共查询到12条相似文献,搜索用时 15 毫秒
1.
Izuru Takewaki 《地震工程与结构动力学》2001,30(9):1345-1360
Earthquake ground motions and their effects on structural responses are very uncertain even with the present knowledge. It is therefore desirable to develop a robust structural design method taking into account these uncertainties. Critical excitation approaches are promising and a new random critical excitation method is proposed for MDOF elastic–plastic shear‐building structures on compliant ground. The power (area of power spectral density (PSD) function) and the intensity (magnitude of PSD function) are fixed and the critical excitation is found under these restrictions. In contrast to linear elastic structures, transfer functions and simple expressions for response evaluation cannot be defined in elastic–plastic structures and difficulties arise in describing the peak responses except by laborious elastic–plastic time‐history response analysis. Statistical equivalent linearization is used to estimate the elastic–plastic stochastic peak responses approximately. The critical excitation responses are obtained for several examples and compared with those of the corresponding recorded earthquake ground motion. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
2.
Effects of structural walls on the elastic–plastic earthquake response of short- to medium-height reinforced concrete buildings were investigated. The analytical model consists of independent lumped mass systems representing walls and frames connected at each floor. The wall structure undergoes flexural as well as shear deformation and fails in shear at relatively small story drifts, the frames deforming only in shear. As a measure of structural damage, the ductility factor responses of frame structures were calculated for different combinations of base shear coefficients for the frames and walls. In buildings with relatively weak frames, the installation of structural walls did not improve the large plastic response of the frames up to the point where the walls were unfailed in shear and the ductility factors of the frame structure were suddenly reduced to a very small number. For relatively strong frames, however, the response displacements decreased gradually as the number of walls increased, whether or not the walls failed. Empirical formulas for the required base shear coefficients of the walls and frames which gave a target ductility factor response also were derived for two particular groups of accelerograms. These equations should be of practical use in designing frame-wall type buildings and in retrofitting damaged buildings. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
3.
This paper presents a numerical analysis of large displacement responses of elastic–plastic plane frames under static and dynamic loads, by applying the vector‐form intrinsic finite element (VFIFE or V‐5) method. The VFIFE method defines the structure into a number of mass points, and applies Newton's second law and the internal force equilibrium to describe the motions of each mass point. By tracing the motions of all the mass points, it can analyze the large geometrical and material nonlinear changes during the motion of the structure without using the geometrical stiffness matrix and iterative procedures. Three different numerical examples are presented to demonstrate both the capability and the accuracy of the VFIFE method in a nonlinear dynamic analysis of frame structures with extremely large displacement. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
4.
A fully coupled finite element code based on mixture theory is developed. Prévost's multi-surface constitutive model is tailored to three-dimensional loads and used to predict effective stresses. A new viscous boundary is implemented to avoid wave reflections towards the structure. In contrast to traditional methods, this boundary is able to absorb the two dilatational waves and the shear wave.Two soil deposits and two dams, with different slopes, composed by loose and dense sands have been subjected to the Pacoima accelerogram. Results show how the liquefaction propagates in the soil deposits and earth dams. The importance of the coupling between dilatancy–contractancy and filtration is highlighted by a parametric investigation. Phenomena such as liquefaction and cyclic mobility are reproduced, indicating the robustness of the constitutive model and finite element simulations. As an outcome of the parametric analysis, the seismic stability of dams cannot be improved by decreasing the upstream or downstream slopes. 相似文献
5.
Several seismic design codes around the world restrict the use of theit Equivalent Lateral Force analysis method to structures satisfying structural regularity limits. These regularity limits are based on engineering judgement and lack quantitative justification. One common irregularity is that of a change in vertical stiffness over the building height. This stiffness irregularity is almost always associated with a change in vertical strength over the building height. For this reason, the effect of various realistic combinations of stiffness–strength irregularity in shear‐type buildings is evaluated to quantify regularity limits. Structures analysed had 3, 5, 9 and 15 storeys, and the floor mass at all the levels were kept the same. Both regular and irregular structures were designed in accordance with the Equivalent Lateral Force procedure to produce the same engineering demand parameter. Structural ductility factors of 1, 2, 3, 4 and 6, and target (design) interstorey drift ratios ranging between 0.5 and 3%, were used in this study. The irregular structures were created by modifying specific storey lateral stiffnesses from that of the regular structure. Strengths at these storeys were also modified to ensure realistic relationships between stiffness and strength. The modified structures were then redesigned until the target interstorey drift ratio was achieved at the critical storey. Inelastic dynamic time‐history analysis was conducted to compare the maximum interstorey drift ratio demands of the regular and irregular structures. Simple equations were developed to estimate possible variations in demand due to vertical stiffness–strength irregularity applied at critical locations in structures. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
6.
Response prediction,experimental characterization and P‐spectra design of frames with viscoelastic–plastic dampers 下载免费PDF全文
Viscoelastic–plastic (VEP) dampers are hybrid passive damping devices that combine the advantages of viscoelastic and hysteretic damping. This paper first formulates a semi‐analytical procedure for predicting the peak response of nonlinear SDOF systems equipped with VEP dampers, which forms the basis for the generation of Performance Spectra that can then be used for direct performance assessment and optimization of VEP damped structures. This procedure is first verified against extensive nonlinear time‐history analyses based on a Kelvin viscoelastic model of the dampers, and then against a more advanced evolutionary model that is calibrated to characterization tests of VEP damper specimens built from commercially available viscoelastic damping devices, and an adjustable friction device. The results show that the proposed procedure is sufficiently accurate for predicting the response of VEP systems without iterative dynamic analysis for preliminary design purposes. A design method based on the Performance Spectra framework is then proposed for systems equipped with passive VEP dampers and is applied to enhance the seismic response of a six‐storey steel moment frame. The numerical simulation results on the damped structure confirm the use of the Performance Spectra as a convenient and accurate platform for the optimization of VEP systems, particularly during the initial design stage. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
7.
Past earthquake experiences indicate that most buildings designed in accordance with modern seismic design codes could survive moderate‐to‐strong earthquakes; however, the financial loss due to repairing cost and the subsequent business interruption can be unacceptable. Designing building structures to meet desired performance targets has become a clear direction in future seismic design practice. As a matter of fact, the performance of buildings is affected by structural as well as non‐structural components, and involves numerous uncertainties. Therefore, appropriate probabilistic approach taking into account structural and non‐structural damages is required. This paper presents a fuzzy–random model for the performance reliability analysis of RC framed structures considering both structural and non‐structural damages. The limit state for each performance level is defined as an interval of inter‐storey drift ratios concerning, respectively, the non‐structural and structural damage with a membership function, while the relative importance of the two aspects is reflected through the use of an appropriate cost function. To illustrate the methodology, herein the non‐structural damage is represented by infill masonry walls. The probabilistic drift limits for RC components and masonry walls from the associated studies are employed to facilitate the demonstration of the proposed model in an example case study. The results are compared with those obtained using classical reliability model based on single‐threshold performance definition. The proposed model provides a good basis for incorporating different aspects into the performance assessment of a building system. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
8.
A method for U–Pb isotopic dating using secondary ion mass spectrometer (SIMS) was developed for uraninite. Correlation between 251(UO)+/235U+ and 206Pb+/235U+ obtained by a sensitive high‐resolution ion microprobe (SHRIMP) was adopted for a calibration from secondary ion ratios (Pb+/U+) to the atomic abundance ratios (Pb/U). In this study, a uraninite sample (206Pb/238U = 0.1647) collected from Faraday mine, Bancroft, Canada, is used as a reference material for the U–Pb calibration. The established method was applied to three uraninite samples collected from the Chardon, Ecarpière, and Mistamisk mines. The calibrated 206Pb*/238U ratios of the three uraninites show correlation with Pb/U elemental ratios obtained using an electron probe microanalyzer (EPMA) (correlation coefficients: 0.98, 0.99, and 0.97, respectively), which indicates the reliability of the SHRIMP calibration method used in this study. The analysis of Ecarpière uraninite provides concordant U–Pb data, and a weighted average of the 206Pb*/238U age is 287 Ma ±8 Ma (95 % conf.) which is consistent with the previous chronological results by SIMS. Mistamisk uraninite provides discordant U–Pb data with the upper and lower intercept ages of 1 729 and 421 Ma, which correspond to uraninite formation in association with the Hudsonian orogeny and the remobilization of uranium as pitchblende, respectively. The U–Pb age of Chardon uraninite (315 Ma) is consistent with the igneous activity of Mortagne granite, but is older than the previously reported age (264 Ma). Marcasite in the Chardon uraninite altered to goethite under the oxidizing condition, which indicates that U–Pb system in the uraninite crystallized at 315 Ma was disturbed under the oxidizing condition. The established calibration method using Faraday uraninite is useful for U–Pb isotopic dating on the scale of a few micrometers to tens of micrometers, which make it possible to obtain the accurate age of uraninite. 相似文献
9.
Physical modelling experiments have been carried out in a cold room to test on a small scale, the effects of water supply during the thaw of an experimental slope with permafrost. Permafrost was maintained at depth and a thin active layer was frozen and thawed from the surface. Data from the experiments relate to two different conditions, first with moderate rainfall, and second with heavy rainfall during the thaw period. When moderate rainfall is applied during thaw phases, the experimental slope is slightly degraded. At the scale of the experiment, erosion processes involve frost jacking of the coarse blocks, frost creep and gelifluction that induce slow and gradual down slope displacements of the active layer, but also small landslides leading to large but slow mass movements with short displacements. Changes in experimental slope morphology are marked by the initiation of a small‐scale drainage network and the development of a little crest line which shows a progressive upslope migration. With such boundary conditions, there is not enough water supply to evacuate downslope the whole of the eroded material and a topographic smoothing is observed. When heavy rainfall is applied during thaw periods, rapid mass wasting (small mud‐flows and debris flows) become prominent. Slope failures are largely controlled by the water saturation of the active layer and by the occurrence of steeper slopes. At the scale of the experiment, rates of erosion and maximum incision increase by about 100% leading to significant slope degradation with marked and specific scars comparable to gullying. These morphological changes are dependant on both the size and the frequency of catastrophic events. These experiments provide detailed data that could improve the knowledge of the physical parameters that control the initiation, at a small‐scale, of erosion processes on periglacial slopes with a thin active layer and/or with thin cover of mobilizable slope deposits. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
10.
Assessing the spatial and temporal variation of the rainwater harvesting potential (1971–2010) on the Chinese Loess Plateau using the VIC model 下载免费PDF全文
Rainwater harvesting could increase the resilience of ecosystems on the Loess Plateau and thus ensure the sustainability of livelihoods that depend on them. As such, it is a key component of strategies for adapting to global climate change. In this study, we used a new method to quantify the rainwater harvesting potential (RWHP) across the whole Loess Plateau and to characterize its spatial and temporal variation over the last four decades on the basis of the variable infiltration capacity model. It was found that that the mean RWHP of the study region was 731.10 × 108 m3, and the average water layer thickness was 114.34 mm. There is considerable scope for rainwater harvesting across the Loess Plateau as a whole, to the extent that it could potentially provide enough water to implement the ‘Grain for Green’ Project. The annual average RWHP decreased slightly from 1971 to 2010, and Hurst exponent analysis indicated that this trend will exhibit long‐term persistence. The annual RWHP was highest in the southeast of the Loess Plateau and lowest in the northwest. Areas with high RWHP values tended to be clustered around the middle reach of the Yellow River. For most areas, there was no significant change between 1971 and 2010. Those areas for which there was a significant decrease in RWHP were primarily located around the upper–middle reaches of the Weihe River, the upper reach of Jinghe River, the eastern Guanzhong Plain, the Qinhe River watershed and the area around Dongsheng. Quantitative assessments of RWHP are likely to be useful for guiding the development and use of innovative rainwater harvesting technologies around the world and could help to relieve the problems caused by water shortages on the Loess Plateau while simultaneously eliminate the major cause of soil erosion. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
11.
Optimum design and application of non‐traditional tuned mass damper toward seismic response control with experimental test verification 下载免费PDF全文
A variant type of tuned mass damper (TMD) termed as ‘non‐traditional TMD (NTTMD)’ is recently proposed. Mainly focusing on the employment of TMD for seismic response control, especially for base‐isolated or high‐rise structures, this paper aims to derive design formulae of NTTMDs based on two methodologies with different targets. One is the fixed points theory with the performance index set as the maximum magnitude of the frequency response function of the relative displacement of the primary structure with respect to the ground acceleration, and the other is the stability maximization criterion (SMC) to make the free vibration of the primary structure decay in the minimum duration. Such optimally designed NTTMDs are compared with traditional TMDs by conducting both numerical simulations and experiments. The optimum‐designed NTTMDs are demonstrated to be more effective than the optimum‐designed traditional TMDs, with smaller stroke length required. In particular, the effectiveness of the TMDs combined with a base‐isolated structure is investigated by small‐scale model experimental tests subjected to a time scaled long period impulsive excitation, and it is demonstrated that the SMC‐based NTTMD can suppress structural free vibration responses in the minimum duration and requires much smaller accommodation space. Additionally, a small‐scale shaking table experiment on a high‐rise bending model attached with a SMC‐based NTTMD is conducted. This study indicates that NTTMD has a high potential to apply to seismic response control or retrofit of structures such as base‐isolated or central column‐integrated high‐rise structures even if only a limited space is available for accommodating TMDs. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献