首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Large-scale polarization of the cosmic microwave background measured by the WMAP satellite requires a mean optical depth to Thomson scattering,  τe∼ 0.17  . The reionization of the Universe must therefore have begun at relatively high redshift. We have studied the reionization process using supercomputer simulations of a large and representative region of a universe which has cosmological parameters consistent with the WMAP results (  Ωm= 0.3, ΩΛ= 0.7, h = 0.7, Ωb= 0.04, n = 1  and  σ8= 0.9  ). Our simulations follow both the radiative transfer of ionizing photons and the formation and evolution of the galaxy population which produces them. A previously published model with ionizing photon production as expected for zero-metallicity stars distributed according to a standard stellar initial mass function (IMF) (1061 photons per unit solar mass of formed stars) and with a moderate photon escape fraction from galaxies (5 per cent), produces  τe= 0.104  , which is within 1.0 to  1.5σ  of the 'best' WMAP value. Values of up to 0.16 can be produced by taking larger escape fractions or a top-heavy IMF. The data do not require a separate populations of 'miniquasars' or of stars forming in objects with total masses below  109 M  . Reconciling such early reionization with the observed Gunn–Peterson troughs in   z > 6  quasars may be challenging. Possible resolutions of this problem are discussed.  相似文献   

2.
We study the evolution of ionization fronts around the first protogalaxies by using high-resolution numerical cosmological (Λ+ cold dark matter, CDM, model) simulations and Monte Carlo radiative transfer methods. We present the numerical scheme in detail and show the results of test runs from which we conclude that the scheme is both fast and accurate. As an example of interesting cosmological application, we study the reionization produced by a stellar source of total mass M =2×108 M turning on at z ≈12, located at a node of the cosmic web. The study includes a spectral energy distribution of a zero-metallicity stellar population, and two initial mass functions (IMFs; Salpeter/Larson). The expansion of the ionization front (I-front) is followed as it breaks out from the galaxy and is channelled by the filaments into the voids, assuming (in a 2D representation) a characteristic butterfly shape. The ionization evolution is very well tracked by our scheme, as realized by the correct treatment of the channelling and shadowing effects resulting from overdensities. We confirm previous claims that both the shape of the IMF and the ionizing power metallicity dependence are important to correctly determine the reionization of the Universe.  相似文献   

3.
We use nearby K dwarf stars to measure the helium-to-metal enrichment ratio  Δ Y /Δ Z   , a diagnostic of the chemical history of the solar neighbourhood. Our sample of K dwarfs has homogeneously determined effective temperatures, bolometric luminosities and metallicities, allowing us to fit each star to the appropriate stellar isochrone and determine its helium content indirectly. We use a newly computed set of Padova isochrones which cover a wide range of helium and metal content.
Our theoretical isochrones have been checked against a congruous set of main-sequence binaries with accurately measured masses, to discuss and validate their range of applicability. We find that the stellar masses deduced from the isochrones are usually in excellent agreement with empirical measurements. Good agreement is also found with empirical mass-luminosity relations.
Despite fitting the masses of the stars very well, we find that anomalously low helium content (lower than primordial helium) is required to fit the luminosities and temperatures of the metal-poor K dwarfs, while more conventional values of the helium content are derived for the stars around solar metallicity.
We have investigated the effect of diffusion in stellar models and the assumption of local thermodynamic equilibrium (LTE) in deriving metallicities. Neither of these is able to resolve the low-helium problem alone and only marginally if the cumulated effects are included, unless we assume a mixing-length which is strongly decreasing with metallicity. Further work in stellar models is urgently needed.
The helium-to-metal enrichment ratio is found to be  Δ Y /Δ Z = 2.1 ± 0.9  around and above solar metallicity, consistent with previous studies, whereas open problems still remain at the lowest metallicities. Finally, we determine the helium content for a set of planetary host stars.  相似文献   

4.
We present new evolutionary synthesis models for simple stellar populations for a wide range of ages and metallicities. The models are based on the Padova isochrones. The core of the spectral library is provided by the medium resolution Lejeune et al. atmosphere models. These spectra are complemented by Non Local Thermodynamic Equilibrium (NLTE) atmosphere models for hot stars that have an important impact on the stellar cluster's ionizing spectra: O, B and WR stellar spectra at the early ages, and spectra of post asymptotic giant branch stars and planetary nebulae, at intermediate and old ages. At young ages, our models compare well with other existing models, but we find that the inclusion of the nebular continuum, not considered in several other models, significantly reddens the integrated colours of very young stellar populations. This is consistent with the results of spectral synthesis codes particularly devised for the study of starburst galaxies. At intermediate and old ages, the agreement with the literature model is good and, in particular, we reproduce the observed colours of star clusters in Large Magellanic Cloud well. Given the ability to produce good integrated spectra from the far-ultraviolet to the infrared at any age, we consider that our models are particularly suited for the study of high-redshift galaxies. These models are available on the web site http://www.fractal-es.com/SEDmod.htm and also through the Virtual Observatory Tools on the PopStar server.  相似文献   

5.
We study the inhomogeneous reionization in a critical density CDM universe resulting from stellar sources, including Population III objects. The spatial distribution of the sources is obtained from high-resolution numerical N -body simulations. We calculate the source properties, taking into account a self-consistent treatment of both radiative (i.e. ionizing and H2-photodissociating photons) and stellar (i.e. SN explosions) feedbacks regulated by massive stars. This allows us to describe the topology of the ionized and dissociated regions at various cosmic epochs, and to derive the evolution of H, He and H2 filling factors, soft UV background, cosmic star formation rate and the final fate of ionizing objects. The main results are: (i) galaxies reionize the intergalactic medium by z ≈10 (with some uncertainty related to the gas clumping factor), whereas H2 is completely dissociated already by z ≈25; (ii) reionization is mostly caused by the relatively massive objects which collapse via H line cooling, while objects the formation of which relies on H2 cooling alone are insufficient for this purpose; (iii) the diffuse soft UV background is the major source of radiative feedback effects for z ≤15; at higher z direct flux from neighbouring objects dominates; (iv) the match of the calculated cosmic star formation history with that observed at lower redshifts suggests that the conversion efficiency of baryons into stars is ≈1 per cent; (v) we find that a very large population of dark objects which failed to form stars is present by z ≈8. We discuss and compare our results with similar previous studies.  相似文献   

6.
We construct star formation histories at redshifts z ≳ 5 for two physically distinct populations of primordial, metal-free stars, motivated by theoretical and observational arguments that have hinted towards the existence of an intermediate stellar generation between Population III and Population I/II. Taking into account the cosmological parameters as recently revised by the Wilkinson Microwave Anisotropy Probe after three years of operation, we determine self-consistent reionization histories and discuss the resulting chemical enrichment from these early stellar generations. We find that the bulk of ionizing photons and heavy elements produced at high redshifts must have originated in Population II.5 stars, which formed out of primordial gas in haloes with virial temperatures ≳104 K, and had typical masses ≳10 M. Classical Population III stars, formed in minihaloes and having masses ≳100 M, on the other hand, had only a minor impact on reionization and early metal enrichment. Specifically, we conclude that only ≃10 per cent by mass of metal-free star formation went into Population III.  相似文献   

7.
In this talk I will present a model for primordial galaxy formation. In particular, I will review the feedback effects that regulate the process: (i) radiative (i.e. ionizing and H2-photodissociating photons) and (ii) stellar (i.e. SN explosions) feedback produced by massive stars. I will also address how the IGM reionization can be influenced by this population of primordial galaxies and describe a Monte Carlo method for the radiative transfer of ionizing photons through the IGM. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

8.
The history of the cosmological reionization is still unclear. Two ionizing sources, stars and QSOs, are believed to play important roles during this epoch. Besides the 21 cm signals, the infrared emission from Pop Ⅲ stars and X-ray photons from QSOs can be powerful probes of the reionization. Here we present a cross-correlation study of the 21 cm, infrared and X-ray backgrounds. The advantage of doing such cross-correlations is that we could highlight the correlated signals and eliminate irrelevant fore-grounds. We develop a shell model to describe the 21 cm signals and find that PopⅢ stars can provide higher 21 cm signals than QSOs. Using the ROSAT data for X-ray and AKARI data for infrared, we predict various cross power spectra analytically and dis-cuss prospects for detecting these cross-correlation signals in future low frequency radio surveys. We find that, although these cross-correlational signals have distinct features, so far, they have been difficult to detect due to the high noise of the soft X-ray and infrared backgrounds given by ROSAT and AKARI.  相似文献   

9.
Formation paradigms for massive galaxies have long centered around two antipodal hypotheses – the monolithic-collapse and the accretion/merger scenarios. Empirical data on the stellar contents of galaxy halos is crucial in order to develop galaxy formation and assembly scenarios which have their root in observations, rather than in numerical simulations. The Hubble Space Telescope (HST) has enabled us to study directly individual stars in the nearby E/S0 galaxies Cen A, NGC 3115, NGC 5102, and NGC 404. We here present and discuss HST single-star photometry in V and I bands. Using color-magnitude diagrams and stellar luminosity functions, we gauge the galaxies' stellar contents. This can be done at more than one position in the halo, but data with deeper limiting magnitudes are desired to quantify the variation of metallicity with galactocentric radius. We here compare the color distributions of red giant stars with stellar isochrones, and we intercompare the galaxies' halo populations, noting that their total absolute V magnitudes cover the range from about –21.5 to –17.5. In the future, we plan to model the stellar metallicity distributions with the aim to constrain chemical enrichment scenarios, a step towards unravelling the evolutionary history of elliptical and lenticular galaxies. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
We use the Cambridge stellar evolution code stars to model the evolution of 5 and  7 M  zero-metallicity stars. With enhanced resolution at the hydrogen- and helium-burning shell in the asymptotic giant branch (AGB) phases, we are able to model the entire thermally pulsing AGB (TP-AGB) phase. The helium luminosities of the thermal pulses are significantly lower than in higher metallicity stars so there is no third dredge-up. The envelope is enriched in nitrogen by hot-bottom burning of carbon that was previously mixed in during second dredge-up. There is no s -process enrichment owing to the lack of third dredge-up. The thermal pulses grow weaker as the core mass increases and they eventually cease. From then on the star enters a quiescent burning phase which lasts until carbon ignites at the centre of the star when the CO core mass is  1.36 M  . With such a high degeneracy and a core mass so close to the Chandrasekhar mass, we expect these stars to explode as type 1.5 supernovae, very similar to type Ia supernovae but inside a hydrogen-rich envelope.  相似文献   

11.
We present the single stellar population (SSP) synthesis results of our new synthetic stellar atmosphere models library with a spectral sampling of 0.3 Å, covering the wavelength range from 3000 to 7000 Å for a wide range of metallicities (twice solar, solar, half solar and 1/10 solar). The stellar library is composed of 1650 spectra computed with the latest improvements in stellar atmospheres. In particular, it incorporates non-local thermodynamic equilibrium (LTE) line-blanketed models for hot  ( T eff≥ 27 500 K)  , and LTE line-blanketed models (Phoenix) for cool  (3000 ≤ T eff≤ 4500 K)  stars. Because of the high spectral resolution of this library, evolutionary synthesis models can be used to predict the strength of numerous weak absorption lines and the evolution of the profiles of the strongest lines over a wide range of ages. The SSP results have been calculated for ages from 1 Myr to 17 Gyr using the stellar evolutionary tracks provided by the Geneva and Padova groups. For young stellar populations, our results have a very detailed coverage of high-temperature stars with similar results for the Padova and Geneva isochrones. For intermediate and old stellar populations, our results, once degraded to a lower resolution, are similar to the ones obtained by other groups (limitations imposed by the stellar evolutionary physics notwidthstanding). The limitations and advantages of our models for the analysis of integrated populations are described. The full set of the stellar library and the evolutionary models are available for retrieval at the websites http://www.iaa.csic.es/~rosa and http://www.iaa.csic.es/~mcs/sed@ , or on request from the first two authors.  相似文献   

12.
The first generation of stars was formed from primordial gas. Numerical simulations suggest that the first stars were predominantly very massive, with typical masses M≥100M . These stars were responsible for the reionization of the universe, the initial enrichment of the intergalactic medium with heavy elements, and other cosmological consequences. In this work, we study the structure of Zero Age Main-Sequence stars for a wide mass and metallicity range and the evolution of 100, 150, 200, 250 and 300M galactic and pregalactic Pop III very massive stars without mass loss, with metallicity Z=10−6 and 10−9, respectively. Using a stellar evolution code, a system of 10 equations together with boundary conditions are solved simultaneously. For the change of chemical composition, which determines the evolution of a star, a diffusion treatment for convection and semiconvection is used. A set of 30 nuclear reactions are solved simultaneously with the stellar structure and evolution equations. Several results on the main sequence, and during the hydrogen and helium burning phases, are described. Low-metallicity massive stars are hotter and more compact and luminous than their metal-enriched counterparts. Due to their high temperatures, pregalactic stars activate sooner the triple alpha reaction self-producing their own heavy elements. Both galactic and pregalactic stars are radiation pressure dominated and evolve below the Eddington luminosity limit with short lifetimes. The physical characteristics of the first stars have significant influence in predictions of the ionizing photon yields from the first luminous objects; also they develop large convective cores with important helium core masses which are important for explosion calculations.  相似文献   

13.
Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Their X-ray spectra have been important in constraining physical processes that heat plasma in stellar environments to temperatures exceeding one million degrees. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. The Sun itself as a typical example of a main-sequence cool star has been a pivotal testbed for physical models to be applied to cool stars. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma, although plasma parameters such as temperature, density, and element abundances vary widely. Coronal structure, its thermal stratification and geometric extent can also be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Medium and high- resolution spectroscopy have shed new light on these objects as well. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.  相似文献   

14.
Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: (1) updates to input physics of stellar models; (2) progress in two and three-dimensional evolution and hydrodynamic models; (3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid γ Dor/δ Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as η Car and P Cyg, and the solar abundance problem.  相似文献   

15.
We present a detailed multiwavelength photometric study of giant H  ii regions NGC 592 and NGC 588 in the nearby small spiral galaxy M33. We use data taken with the Wide Field and Planetary Camera 2 (WFPC2) on board the Hubble Space Telescope ( HST ). We detect several massive stars in both ionizing clusters. Six Wolf–Rayet (WR) stars are known to exist within those regions and we are able to constrain their physical properties by comparing their photometry to the latest grid of model atmospheres for WR stars of the nitrogen sequence (WN subclass). We estimate the age and mass of both regions by fitting our photometry to models of integrated stellar populations.  相似文献   

16.
We assess the effect of a population of high-redshift quasars on the 21-cm power spectrum during the epoch of reionization. Our approach is to implement a seminumerical scheme to calculate the three-dimensional structure of ionized regions surrounding massive haloes at high redshift. We include the ionizing influence of luminous quasars by populating a simulated overdensity field with quasars using a Monte Carlo Markov Chain algorithm. We find that quasars modify both the amplitude and shape of the power spectrum at a level which is of the same order as the fractional contribution to reionization. The modification is found both at constant redshift and at constant global neutral fraction, and arises because ionizing photons produced by quasars are biased relative to the density field at a level that is higher than stellar ionizing photons. The modification of the power spectrum is likely to be small, rendering the effect of quasars difficult to isolate. However, we find the modification of the power spectrum by quasars to be at a level that is comparable to the precision expected for future low-frequency telescopes. Correct interpretation of observations will therefore require the effect of quasars to be considered, and our results imply that quasar ionization will need to be included in detailed modelling of observed 21-cm power spectra.  相似文献   

17.
The colour–magnitude diagrams of resolved single stellar populations, such as open and globular clusters, have provided the best natural laboratories to test stellar evolution theory. Whilst a variety of techniques have been used to infer the basic properties of these simple populations, systematic uncertainties arise from the purely geometrical degeneracy produced by the similar shape of isochrones of different ages and metallicities. Here we present an objective and robust statistical technique which lifts this degeneracy to a great extent through the use of a key observable: the number of stars along the isochrone. Through extensive Monte Carlo simulations we show that, for instance, we can infer the four main parameters (age, metallicity, distance and reddening) in an objective way, along with robust confidence intervals and their full covariance matrix. We show that systematic uncertainties due to field contamination, unresolved binaries, initial or present-day stellar mass function are either negligible or well under control. This technique provides, for the first time, a proper way to infer with unprecedented accuracy the fundamental properties of simple stellar populations, in an easy-to-implement algorithm.  相似文献   

18.
Early reionization of the intergalactic medium (IGM), which is favoured from the WMAP temperature–polarization cross-correlations, contests the validity of the standard scenario of structure formation in the cold dark matter (CDM) cosmogony. It is difficult to achieve early enough star formation without rather extreme assumptions such as a very high escape fraction of ionizing photons from protogalaxies or a top-heavy initial mass function (IMF). Here, we propose an alternative scenario that additional fluctuations on small scales induced by primordial magnetic fields trigger early structure formation. We found that ionizing photons from Population III stars formed in dark haloes can easily reionize the Universe by   z ≃ 15  if the strength of primordial magnetic fields is between 0.7 and  1.5 × 10−9 G  .  相似文献   

19.
For an understanding of Galactic stellar populations in the SDSS filter system well defined stellar samples are needed. The nearby stars provide a complete stellar sample representative for the thin disc population. We compare the filter transformations of different authors applied to the main sequence stars from F to K dwarfs to SDSS filter system and discuss the properties of the main sequence. The location of the mean main sequence in colour‐magnitude diagrams is very sensitive to systematic differences in the filter transformation. A comparison with fiducial sequences of star clusters observed in g ′, r ′, and i ′ show good agreement. Theoretical isochrones from Padua and from Dartmouth have still some problems, especially in the (r i) colours. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Intermediate resolution spectroscopy from the European Southern Observatory Very Large Telescope is analysed for 63 photometrically selected low-mass  (0.08–0.30 M)  candidates of the open cluster NGC 2547. We have confirmed membership for most of these stars using radial velocities, and found that lithium remains undepleted for cluster stars with   I > 17.54 ± 0.14  and   Ks > 14.86 ± 0.12  . From these results, several pre–main-sequence evolutionary models give almost model independent ages of 34–36 Myr, with a precision of 10 per cent. These ages are only slightly larger than the ages of 25–35(±5) Myr obtained using the same models to fit isochrones to higher mass stars descending towards the zero-age main-sequence, both in empirically calibrated and theoretical colour–magnitude diagrams. This agreement between age determinations in different mass ranges is an excellent test of the current generation of low-mass pre–main-sequence stellar models and lends confidence to ages determined with either method between 30 and 120 Myr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号