首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Relict eolian dunes on the Georgia Coastal Plain line the north and east sides of many SE-trending streams and contain important paleoenvironmental information. A detailed analysis of four dune fields characterizes dune geomorphology, stratigraphy, sedimentology and soils. Georgia's inland dunes range from parabolic to infilled parabolic to irregular in form, typically merge to form long chains that parallel source streams and can occur as distinct bands. Typically, the dunes are composed of >95% quartz sand grains, with more than half the sand falling in the medium sand fraction. Dunes overlie flood plain and pointbar sands, backswamp and peat deposits, fluvial terraces and other dunes. In places, organic deposits occur on top of dunes. Cross-bedding is observable in dunes more than about 4 m thick and indicates eastward dune migration. Paleosols found within some dunes indicate Holocene reworking. Conditions favoring dune formation likely included at least seasonal aridity. Postdepositional modification of the dunes includes a smoothing of the dune surface, a clay increase in the C horizon, spodic horizon development, bioturbation, removal of weatherable minerals and fluvial incision.  相似文献   

2.
A comparison of methods used to estimate the height of sand dunes on Mars   总被引:1,自引:2,他引:1  
The collection of morphometric data on small-scale landforms from other planetary bodies is difficult. We assess four methods that can be used to estimate the height of aeolian dunes on Mars. These are (1) stereography, (2) slip face length, (3) profiling photoclinometry, and (4) Mars Orbiter Laser Altimeter (MOLA). Results show that there is good agreement among the methods when conditions are ideal. However, limitations inherent to each method inhibited their accurate application to all sites. Collectively, these techniques provide data on a range of morphometric parameters, some of which were not previously available for dunes on Mars. They include dune height, width, length, surface area, volume, and longitudinal and transverse profiles. The utilization of these methods will facilitate a more accurate analysis of aeolian dunes on Mars and enable comparison with dunes on other planetary surfaces.  相似文献   

3.
沙丘是柴达木盆地可类比火星的重要地貌类型,沙丘形态是类火星风沙地貌研究的重要内容。基于数字地形分析(DTA)的方法,采用高程、坡度、坡向及地表复杂程度4个地形计量学指标对火星(北极地区)和地球(柴达木盆地)格状沙丘的地貌形态特征进行定量对比分析。结果表明:(1)两个研究区的高程剖面、坡度、坡向的地理学空间分布格局具有较大相似性;(2)高程、高程梯度、坡度和坡向的直方图相似度指数均大于0.7;(3)不同尺度上的分形维数近似相等,即地表复杂程度相似。用数字地形分析与直方图相似度指数结合的方法,定量或半定量地分析两个研究区沙丘地貌形态的相似性,这对类火星风沙地貌研究中科学选择试验点是一种新的尝试,以期为反演火星风沙地貌的形成与演化提供科学依据。  相似文献   

4.
The Rwenzori Mountains are a high alpine mountain chain, about 40 × 80 km in size, just north of the equator in the western branch of the East African Rift System in Africa. The central part of the mountain chain is located in Uganda, and the highest peak, the Margherita Peak with 5119 m, lies on the border to the Democratic Republic of Congo. Topography is very pronounced, with steeply incised valleys and clear glacial landforms in the upper part of the mountain chain. The Rwenzori Mountains are an unusually high mountain chain located in the extensional setting of the East African Rift System, and the large elevation poses a challenging problem for geodynamists to explain.We have used the landscape evolution model ULTIMA THULE, which combines hillslope diffusion, fluvial erosion, and glacial abrasion and is driven by a climate driver, simulating the variations in temperature, precipitation, and relief over several glacial cycles. With a simulation time of 800 ka, we test the hypothesis of climate-tectonic interactions on the uplift of the Rwenzori Mountains.Our results show that a moderate cooling of around 6° causes widespread glaciation of the high mountain regions as observed during the peak glacial phases, and that morphological processes degrading the landscape allow for a tectonic uplift rate of around 0.5 mm a− 1.  相似文献   

5.
A wind tunnel investigation on the transverse motion of aeolian sand   总被引:1,自引:0,他引:1  
A wind tunnel experiment was performed to investigate aeolian grain motions in the transverse direction, which is perpendicular to the incoming flow and parallels the sand bed. The trajectories in the horizontal plane were recorded by high-speed camera. Statistical analysis of 630 trajectories shows that both the motion orientation and the time-averaged speed follow Gaussian distributions. An exclusive method was used to analyze the driving mechanism. It was concluded that the three-dimensional turbulent air flow, rather than the spin of grain or grain–bed collisions, controls the transverse motion.  相似文献   

6.
The changes in wind velocity induced by dune topography have an important significance in dune dynamics. In this paper, the horizontal and vertical velocities over six transverse dune models were measured non-intrusively by means of Particle Image Velocimetry in a wind tunnel. The windward slope angle and the free-stream wind velocity both affected the horizontal and vertical velocity components. On the windward side, the acceleration of horizontal velocity depended mainly on the windward slope angle and the height above the dune surface, but was also affected by the free-stream wind velocity. The speed-up ratio increased with increasing slope angle but decreased with increasing height. The ascending vertical velocities also increased with increasing slope angle and free-stream wind velocity. The maximum values moved upper along the dune when the windward angle became steeper. In the leeward sides, the horizontal velocity decreased and reversed because of airflow separation; the maximum reverse velocity in the separation cell was about 17% of the free-stream wind velocity. Behind the dune crest, the airflow moves downwards, and its maximum downward velocity is found near the flow reattachment point. Finally, we discussed the significance of these velocity variations for sediment transport and dune dynamics.  相似文献   

7.
Understanding the controls on seasonal variation of energy partitioning and separation between canopy and soil surface are important for qualifying the vegetation feedback to climate system.Using observed day-to-day variations of energy balance components including net radiation,sensible heat flux,latent heat flux ground heat flux,and meteorological variables combined with an energy-balanced two-source model,energy partitioning were investigated at six sites in Heihe River Basin from 2014 to 2016.Bowen ratio(β) among the six sites exhibited significant seasonal variations while showed smaller inter-annual fluctuations.All ecosystems exhibit a "U-shaped" pattern,characterized by smaller value of β in growing season,with a minimum value in July,and fluctuating day to day.During the growing season,average Bowen ratio was the highest for the alpine swamp meadow(0.60 ± 0.30),followed by the desert riparian forest Populus euphratica(0.47 ± 0.72),the alpine desert(0.46 ± 0.10),the Tamarix ramosissima desert riparian shrub ecosystem(0.33 ± 0.57),alpine meadow ecosystem(0.32 ± 0.17),and cropland ecosystem(0.27 ± 0.46).The agreement of Bowen ratio between simulated and observed values demonstrated that the two-source model is a promising tool for energy partitioning and separation between canopy and soil surface.The importance of biophysical control explains the convergence of seasonal and annual patterns of Bowen ratio for all ecosystems,and the changes in Bowen ratio showed divergence among varied ecosystems because of different physiological responses to energy flow pathways between canopy and soil surface.  相似文献   

8.
Wang  Pei  Li  Xiaoyan  Tong  Yaqin  Huang  Yongmei  Yang  Xiaofan  Wu  Xiuchen 《地理学报(英文版)》2019,29(9):1565-1577
Journal of Geographical Sciences - Understanding the controls on seasonal variation of energy partitioning and separation between canopy and soil surface are important for qualifying the vegetation...  相似文献   

9.
This paper presents the results of an investigation of the prehistoric Palliser Rockslide, Rocky Mountains, Canada. Conventional aerial photograph interpretation and field mapping are complemented by terrestrial digital photogrammetry. These techniques allow quantification of the rockslide debris volume and reconstruction of the pre-slide topography. It has been estimated that the volume of rock involved in the most recent large rockslide is 8 Mm3. Terrestrial digital photogrammetry is used in the characterization of the failure surface morphology, which is subdivided into four types of step-path geometry comprising both pre-existing discontinuities and intact rock fractures. Incorporation of these data into various rock slope stability numerical modeling methods highlights a complex failure mechanism, which includes sliding along a large scale curved failure surface, intact rock bridge fracturing and lateral confinement. A preliminary quantification of the contribution of intact rock bridges to the shear strength of the failure surface is presented in terms of the apparent cohesion, apparent tensile strength and cumulative length of the intact rock segments.  相似文献   

10.
Ping Lü  Zhibao Dong 《Geomorphology》2008,99(1-4):296-301
A theoretical model of the process for wind–sand flow is developed through consideration of the coupling between wind flow and the motion of sand particles under different atmospheric stability conditions. Using this model, we studied the effects of atmospheric stability on the sand transport rate, the number of sand particles per unit area and time, and the duration before a steady state is achieved in detail. The results show that atmospheric stability has a strong effect on the movement of the wind–sand flow, and produces results with different characteristics from those previously reported in the literature which apply only to conditions of neutral stability. Under unstable conditions, the wind–sand flow reached equilibrium more quickly, with a higher total sand flux and sand flux at all heights than under neutral or stable conditions.  相似文献   

11.
In this work we present measurements of vegetation cover over parabolic dunes with different degrees of activation along the north-eastern Brazilian coast. We extend the local values of the vegetation cover density to the whole dune by correlating measurements with the relative brightness index C of high resolution QuickBird panchromatic satellite images of the dune field. We then introduce the vegetation data into a continuous model for vegetated dunes, coupling sand erosion and vegetation growth, and perform simulations of the evolution of the morphology and vegetation cover of parabolic dunes. Finally, from the comparison of both, the measurements and the simulation results, we show that the model is able to predict the dune shape and the vegetation distribution of real parabolic dunes as result of the evolution of a blow-out.  相似文献   

12.
《Basin Research》2018,30(5):965-989
Progressive integration of drainage networks during active crustal extension is observed in continental areas around the globe. This phenomenon is often explained in terms of headward erosion, controlled by the distance to an external base‐level (e.g. the coast). However, conclusive field evidence for the mechanism(s) driving integration is commonly absent as drainage integration events are generally followed by strong erosion. Based on a numerical modelling study of the actively extending central Italian Apennines, we show that overspill mechanisms (basin overfilling and lake overspill) are more likely mechanisms for driving drainage integration in extensional settings and that the balance between sediment supply vs. accommodation creation in fault‐bounded basins is of key importance. In this area drainage integration is evidenced by lake disappearance since the early Pleistocene and the transition from internal (endorheic) to external drainage, i.e. connected to the coast. Using field observations from the central Apennines, we constrain normal faulting and regional surface uplift within the surface process model CASCADE (Braun & Sambridge, 1997, Basin Research, 9, 27) and demonstrate the phenomenon of drainage integration, showing how it leads to the gradual disappearance of lakes and the transition to an interconnected fluvial transport system over time. Our model results show that, in the central Apennines, the relief generated through both regional uplift and fault‐block uplift produces sufficient sediment to fill the extensional basins, enabling overspill and individual basins to eventually become fluvially connected. We discuss field observations that support our findings and throw new light upon previously published interpretations of landscape evolution in this area. We also evaluate the implications of drainage integration for topographic development, regional sediment dispersal and offshore sediment supply. Finally, we discuss the applicability of our results to other continental rifts (including those where regional uplift is absent) and the importance of drainage integration for transient landscape evolution.  相似文献   

13.
Asteroid surface geology offers a full range of opportunities for geomorphologists to participate in the analysis of landform distributions, deposit composition, source areas for sediments, age estimations, and the reconstruction of geohydrological records. A recent touchdown (2005) on 25143-Itokawa, a Near Earth Object (NEO), by the Hayabusa Spacecraft provides imagery (released, 2008, by the Japanese Aerospace Agency) that allows the analysis of data relevant to geomorphologists. The abbreviated interpretation of landform distributions on Itokawa discussed below provides a preliminary analysis of landform morphogenesis in a cold climate with near-zero gravity. The analysis generates several questions related to source of water, cause of fluid propagation and explanations of previously unrecognized processes of denudation.  相似文献   

14.
本文以z坐标下的三维斜压海洋动力学数值模式为基本模式原型,在整理渤海基本数据并诊断计算风生环流和热盐环流作为背景环流场基础上,初步建立了渤海海域动力环境数值模式。模式采用了经校正的Bagnold型方程来计算渤海底移质沉积物输运,悬移质计算则是取二维深度平均悬移质输运方程和河床变形方程,计算含沙量分布以及由悬移物引起的冲淤厚度。利用这种方法建立的沉积物输运模式,定量模拟了渤海沿岸和海底的沉积物输运方向和冲淤分布。模拟结果与通过多年实测水深估算获得的渤海海底沉积物的冲淤变化分布相比较,两者之间在基本结论上是比较一致的  相似文献   

15.
本文以z坐标下的三维斜压海洋动力学数值模式为基本模式原型 ,在整理渤海基本数据并诊断计算风生环流和热盐环流作为背景环流场基础上 ,初步建立了渤海海域动力环境数值模式。模式采用了经校正的Bagnold型方程来计算渤海底移质沉积物输运 ,悬移质计算则是取二维深度平均悬移质输运方程和河床变形方程 ,计算含沙量分布以及由悬移物引起的冲淤厚度。利用这种方法建立的沉积物输运模式 ,定量模拟了渤海沿岸和海底的沉积物输运方向和冲淤分布。模拟结果与通过多年实测水深估算获得的渤海海底沉积物的冲淤变化分布相比较 ,两者之间在基本结论上是比较一致的  相似文献   

16.
人类生态环境的退化是新世纪全球可持续发展所面临的重大问题,而城市水环境污染治理的中心业已从发达国家转移到发展中国家。我们在参与上海市水环境污染治理研究中认识到;在借鉴国际上先进的水环境分析模型系统的同时,必须运用先进的地理信息系统技术,开发本土化的空间模拟系统,才能使模型分析更有效的应用于我国城市水环境治理的决策中。本文结合作者近期研发成果,重点介绍国际上著名的水环境分析模型从数值处理,图表显示,空间可视化到动态模拟系统的发展态势及其我们的模型本土化开发中创建的方法与技术特点。  相似文献   

17.
根据模型和分布函数,本文首先依据多年平均气温、地温和SRTM等数据对研究区域冰缘地貌的分布范围进行分别提取,并利用遥感数据和人工解译方式对其进行了修正。在此基础上,采用一定指标,利用SRTM数据对冰缘地貌次级类型(如起伏度、海拔高度和坡度等)进行了提取,从而完成研究区域冰缘地貌信息的提取。研究结果表明:①研究区域冰缘地貌总面积约5.15×104km2,主要分布在研究区域的西北部和西南部,另外在东北部也有少量分布;通过提取,研究区域中最重要的冰缘地貌类型是冰缘作用的中起伏缓极高山,面积约0.82×104km2,分布范围较广。②冰缘地貌的分布与海拔高度、气温和地温等有密切的关系,基于此提取的结果可为冰缘地貌的解译提供一定的参考;由于青藏高原气象站点较少,数据精度较低,自动提取精度受到很大限制,因此进行人工解译修正是非常重要和必不可少的。  相似文献   

18.
An expert-based approach was used to identify 10 morphological unit types within a reach of the gravel bed, regulated Yuba River, California, that is heavily utilized by spawning Chinook salmon (Oncorhynchus tshawytscha). Analysis of these units was carried out using two-dimensional hydrodynamic modeling, field-based geomorphic assessment, and detailed spawning surveying. Differently classified morphological units tended to exhibit discrete hydraulic signatures. In most cases, the Froude number adequately differentiated morphological units, but joint depth–velocity distributions proved the most effective hydraulic classification approach. Spawning activity was statistically differentiated at the mesoscale of the morphological unit. Salmon preferred lateral bar, riffle, and riffle entrance units. These units had moderately high velocity (unit median > 0.45 m s− 1) and low depth (unit median < 0.6 m), but each exhibited a unique joint depth–velocity distribution. A large proportion of redds (79%) were associated with conditions of convective flow acceleration at riffle and riffle entrance locations. In addition to reflecting microhabitat requirements of fish, it was proposed that the hydraulic segregation of preferred from avoided or tolerated morphological units was linked to the mutual association of specific hydraulic conditions with suitable caliber sediment that promotes the provision and maintenance of spawning habitat.  相似文献   

19.
20.
Coupled hydrological and atmospheric modeling is an efficient method for snowmelt runoff forecast in large basins. We use short-range precipitation forecasts of mesoscale atmospheric Weather Research and Forecasting (WRF) model combining them with ground-based and satellite observations for modeling snow accumulation and snowmelt processes in the Votkinsk reservoir basin (184,319 km2). The method is tested during three winter seasons (2012–2015). The MODIS-based vegetation map and leaf area index data are used to calculate the snowmelt intensity and snow evaporation in the studied basin. The GIS-based snow accumulation and snowmelt modeling provides a reliable and highly detailed spatial distribution for snow water equivalent (SWE) and snow-covered areas (SCA). The modelling results are validated by comparing actual and estimated SWE and SCA data. The actual SCA results are derived from MODIS satellite data. The algorithm for assessing the SCA by MODIS data (ATBD-MOD 10) has been adapted to a forest zone. In general, the proposed method provides satisfactory results for maximum SWE calculations. The calculation accuracy is slightly degraded during snowmelt periods. The SCA data is simulated with a higher reliability than the SWE data. The differences between the simulated and actual SWE may be explained by the overestimation of the WRF-simulated total precipitation and the unrepresentativeness of the SWE measurements (snow survey).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号