首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the stably stratified boundary layer,the vertical flux profiles for momentum and heat can be obtained froman atmospheric boundary layer model which includes parameterization of the long-wave radiation.In addi-tion,the Monin-Obukhov similarity theory can be extended to the whole boundary layer by using the local tur-bulent scales L(z),U.(z)and 0.(z)in place of surface layer scales.The similarity predictions are ingood agreement with observational data.  相似文献   

2.
利用非均匀地表加热的大涡模拟试验,研究了不稳定条件下地表热力非均匀性对近地层相似理论适用性的影响。结果发现,边界层的平均廓线基本不受地表热力非均匀性的影响。进一步分析发现,较大尺度的地表非均匀加热可以激发出有组织的大尺度次级环流,冷暖斑块的通量直到边界层上部才混合均匀;而当地表非均匀尺度较小时,次级环流难以形成有组织的结构,冷暖斑块的通量很快就可以混合均匀。然而,不管是哪种尺度的非均匀地表,非均匀斑块间的平流都对各斑块近地层结构产生重要影响,进而斑块近地层通量—梯度关系与相似理论产生偏差,其中风速梯度关系的偏差更为明显。最后,对目前大气模式中常用的基于相似理论的次网格非均匀地表通量参数化方法——Mosaic方法提出了改进思路。  相似文献   

3.
The interaction between radiation and turbulence in the stable boundary layer over land is explored using an idealized model, with a focus on the surface layer after the evening transition. It is shown that finer vertical resolution is required in transitional boundary layers than in developed ones. In very light winds radiative cooling determines the temperature profile, even if similarity functions without a critical Richardson number are used; standard surface similarity theory applied over thick layers then yields poor forecasts of near-surface air temperatures. These points are illustrated with field data. Simulations of the developing nocturnal boundary layer are used to explore the wider role of radiation. Comparatively, radiation is less significant within the developed stable boundary layer than during the transition; although, as previous studies have found, it remains important towards the top of the stable layer and in the residual layer. Near the ground, reducing the surface emissivity below one is found to yield modest relative radiative warming rather than intense cooling, which reduces the potential importance of radiation in the developed surface layer. The profile of the radiative heating rate may be strongly dependent on other processes, leading to quite varied behaviour.  相似文献   

4.
A new approach to investigations of the structure of the boundary layer above waves is discussed. The approach is based on direct numerical simulation of wave motions in the boundary layer produced by a moving curved surface. Model equations are derived, which are the Reynolds equations in a curvilinear nonstationary system of co-ordinates, evolution equations for turbulent kinetic energy, and Kolmogorov's approximate similarity formulae relating the coefficient of turbulent viscosity to the dissipation of turbulent energy; the length scale is assumed to grow linearly with increasing distance from the surface. Principles of constructing the model numerical scheme are described. Results are given of modelling the structure of the boundary layer above a nonsteady surface, which, in a general case, is a superposition of progressive waves with assigned dispersion relations and amplitudes. Mechanisms of energy and momentum transfer to the surface, effects of density stratification and energy structure in the boundary layer are studied. Merits and demerits of the approach are discussed.  相似文献   

5.
边界层局地相似理论在草原下垫面的适用性检验   总被引:3,自引:0,他引:3  
利用锡林浩特草原平坦下垫面塔层湍流资料,对常值通量层的高度进行了估计,检验了局地相似理论在均匀草原下垫面的适用性,对Monin-Obukhov相似理论和局地相似理论在常值通量层以上的大气边界层的适用性进行了比较。结果表明:(1)对于锡林浩特草原来说,常值通量层厚度在50m左右;(2)通过分析无量纲风速和温度梯度、无量纲风速方差、无量纲标量(温度T、水汽q、CO2浓度C)方差与稳定度z/L之间的关系,验证了局地相似理论在均匀草原下垫面70m以下大气边界层的适用性;(3)感热通量尺度与浮力长度尺度之间存在线性关系;(4)从经典Monin-Obukhov长度、局地Monin-Obukhov尺度和浮力长度尺度的对比分析来看,局地尺度更适用于50m以上的大气边界层,而浮力长度尺度不适用于50m以上的大气边界层。  相似文献   

6.
南沙海域近海层大气湍流结构及输送特征研究   总被引:21,自引:0,他引:21       下载免费PDF全文
本文根据南沙群岛渚碧礁的一次大气湍流观测资料,分析研究南沙海域的湍流热通量输送、方差相似性、风速各分量谱、温度谱及各湍流通量协谱等大气湍流结构和输送特征,并与陆地下垫面上的结果作了比较,得到了一些有关南沙海域大气湍流输送及湍流结构的新认识。  相似文献   

7.
局地相似性关系在城市边界层中的适用性验证   总被引:1,自引:0,他引:1  
利用中国科学院大气物理研究所325 m铁塔在2003年8月期间47和120 m高度上的湍流观测资料,对局地相似性关系在城市边界层的适用性进行了检验。结果表明:47 m高度仍属于城市冠层之上的近地面常通量层,莫宁-奥布霍夫相似性关系基本适用。但120 m高度则基本属于近地面层与自由对流层之间的过渡高度,在该处,相似性关系部分适用。同时,给出了不同的层结稳定度条件下47和120 m高度上的无量纲速度和温度标准差与稳定度之间的局地相关表达式。  相似文献   

8.
Note on turbulence statistics in z-less stratification   总被引:1,自引:0,他引:1  
In boundary layer meteorology, surface layer similarity theory plays a critical role in measuring and modeling biospheric fluxes. In stable boundary layer, surface layer similarity called z-less stratification has been one of main research topics for over than two decades and the issue has yet to be settled in micrometeorology. In this scientific discussion on z-less turbulence, different turbulence statistics were used inconsistently and it was argued that z-less turbulence was valid if only any turbulence statistics were constant with different atmospheric stabilities. Consequently, such inconsistently tested turbulence statistics and misconception on z-less turbulence hinder us from correctly understanding turbulence structure in the stable boundary layer. This note revisits z-less turbulence and emphasizes that different dimensionless turbulence statistics generally do not exhibit a common behavior in the limit of z-less stratification.  相似文献   

9.
The structure of neutral barotropic planetary boundary layers is investigated. The dynamic equations have been numerically solved by an iterative method. Similarity and dissimilarity of the atmospheric boundary layer are explored. The distribution of the velocity defect functions, hypothesized by the similarity theory, is obtained. Comparison between present numerical results, i.e., shear stress, drag coefficient, and cross-isobar angle, and other results and experimental data are made. It appears that the present model is more economical and its results are closer to experimental data than other models. Some properties of the atmospheric structure are inferred directly from the dynamic equations.  相似文献   

10.
The simulation of horizontally homogeneous boundary layers that have characteristics of weakly and moderately stable atmospheric flow is investigated, where the well-established wind engineering practice of using ‘flow generators’ to provide a deep boundary layer is employed. Primary attention is given to the flow above the surface layer, in the absence of an overlying inversion, as assessed from first- and second-order moments of velocity and temperature. A uniform inlet temperature profile ahead of a deep layer, allowing initially neutral flow, results in the upper part of the boundary layer remaining neutral. A non-uniform inlet temperature profile is required but needs careful specification if odd characteristics are to be avoided, attributed to long-lasting effects inherent of stability, and to a reduced level of turbulent mixing. The first part of the wind-tunnel floor must not be cooled if turbulence quantities are to vary smoothly with height. Closely horizontally homogeneous flow is demonstrated, where profiles are comparable or closely comparable with atmospheric data in terms of local similarity and functions of normalized height. The ratio of boundary-layer height to surface Obukhov length, and the surface heat flux, are functions of the bulk Richardson number, independent of horizontal homogeneity. Surface heat flux rises to a maximum and then decreases.  相似文献   

11.
The Height Correction of Similarity Functions in the Stable Boundary Layer   总被引:1,自引:1,他引:0  
Empirical similarity functions of the Richardson number, obtained from bin-averaged data in the lower part of the stable boundary layer, show an undesired dependence on height at which the observations are collected. A correction of this flaw is proposed and tested by employing the neutral mixing length l o as a similarity scale for height. The function of height describing l o is assumed to be linear in the surface layer, and approaching a specified value with increasing height. The modification does not alter the dependence of similarity functions on the Richardson number, and is shown to be supported by the Cooperative Atmospheric-Surface Exchange Study-1999 (CASES-99) data.  相似文献   

12.
A three-dimensional numerical meteorological model is used to perform large-eddy simulations of the upslope flow circulation over a periodic ridge-valley terrain. The subgrid-scale quantities are modelled using a prognostic turbulence kinetic energy (TKE) scheme, with a grid that has a constant horizontal resolution of 50 m and is stretched along the vertical direction. To account for the grid anisotropy, a modified subgrid length scale is used. To allow for the response of the surface fluxes to the valley-flow circulation, the soil surface temperature is imposed and the surface heat and momentum fluxes are computed based on Monin–Obukhov similarity theory. The model is designed with a symmetrical geometry using periodic boundary conditions in both the x and y directions. Two cases are simulated to study the influence of along-valley geostrophic wind forcing with different intensities. The presence of the orography introduces numerous complexities both in the mean properties of the flow and in the turbulent features, even for the idealized symmetric geometry. Classical definitions for the height of the planetary boundary layer (PBL) are revisited and redefined to capture the complex structure of the boundary layer. Analysis of first- and second-moment statistics, along with TKE budget, highlights the different structure of the PBL at different regions of the domain.  相似文献   

13.
The evolution and structure of a steady barotropic nocturnal boundary layer are investigated using a higher-order turbulence closure model which includes equations for the mean quantities, turbulence convariances, and the viscous dissipation rate. The results indicate that a quasi-steady nocturnal PBL might be established in 4–10 hours after transition, depending on surface cooling rate. The latter is assumed to be constant in the model. The emphasis is on prediction of eddy viscosity, nocturnal mixing-layer depth, and the stability-dependent universal functions in the geostrophic drag and heat transfer relations. The model predictions are parameterized in the framework of the PBL similarity theory and compared with observations and results of other models.Affiliation with Oak Ridge Associated Universities (ORAU).  相似文献   

14.
An important parameterization in large-eddy simulations (LESs) of high- Reynolds-number boundary layers, such as the atmospheric boundary layer, is the specification of the surface boundary condition. Typical boundary conditions compute the fluctuating surface shear stress as a function of the resolved (filtered) velocity at the lowest grid points based on similarity theory. However, these approaches are questionable because they use instantaneous (filtered) variables, while similarity theory is only valid for mean quantities. Three of these formulations are implemented in simulations of a neutral atmospheric boundary layer with different aerodynamic surface roughness. Our results show unrealistic influence of surface roughness on the mean profile, variance and spectra of the resolved velocity near the ground, in contradiction of similarity theory. In addition to similarity-based surface boundary conditions, a recent model developed from an a priori experimental study is tested and it is shown to yield more realistic independence of the results to changes in surface roughness. The optimum value of the model parameter found in our simulations matches well the value reported in the a priori wind-tunnel study.  相似文献   

15.
This review of the last three years of progress in the understanding of wind profiles and the structure of turbulence in the planetary boundary layer is divided into three parts. The first part, by N. E. Busch, deals with the atmospheric surface layer below 30 m. It is shown that the Monin-Oboukhov similarity hypotheses fail at low frequencies and large wave-lengths, probably due to mesoscale influences. Also, it is suggested that the neutral surface layer is a poor reference state in some respects, because the structure of turbulence in unstable conditions is quite different from that in stable stratification. The second part, by H. Tennekes, is concerned with the intermittency of the dissipative structure of turbulence and its effects on the velocity and temperature structure functions. It is shown that the modified Kolmogorov-Oboukhov theory, which attempts to explain the consequences of the dissipative intermittency, is unable to predict the shape of the temperature structure functions. The third part of this review, by H. A. Panofsky, deals with wind profiles and turbulence structure above 30 m. It is shown that between 30 and 150 m, surface-layer formulas can be used, if such mesoscale effects as changes of terrain roughness are taken into account where needed. Experimental data on turbulence above 150 m are quite sparse; some of the current scaling laws that can be used in this region are described.  相似文献   

16.
The problem of boundary conditions for the variances and covariances of scalar quantities (e.g., temperature and humidity) at the underlying surface is considered. If the surface is treated as horizontally homogeneous, Monin–Obukhov similarity suggests the Neumann boundary conditions that set the surface fluxes of scalar variances and covariances to zero. Over heterogeneous surfaces, these boundary conditions are not a viable choice since the spatial variability of various surface and soil characteristics, such as the ground fluxes of heat and moisture and the surface radiation balance, is not accounted for. Boundary conditions are developed that are consistent with the tile approach used to compute scalar (and momentum) fluxes over heterogeneous surfaces. To this end, the third-order transport terms (fluxes of variances) are examined analytically using a triple decomposition of fluctuating velocity and scalars into the grid-box mean, the fluctuation of tile-mean quantity about the grid-box mean, and the sub-tile fluctuation. The effect of the proposed boundary conditions on mixing in an archetypical stably-stratified boundary layer is illustrated with a single-column numerical experiment. The proposed boundary conditions should be applied in atmospheric models that utilize turbulence parametrization schemes with transport equations for scalar variances and covariances including the third-order turbulent transport (diffusion) terms.  相似文献   

17.
This study investigates the convective boundary layer (CBL) that develops over anon-homogeneous surface under different thermal and dynamic conditions. Analysesare based on data obtained from a Russian research aircraft equipped with turbulentsensors during the GAME-Siberia experiment over Yakutsk in Siberia, from April to June 2000.Mesoscale thermal internal boundary layers (MTIBLs) that radically modified CBLdevelopment were observed under unstable atmospheric conditions. It was found thatMTIBLs strongly influenced the vertical and horizontal structures of virtual potentialtemperature, specific humidity and, most notably, the vertical sensible and latent heatfluxes. MTIBLs in the vicinity of the Lena River lowlands were confirmed by clouddistributions in satellite pictures.MTIBLs spread through the entire CBL and radically modify its structure if the CBL isunstable, and strong thermal features on the underlying surface have horizontal scalesexceeding 10 km. MTIBL detection is facilitated through the use of special parameterslinking shear stress and convective motion.The turbulent structure of the CBL with and without MTIBLs was scaled usingthe mosaic or flux aggregate approach. A non-dimensional parameterLRau/Lhetero (where LRau is Raupach's length and Lhetero is the horizontal scale of the surface heterogeneity)estimates the application limit of similarity and local similarity scaling models forthe mosaic parts over the surface. Normalized vertical profiles of wind speed, airtemperature, turbulent sensible and latent heat fluxes for the mosaic parts withLRauLhetero < 1 could be estimated by typical scalingcurves for the homogeneous CBL. Traditional similarity scaling models for the CBLcould not be applied for the mosaic parts with LRau/Lhetero > 1.For some horizontally non-homogeneous CBLs, horizontal sensible heat fluxes werecomparable with the vertical fluxes. The largest horizontal sensible heat fluxes occurred at the top of the surface layer and below the top of the CBL.Formerly affiliated to the Frontier Observational Research System for Global ChangeFormerly affiliated to the Frontier Observational Research System for Global Change  相似文献   

18.
Scintillation measurements with a HeNe and a CO2 laser were used to derive turbulent fluxes of heat and momentum in the surface layer. This was achieved by the structure constant or dissipation technique, i.e., by relating the measured structure constants and inner scales of refractive index fluctuations to structure constants of temperature fluctuations and dissipation rates of turbulent kinetic energy, respectively, and then assuming Monin-Obukhov similarity.The resulting heat fluxes agree well with measurements using the eddy correlation technique but for averaging periods of 10 min, the optical data show a much smoother and physically more plausible behaviour. The optically derived friction velocities are in good agreement with estimates derived from wind velocity and surface roughness. It was also observed that for stationary conditions, 1-min averaged optical measurements already provide good estimates for longer averaged heat and momentum fluxes.Even though some uncertainty remains about the empirical constants and Monin-Obukhov similarity expressions used, the method clearly proves to be of great value for monitoring surface-layer turbulence.  相似文献   

19.
佟华  陈仲良  桑建国 《大气科学》2004,28(6):957-978
由于城市表面复杂的下垫面的影响,使得城市边界层风温场结构较其他下垫面有很大不同.作者通过将城市中500 m网格内的各种地表类型,按照各自在网格中所占的百分比及各自的地表参数加权平均,得到此网格的平均的地表参数,以此准确反映下垫面的情况,建立分辨率为500 m的城市边界层能量平衡模式,将此城市边界层能量平衡模式嵌入动力学框架,并用中尺度模式MM5作为初始条件和边界条件,建立一个既考虑中尺度背景场又详细考虑城市下垫面复杂性与多样性的城市边界层模式系统.将模式系统运用于香港复杂地形下的边界层特点的模拟研究.通过与观测值的比较,模式能够较准确的模拟出海陆风、城市热岛等热力过程,及气流过山引起的绕流等动力过程,并且通过对边界层高度的模拟预测污染扩散的条件等.说明模式系统具有模拟在中尺度的背景场的控制下海陆风环流、过山堆积和绕流及城市热力影响的能力.  相似文献   

20.
The influence of surface roughness on the dispersion of a passive scalar in a rough wall turbulent boundary layer has been studied using wind-tunnel experiments. The surface roughness was varied using different sizes of roughness elements, and different spacings between the elements. Vertical profiles of average concentration were measured at different distances downwind of the source, and the vertical spread of the plume was computed by fitting a double Gaussian profile to the data. An estimate of the integral length scale is derived from the turbulence characteristics of the boundary layer and is then used to scale the measured values of plume spread. This scaling reduces the variability in the data, confirming the validity of the model for the Lagrangian integral time scale, but does not remove it entirely. The scaled plume spreading shows significant differences from predictions of theoretical models both in the near and in the far field. In the region immediately downwind of the source this is due to the influence of the wake of the injector for which we have developed a simple model. In the far field we explain that the differences are mainly due to the absence of large-scale motions. Finally, further downwind of the source the scaled values of plume spread fall into two distinct groups. It is suggested that the difference between the two groups may be related to the lack of dynamical similarity between the boundary-layer flows for varying surface roughness or to biased estimates of the plume spread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号