共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
近年来红树林群落中物种结构简单、功能退化等环境问题日趋严重,为了及时准确掌握红树林群落的物种空间格局与分布,本文首先基于深圳福田红树林自然保护区无人机高光谱影像,利用归一化差值植被指数和归一化潮间红树林指数提取植被区域;然后在植被区域根据最佳指数法选取信息量大、波段相关性小的波段组合,分别采用基于像素支持向量机分类方法和面向对象影像分类方法对红树林物种进行分类。试验结果表明,基于像素支持向量机分类方法的总体精度为81.03%;利用面向对象影像分类方法的总体精度为85.58%。面向对象影像分类方法能有效去除椒盐噪声,充分利用对象光谱、形状及纹理信息,提供更准确的红树林分布信息。 相似文献
4.
针对高光谱影像非线性分类问题,根据高光谱影像光谱分辨率高且光谱具有非线性的特点,结合深度学习理论,提出了一种采用降噪自动编码器(DAE)的高光谱影像分类方法。该方法结合降噪自动编码器与SOFTMAX分类器,构造深层网络分类模型;然后,利用加噪后的光谱数据,采用Dropout方法对分类模型进行预训练和微调;最后,利用训练得到的网络模型学习高光谱影像光谱的隐含特征,实现高光谱影像的分类。采用该方法对AVIRIS和PHI的高光谱影像分别进行分类对比实验,结果表明该方法能有效提高高光谱影像分类精度。 相似文献
5.
中国蔬菜产业规模大、产值高,是促进农民增收和农村农业经济发展的支柱产业。快速准确地获取区域尺度蔬菜种植结构信息对于农业现代化、自动化和精细化等具有重要意义。无人机高光谱遥感技术具有快速机动灵活和“图谱合一”的优势,在作物精细分类中具有广泛应用前景。然而蔬菜作物种植规模差异大、农业景观破碎度高,同时还受地膜、大棚和防鸟网覆盖等影响,无人机高光谱图像易产生严重的混合光谱效应,给蔬菜作物精细分类带来了极大的挑战。针对此问题,本研究以湖南省农科院高桥科研基地蔬菜种植区为例,获取无人机高光谱图像,探索采用支持向量机和深度学习方法对不同蔬菜作物进行精细分类。研究结果表明:基于无人机高光谱遥感数据,可以实现不同覆盖背景下的蔬菜作物精细分类;两大分类方法的平均总体精度分别为78.03%和90.75%,平均Kappa系数分别为0.7359和0.8887,相较于支持向量机方法,基于深度学习的分类方法获得的精细分类效果更加理想,三维卷积神经网络和引入注意力机制的卷积神经网络可以有效提取图像中的光谱—空间特征信息,在蔬菜作物精细分类中体现出更好的分类效果;蔬菜作物在大尺度地块上空间纹理特征明显,而在小地块尺度... 相似文献
6.
高光谱影像特征的利用率对提高其分类精度具有重要意义。为充分利用影像的特征,提出了一种特征重标定网络的高光谱影像分类方法。该方法通过全局平均池化将特征图转换为具有全局信息的实数,利用全连接层与非线性层生成能够代表各通道相对重要性的权值,进而采取加权法完成初始特征的重标定。为验证该方法的有效性,选取PaviaU和KSC两组高光谱影像数据进行实验。结果表明,提出方法总体分类精度分别达到98.38%和95.61%,可为高光谱影像提供有效的类别判定特征,有助于提高影像分类精度并获取平滑的分类结果图。 相似文献
7.
8.
高光谱影像分类EM算法的完善 总被引:2,自引:0,他引:2
在高光谱影像分类过程中,往往无法获取足够数量的训练样本,使得类别分布参数估值精度降低,并最终影响分类结果.EM方法为该类问题的解决提供了途径,但由于地面信息的复杂性及算法自身的原因,将其应用于高光谱影像的分类仍有许多待完善之处.文中叙述了该算法的完善策略,包括借助低通滤波器获得各参数更为合理的初值,以及如何克服噪声对该算法的影响.实验表明,经过完善的EM方法具有很强的适用性,可以获得精度更高的分类结果. 相似文献
9.
10.
随着高光谱遥感技术的迅猛发展和应用需求的不断增加,高光谱遥感影像分类成为领域的研究热点。尽管监督学习已在高光谱遥感影像分类中取得了不错的效果,但在许多情况下,获取大规模标记样本来训练监督分类算法是困难和昂贵的。因此,利用半监督分类技术对高光谱遥感影像精准分类是一项重要的研究内容。本文首先简要介绍了高光谱遥感影像发展现状和部分应用场景。其次,本文对近年来高光谱遥感影像半监督分类研究的进展进行了综述,着重讨论了低密度分割法、生成式模型、基于分歧(差异)的方法和基于图的方法四种典型半监督分类方法的关键技术和优劣。最后,进一步讨论了半监督分类技术的潜力,为今后研究工作的优化提供思路。 相似文献
11.
提出了一种面向应用的高光谱影像分类方法,旨在从根本上、全方位地削弱各种不利因素对该类影像分类精度的影响.主要包括利用IEM算法获取更为精确的类别分布信息,采用Tabu搜索算法进行原始特征空间的降维,运用基于混合规则的组合分类器来判断待识样本的类别标签.实验表明,按照该方法进行高光谱影像的分类处理,可以得到很高精度的分类结果. 相似文献
12.
13.
14.
15.
针对高光谱遥感影像分类中空间特征和光谱特征利用率低问题,该文综合三维卷积神经网络、谷歌神经网络和残差神经网络的优势,提出融合改进Inception模块的残差三维卷积神经网络高光谱遥感影像分类方法。改进后的Inception模块包括4条不同的卷积层分支,用以提取蕴涵在高光谱遥感影像中多尺度的特征;利用了3D卷积核代替2D卷积核能直接同时提取高光谱遥感影像中更丰富的空-谱特征;通过残差结构连接分支提取特征缓解了梯度消失的问题,提取更深层次的特征。实验表明,该文算法不仅提高了条状和线状地物区域的边缘分类准确率,对小目标的分类能力也得到了增强。 相似文献
16.
17.
监督分类方法是海冰遥感监测中常用的有效方法,但不同的监督分类方法以及波段选择,在海冰识别中的精度有较大差异.为提高海冰监测的精度,本文使用高光谱传感器提供的可见光、近红外波段的连续成像光谱信息,对比了不同的波段组合在多种分类方法中海冰提取的精度,分析了不同波段组合、不同分类方法在海冰监测上的优缺点,最终得出海冰监测中最佳的波段组合以及最适宜的监督分类方法. 相似文献
19.
基于小波分量特征值匹配的高光谱影像分类 总被引:1,自引:0,他引:1
提出了一种基于小波分量特征值的高光谱影像分类算法。针对每个像素构建一个能反映该分量特征的函数,得到其特征值。再利用这些特征值与参考光谱的特征值进行匹配,从而对整幅影像实现分类。实验证明,该方法比传统的光谱角制图法和交叉相关系数法的分类精度有较大提高。 相似文献
20.
光谱特征匹配分类是常用的高光谱影像分类、识别地物的方法,针对高光谱影像提取植被盖度存在的问题,文章根据高光谱遥感影像处理的方法,采用EO-1卫星在广州市过境的Hyperion高光谱影像,以"广州南肺"万亩果园作为试验区,经过大气纠正——最小噪声分离变换(MNF)——最纯净像元指数计算(PPI)——提取植被的端元,以此作为研究区识别植被的参考样本,进行光谱特征匹配提取植被盖度。其中提出利用连续小波变换对参考端元的波谱曲线降噪的方法,旨在优化光谱特征匹配,以提高识别植被的精度。实验结果表明,这种辅助匹配的方法能有效提高识别植被的精度。 相似文献