensive application of soil conservation measures. Post-settlement changes in deposition rates of individual elements within the allogenic fraction indicate that various sediment sources respond differently to changes in land use. Over the most recent 100 years, since the onset of European settlement, the erosional response of the basin appears to be controlled by land use changes rather than by climatic variability. © 1997 John Wiley & Sons, Ltd. 相似文献
10.
《国际泥沙研究》2016,(3):212-219
In this paper, the site-specific impact of climate change on sediment yield has been assessed for the Naran watershed, Pakistan. Observed data has been gathered for period 1961–2010 and HaDCM3 GCM predictors of SRES scenarios A2 and B2 have been downloaded. Future precipitation and temperature time series have been statistically downscaled for time horizon 2011–2040 and 2041–2070. Downscaled data show both increasing and decreasing changes with respect to the observation. Potential sediment yield for future related to climate change has been simulated. The results show that the both snowy and monsoon seasonal stream discharges are expected to increase. This will lead to increase in annual sus-pended sediment yields. Percentage-wise, a less discharge and more sediment yield are expected during the early summer. The study concluded that the climate change and variability are influencing the watershed, and suspended sediment yield is likely to increase in the future. 相似文献
11.
ABSTRACT This study investigated the impacts of changes in land cover and climate on runoff and sediment yield in a river basin in India. Land Change Modeler was used to derive the future land cover and its changes using the Sankey diagram approach. The future climatic parameters were derived from five general circulation models for two emission scenarios with representative concentration pathways (RCPs) 4.5 and 8.5. The land cover and climate change impacts on runoff and sediment yield were estimated using SWAT model. The results show important changes in land cover and indicate that urban and agricultural areas strongly influence the runoff and sediment yield. Among the land cover and climate change impacts, climate has more predominant (70%–95%) impact. Runoff and sediment yield are likely to decrease in both RCP scenarios in the future period. The impacts of land cover changes are more prominent on sediment yield than runoff. 相似文献
12.
Erik Schiefer Jason Geck Johnse S. Ostman Nicholas P. McKay Nore Praet Michael G. Loso Darrell S. Kaufman 《水文研究》2021,35(10):e14375
Suspended sediment delivery and deposition in proglacial lakes is generally sensitive to a wide range of hydrometeorologic and geomorphic controls. High discharge conditions are of particular importance in many glaciolacustrine records, with individual floods potentially recorded as distinctive turbidites. We used an extensive network of surface sediment cores and hydroclimatic monitoring data to analyse recent flood turbidites and associated sediment transfer controls over instrumental periods at Eklutna Lake, western Chugach Mountains, Alaska. Close to a decade of fluvial data from primary catchment tributaries show a dominating influence of discharge on sediment delivery, with various interconnections with other related hydroclimatic controls. Multivariate fluvial models highlight and help quantify some complexities in sediment transfer, including intra-annual variations, meteorological controls, and the influence of subcatchment glacierization. Sediments deposited in Eklutna Lake during the last half century are discontinuously varved and contain multiple distinctive turbidites. Over a 30-year period of stratigraphic calibration, we correlate the four thickest flood turbidites (1989, 1995, 2006, and 2012) to specific regional storms. The studied turbidites correlate with late-summer and early-autumn rainstorms with a magnitude of relatively instantaneous sedimentation 3–15 times greater than annual background accumulation. Our network of sediment core data captured the broad extent and sediment variability among the study turbidites and background sediment yield. Within-lake spatial modelling of deposition quantifies variable rates of downlake thinning and sediment focusing effects, and highlights especially large differences between the thickest flood turbidites and background sedimentation. This we primarily relate to strongly contrasting dispersion processes controlled by inflow current strength and turbidity. Sediment delivery is of interest for this catchment because of reservoir and water supply operations. Furthermore, although smaller floods may not be consistently represented, the lake likely contains a valuable proxy record of regional flooding proximal to major population centers of south-central Alaska including Anchorage. 相似文献
13.
Using radiometric fingerprinting and phosphorus to elucidate sediment transport dynamics in an agricultural watershed 下载免费PDF全文
The major goals of this study were to determine stream bed sediment erosion/deposition rates, sediment age, percent ‘new’ sediment, and suspended sediment origin during two storm events of contrasting magnitudes (11.9 mm over 5 h and 58.9 mm over 39 h) using fallout radionuclides (excess lead 210 – 210Pbxs and beryllium 7 – 7Be) and link the nature and type of sediment source contributions to potential phosphorus (P) off‐site transport. The study was conducted in cropland‐dominated and mixed land use subwatersheds in the non‐glaciated Pleasant Valley watershed (50 km2) in South Central Wisconsin. Fine sediment deposition and erosion rates on stream beds varied from 0.76 to 119.29 mg cm?2 day?1 (at sites near the watershed outlet) and 1.72 to 7.72 mg cm?2 day?1 (at sites in the headwaters), respectively, during the two storm events. The suspended sediment age ranged from 123 ± 12 to 234 ± 33 days during the smaller storm event; however, older sediment was more prevalent (p = 0.037) in the streams during the larger event with suspended sediment age ranging from 226 ± 9 to 322 ± 114 days. During the small and large storm event, percent new sediment in suspended sediment ranged from 5.3 ± 2.1 to 21.0 ± 2.9% and 5.3 ± 2.7 to 6.7 ± 5.7%, respectively. In the cropland‐dominated subwatershed, upland soils were the major source of suspended sediment, whereas in the mixed land use subwatershed, both uplands and stream banks had relatively similar contributions to suspended sediment. In‐stream (suspended and bed) sediment P levels ranged from 703 ± 193 to 963 ± 84 mg kg?1 during the two storm events. The P concentrations in suspended and bed sediment were reflective of the dominant sediment source (upland or stream bank or mixed). Overall, sediment transport dynamics showed significant variability between subwatersheds of different land use characteristics during two contrasting storm events. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
14.
The potential for flooding and sediment transport is greatly affected by river channel form and changes in land use. Therefore the modelling of channel morphology prior to canalization and of land‐use change is important with respect to the prediction of floods and sediment yield and their consequences. A combination of land‐use transformation maps and soil properties shows certain decision rules for the conversion of forest into arable or vice versa. The model proposed, from this study, was used to simulate possible past and/or future channel and land‐use patterns. Subsequently, the outcome of this simulation was used to assess the risk of flooding, sediment transport and soil‐erosion under different conditions. In this study, channel morphology prior to canalization and land‐use change in the Ishikari basin, Hokkaido, Japan, were analysed by comparing three scenarios using a physical based channel and slope model. The results indicate that pre‐canalization channel morphology has a significant impact on flood peak, but no significant effect on sediment yield. In contrast, land‐use change has a significant effect on soil eroded from hillslopes, but no significant effect on flooding for Ishikari basin. This study also illustrates the challenges that a simple model, such as a physical based channel and slope model, can simulate large‐scale river basin processes using fewer hydrological data resources. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
15.
The SHETRAN physically based, spatially distributed model is used to investigate the scaling relationship linking specific sediment yield to river basin area, for two contrasting topographies of upland and more homogeneous terrain and as a function of sediment source, land use and rainfall distribution. Modelling enables the effects of the controls to be examined on a systematic basis, while avoiding the difficulties associated with the use of field data (which include limited data, lack of measurements for nested basins and inability to isolate the effects of individual controls). Conventionally sediment yield is held to decrease as basin area increases, as the river network becomes more remote from the headwater sediment sources (an inverse relationship). However, recent studies have reported the opposite variation, depending on the river basin characteristics. The simulation results are consistent with these studies. If the sediment is supplied solely from hillslope erosion (no channel bank erosion) then, with uniform land use, sediment yield either decreases or is constant as area increases. The downstream decrease is accentuated if rainfall (and thence erosion) is higher in the headwaters than at lower elevations. Introducing a non‐uniform land use (e.g. forest at higher elevations, wheat at lower elevations) can reverse the trend, so that sediment yield increases downstream. If the sediment is supplied solely from bank erosion (no hillslope erosion), the sediment yield increases downstream for all conditions. The sediment yield/basin area relationship can thus be inverse or direct, depending on basin characteristics. There still remains, therefore, considerable scope for defining a universal scaling law for sediment yield. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
16.
Abstract The Chehelgazi watershed of Gheshlagh Dam in western Iran was selected to check the capability of the MUSLT (Theoretical Modified Universal Soil Loss Equation) model for estimating sediment yield during storms. The efficiency of MUSLT for sediment yield prediction was assessed using observed sediment data recorded for 11 storm events between October 2006 and April 2007. The results showed that MUSLT overestimated sediment yield with a high coefficient of determination (R2 = 0.636 and p < 0.05), and it was then calibrated by examining regression models. The developed calibrated model (C-MUSLT) performed well, with a coefficient of determination of 0.739 (p < 0.05) and relative estimation and verification errors of 49.36 and 25.18%, respectively. The results of comparison between observed and estimated values, obtained by applying the calibrated model, confirmed that the difference was significant with a t value of 1.453 (p?=?0.05). Citation Sadeghi, S.H.R., Gholami, L., and Khaledi Darvishan, A.V., 2013. Suitability of MUSLT for storm sediment yield prediction in Chehelgazi watershed, Iran. Hydrological Sciences Journal, 58 (4), 892–897. 相似文献
17.
Abstract Using daily suspended sediment and water discharge data, we calculated the current mean annual runoff and Specific Suspended Sediment Yield (SSY) for 66 mountainous and piedmont catchments in Chile. These catchments are located from the extreme north of Chile to Southern Patagonia and cover an exceptionally wide range of climates, slopes, and vegetation. The SSY ranges mainly between 0 and 700 t km-2 year-1 with some exceptions as high as 1780 t km-2 year-1. The SSY increases between the extreme north and 33°S and then decreases toward the south. Sediment and water discharge north of 33°S occur mainly during summer. Farther south the contribution of winter precipitation increases and predominates. When the SSY database is correlated with topographic, climatic and vegetation indices, it is found to correlate significantly with runoff and mean slope only. In order to concentrate on erosion processes in the mountain range, 32 mountainous catchments were selected along a strong north–south SSY gradient between 27°S and 40°S. From north to south, SSY increases strongly with runoff and then decreases, even while runoff keeps increasing. In catchments where SSY is low, although runoff is high, the mean slope is less than 40% and the vegetation cover is greater than 8%. For the other catchments, runoff variations explain 67% of the variance in sediment yields. Thus, SSY seems to be controlled by vegetation cover and slope thresholds. In addition, SSY also correlates with glacier cover. However, a correlation between SSY and seismicity, although possible, is ambiguous. Citation Pepin, E., Carretier, S., Guyot, J. L. & Escobar, F. (2010) Specific suspended sediment yields of the Andean rivers of Chile and their relationship to climate, slope and vegetation. Hydrol. Sci. J. 55(7), 1190–1205. 相似文献
18.
《水文科学杂志》2013,58(5):1068-1075
Abstract The present study aims to estimate the sediment yield due to storm rainfall and runoff at the outlet of the Khanmirza watershed (395 km2) located in western Iran. The estimation was made for six storm events using the Modified Universal Soil Loss Equation (MUSLE). All the inputs required for the application of the model were determined through runoff and sediment concentration monitoring at the time of storm events, and field surveys in the study area. The applicability of the model to the study area was then evaluated by comparison of its estimates with those calculated using the measured sediment data. The results of the study demonstrated the efficiency of the MUSLE in estimating storm-associated sediment yield except one storm event in the study area with a high level of agreement and non-significant differences between mean estimated and measured values in the study storm events. 相似文献
19.
V. O. Polyakov M. A. Nearing A. A. Hawdon S. N. Wilkinson M. H. Nichols 《地球表面变化过程与地形》2013,38(4):383-390
Our ability to understand erosion processes in semi‐arid ecosystems depends on establishing relationships between rainfall and runoff. This requires collection of extensive and accurate hydrologic and sediment data sets. A supercritical flume with a total load traversing slot sediment sampler used on several sites at the Walnut Gulch Experimental Watershed (WGEW) near Tombstone, AZ has proven to be a reliable way to measure flow and sediment discharge from small watersheds. However, it requires installation of a costly structure that is only suitable for relatively small flows. A more commonly used method based on ease of installation and expense is the pump sampler. One example of this is a set of instrumentation developed by the Australian Commonwealth Scientific and Industrial Research Organization (CSIRO), in which the pump sediment sampler is part of an in‐channel, fully automated system for measuring water velocity, depth, turbidity and collecting runoff samples. A 3.7 ha arid watershed at WGEW was instrumented with both systems and hydrologic and sediment data were collected and compared during a 2 year period. Total sediment yield for the entire period measured by the CSIRO pump sampler (11.6 t ha‐1) was similar to that by traversing slot sampler (11.5 t ha‐1). The pump sampler accurately estimated the amount of fine (< 0.5 mm) sediment fractions exported, but consistently underestimated the coarse (>0.5 mm) sediment fractions. Median sediment diameter of samples collected by traversing slot and pump sampler were 0.32 and 0.22 mm, respectively. This study outlines the benefits and limitations of the pump sampler based system for monitoring sediment concentration and yield in high‐energy headwater catchments, and makes recommendations for improvement of its performance. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
20.
The Hydrologic Simulation Programme‐Fortran (HSPF), a hydrologic and water quality computer model, was employed for simulating runoff and sediment yield during the monsoon months (June–October) from a small watershed situated in a sub‐humid subtropical region of India. The model was calibrated using measured runoff and sediment yield data for the monsoon months of 1996 and was validated for the monsoon months of 2000 and 2001. During the calibration period, daily‐calibrated runoff had a Nash‐Sutcliffe efficiency (ENS) value of 0·68 and during the validation period it ranged from 0·44 to 0·67. For daily sediment yield ENS was 0·71 for the calibration period and it ranged from 0·68 to 0·90 for the validation period. Sensitivity analysis was performed to assess the impact of important watershed characteristics. The model parameters obtained in this study could serve as reference values for model application in similar climatic regions, with practical implications in watershed planning and management and designing best management practices. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献