首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Black carbon (BC) is considered ubiquitous in soil organic matter (OM) and therefore plays an important role in soil biogeochemistry. Its complexity, particularly within environmental matrices, presents a challenge for research, primarily as a result of techniques which may favor detection of certain functional group types rather than capturing total sample C. The objective of this study was to utilize carbon (C) 1s near edge X-ray absorption fine edge structure (NEXAFS) spectroscopy to characterize the C chemistry of a broad range of BC materials. Characteristic resonances in the NEXAFS spectra allowed direct molecular speciation of the total C chemistry of the reference materials, environmental matrices and potentially interfering materials, obtained from an earlier BC ring trial. Spectral deconvolution was used to further identify the functional group distribution of the materials. BC reference materials and soils were characterized by a large aromatic C region comprising around 40% of total absorption intensity. We were able to distinguish shale and melanoidin from BC reference materials on the basis of their unique spectral characteristics. However, bituminous coal shared chemical characteristics with BC reference materials, namely high aromaticity of more than 40% identified by way of a broad peak. Lignite also shared similar spectra and functional group distributions to BC reference materials and bituminous coal. We compared the results of spectral deconvolution with the functional group distributions obtained by way of direct polarization magic angle spinning (DPMAS) 13C nuclear magnetic resonance (NMR) spectroscopy. Correlations between aromatic type C values for DPMAS 13C NMR and NEXAFS gave r2 = 0.633 (p < 0.05) and the values for NEXAFS were around 30–40% lower than for 13C NMR. Correlations were also drawn between the aromatic C/O-alkyl C ratio values for the two methods (r2 = 0.49, p < 0.05). Overall, NEXAFS was applicable for a wide range of environmental materials, such as those measured, although some limitations for the technique were addressed.  相似文献   

2.
The solubility mechanism of fluorine in quenched SiO2-NaF and SiO2-AlF3 melts has been determined with Raman spectroscopy. In the fluorine abundance range of F/(F+Si) from 0.15 to 0.5, a portion of the fluorine is exchanged with bridging oxygen in the silicate network to form Si-F bonds. In individual SiO4-tetrahedra, one oxygen per silicon is replaced in this manner to form fluorine-bearing silicate complexes in the melt. The proportion of these complexes is nearly linearly correlated with bulk melt F/(F+Si) in the system SiO2-AlF3, but its abundance increases at a lower rate and nonlinearly with increasing F/(F+Si) in the system SiO2-NaF. The process results in the formation ofnonbridging oxygen (NBO), resulting in stabilization of Si2O 5 2? units as well as metal (Na+ or Al3+) fluoride complexes in the melts. Sodium fluoride complexes are significantly more stable than those of aluminum fluoride.  相似文献   

3.
Nuclear magnetic resonance spectroscopic data are presented for the cristobalite polymorphs of AlPO4 and SiO2 from RT to 770 K, through their respective α-β transitions. The nuclear magnetic resonance (NMR) data include chemical shifts for 31P, 27Al, and 29Si, 27Al quadrupole coupling parameters, and 31P and 27Al spin-lattice relaxation rates. Also presented are electron diffraction patterns of β-cristobalite AlPO4 that show diffuse scattering similar to that reported previously for SiO2. For the α-phases of both AlPO4 and SiO2, the chemical shifts decrease approximately linearly with increasing temperature from RT to Tc and discontinuously by -2 to -3 ppm from α to β. This result is consistent with a small, continuous increase in the mean T-O-T angle (〈θ〉) of the α-phases with increasing T and an increase of 〈θ〉 by about 4° across the α-β transition for both cristobalite and its AlPO4 analogue. Based on the 29Si chemical shifts, the mean Si-O-Si angle for β-cristobalite is 152.7±1° near Tc. For AlPO4-cristobalite, the 27Al nuclear quadrupole coupling constant (CQ) decreases approximately linearly from 1.2 MHz at RT to 0.94 MHz near Tc (493±10 K). At the α-β transition the 27Al CQ approaches zero, in agreement with the cubic average structure observed by diffraction. The satellite transitions retain a small frequency distribution above the α-β transition from electric field gradients attributed to defects. The short-range cubic symmetry of the Al-site and non-linear Al-O-P angle support a dynamically disordered model of the β-cristobalite structure. Complete averaging of the 27Al quadrupole coupling in the β-phase indicates that the lifetime of any short-range ordered domains must be shorter than about 1 μs.  相似文献   

4.
The cation distribution in the synthetic samples of olivine-type structure with composition (Fe x Mn1?x )2SiO4 was determined at room temperature and confirms previous Mössbauer results. At low temperature an antiferromagnetic ordering is observed. The magnetic structures can be described in the crystallographic cell (i.e. k=0). They are interpreted on the basis of the irreducible representations (modes) of the symmetry groups which are compatible with Pnma. The dominant modes observed for all compounds, including Fe2SiO4 and Mn2SiO4, only differ in their direction. The main direction of magnetization is dominated by the Fe2+ single-ion anisotropy. At 4.2K, for x=0.29, it is parallel to the c-axis, whereas for x=0.76 the direction is parallel to the b-axis. The anisotropy of the M1-sites dominates in the first case, whereas M2-anisotropy dominates in the second case. The influence of temperature is demonstrated for x=0.50 where c is the main direction at 4.2K, when it is b at 38K.  相似文献   

5.
 Premelting effects in gehlenite (Ca2Al2SiO7) have been studied by Raman spectroscopy and calorimetry, and in gehlenite and pseudowollastonite (CaSiO3) by electrical conductivity. The enthalpy of premelting of gehlenite is 17.3 kJ mol−1 and represents 9% of the reported enthalpy of fusion, which is in the range of the reported fraction of other minerals. The Raman and electrical conductivity experiments at high temperatures, for gehlenite and pseudowollastonite, show that the premelting effects of both compositions are associated with enhanced dynamics of calcium atoms near the melting point. This conclusion agrees with the results obtained for other minerals like diopside, but contrasts with those found for sodium metasilicate in which the weaker bonding of sodium allows the silicate framework to distort near the melting temperature and deform in such a way to prefigure the silicate entities present in the melt. Received: 30 April 2002 / Accepted: 7 August 2002 Acknowledgements We thank Y. Linard for help with DSC measurements and two anonymous reviewers for their constructive comments. This work has been partly supported by the EU Marie-Curie fellowship contract no. HPMF-CT-1999-00329, the CNRS-Carnegie Institution of Washington program PICS no.192, and the NSF grants EAR-9614432 and EAR-9901886 to B.O.M.  相似文献   

6.
We report the textures, mineralogy and mineral chemistry of the Mukundpura matrix component, a clast-bearing, brecciated, new CM2 carbonaceous chondrite. Like other CMs, Mukundpura is matrix-enriched and has experienced different degrees of aqueous alteration with evidences of fracturing and compaction of clasts due to the impact. A few relict chondrule clasts and CAIs (diopside and spinel) survived despite of the alteration amidst accessory phases of olivine, magnetite, sulphides and calcite. X-Ray Diffraction (XRD), Visible Near Infrared (VNIR) and Fourier Transform Infrared (FTIR) spectroscopic studies reveal higher phyllosilicate content (∼90 %) comprising of both Mg and Fe-serpentine and abundant serpentine-sulphide intergrowths. Even then, the presence of accessory olivine as relict clasts can be interpreted from the presence of certain typical olivine absorptions in the FTIR spectra. The non-stoichiometric, Tochilinite-Cronstedtite occurrences probably relate to broadening of XRD and FTIR spectra and can be explained by coupled Al–Si and Mg–Al substitutions in talc and serpentine. The FTIR spectra suggest widespread transformation of olivine to serpentine, unlike the largely unaltered chondrules. The correlations of mineralogical alteration index with FeO/SiO2 and S/SiO2 in different domains of matrix suggest different extent of alterations. Thus, the aqueous alteration is extensive but not pervasive. The majority of alteration seems to have occurred within the asteroidal parent body. The Mukundpura CM2 thus preserves a unique combination of relict chondrules and highly aqueous altered variegated matrix clasts, although the surface mineralogy resembles the C-type asteroids recently probed by OSIRIS-REx and Hayabusa-2 missions.  相似文献   

7.
8.
9.
对3个不同地区的硅灰石类粉尘做了XRF分析及其与溶菌酶(Lys)的反应实验,结果显示Lys与样品中的活性物质进行了反应.模拟样品中元素离子与Lys反应的UV-Vis和荧光光谱分析表明,37℃下Lys与样品中的元素离子(SiO23-)作用最明显,表现在紫外区吸收峰红移10 nm,吸光度增大,荧光区λem 440 nm处荧光强度增强,荧光峰红移20 nm.同时,对其反应机理和结合位点进行了探讨.  相似文献   

10.
Potential protonation sites for, kyanite, sillimanite, and andalusite, located in a mapping of the (3, −3) critical points displayed by their L(r) = −∇2ρ(r) distributions, are compared with polarized single-crystal FTIR spectra of kyanite and sillimanite determined earlier and with andalusite measured in this study. For andalusite, seven peaks were observed when the electric vector, E, is parallel to [100]: four intense ones at 3,440, 3,460, 3,526, and 3,597 cm−1 and three weaker ones at 3,480, 3,520, and 3,653 cm−1. Six peaks, three intense ones at 3,440, 3,460, and 3,526 cm−1 and three weaker ones at 3,480, 3,520, and 3,653 cm−1 when E parallels [010]. No peaks were observed when E is parallel to [001]. The concentration of water in andalusite varies between 110 and 168 ppm by weight % H2O. Polarized FTIR spectra indicate that the OH vector is parallel to (001) in andalusite and sillimanite and in kyanite. Examination of the L(r) (3, −3) critical points in comparison with the polarized FTIR indicates that H prefers to bond to the oxygen atoms O1 and O2 in andalusite and O2 and O4 in sillimanite which correspond to the underbonded oxygen atoms and those with the largest L(r) maxima. In kyanite, comparison of the FTIR spectrum and the critical points indicates that H will preferentially bond to the two 4-coordinated O2 and O6 atoms.  相似文献   

11.
 The solubility of hydroxyl in the α, β and γ phases of (Mg,Fe)2SiO4 was investigated by hydrothermally annealing single crystals of San Carlos olivine. Experiments were performed at a temperature of 1000° or 1100 °C under a confining pressure of 2.5 to 19.5 GPa in a multianvil apparatus with the oxygen fugacity buffered by the Ni:NiO solid-state reaction. Hydroxyl solubilities were determined from infrared spectra obtained of polished thin sections in crack-free regions ≤100 μm in diameter. In the α-stability field, hydroxyl solubility increases systematically with increasing confining pressure, reaching a value of ∼20,000 H/106Si (1200 wt ppm H2O) at the α-β phase boundary near 13 GPa and 1100 °C. In the β field, the hydroxyl content is ∼400,000 H/106Si (24,000 wt ppm H2O) at 14–15 GPa and 1100 °C. In the γ field, the solubility is ∼450,000 H/106Si (27,000 wt ppm H2O) at 19.5 GPa and 1100 °C. The observed dependence of hydroxyl solubility with increasing confining pressure in the α phase reflects an increase in water fugacity with increasing pressure moderated by a molar volume term associated with the incorporation of hydroxyl ions into the olivine structure. Combined with published results on the dependence of hydroxyl solubility on water fugacity, the present results for the α phase can be summarized by the relation C OH = A(T)fnH2Oexp(−PΔV/RT), where A(T) = 1.1 H/106Si/MPa at 1100 °C, n = 1, and ΔV = 10.6×10–6 m3/mol. These data demonstrate that the entire present-day water content of the upper mantle could be incorporated in the mineral olivine alone; therefore, a free hydrous fluid phase cannot be stable in those regions of the upper mantle with a normal concentration of hydrogen. Free hydrous fluids are restricted to special tectonic environments, such as the mantle wedge above a subduction zone. Received: 10 February 1995 / Accepted: 23 October 1995  相似文献   

12.
The nature of the surface oxidation phase on pyrite, FeS2, reacted in aqueous electrolytes at pH = 2 to 10 and with air under ambient atmospheric conditions was studied using synchrotron-based oxygen K edge, sulfur LIII edge, and iron LII,III edge X-ray absorption spectroscopy. We demonstrate that O K edge X-ray absorption spectra provide a sensitive probe of sulfide surface oxidation that is complementary to X-ray photoelectron spectroscopy. Using total electron yield detection, the top 20 to 50 Å of the pyrite surface is characterized. In air, pyrite oxidizes to form predominantly ferric sulfate. In aqueous air-saturated solutions, the surface oxidation products of pyrite vary with pH, with a marked transition occurring around pH 4. Below pH = 4, a ferric (hydroxy)sulfate is the main oxidation product on the pyrite surface. At higher pH, we find iron(III) oxyhydroxide in addition to ferric (hydroxy)sulfate on the surface. Under the most alkaline conditions, the O K edge spectrum closely resembles that of goethite, FeOOH, and the surface is oxidized to the extent that no FeS2 can be detected in the X-ray absorption spectra. In a 1.667 × 10−3 mol/L Fe3+ solution with ferric iron present as FeCl3 in NaCl, the oxidation of pyrite is autocatalyzed, and formation of the surface iron(III) oxyhydroxide phase is promoted at low pH.  相似文献   

13.
The magnetic behaviour and Curie temperatures (T C ) of spinelloids and spinels in the Fe3O4–Fe2SiO4 and Fe3O4–(Mg,Fe)2SiO4 systems have been determined from magnetic susceptibility (k) measurements in the temperature range –192 to 700 °C. Spinelloid II is ferrimagnetic at room temperature and the k measurements display a characteristic asymmetric hump before reaching a T C at 190 °C. Spinelloid V from the Mg-free system is paramagnetic at room temperature and hysteresis loops at various low temperatures indicate a ferri- to superparamagnetic transition before reaching the T C . The T C shows a non-linear variation with composition between –50 and –183 °C with decreasing magnetite component (X Fe3O4). The substitution of Mg in spinelloid V further decreases T C . Spinelloid III is paramagnetic over nearly the total temperature range. Ferrimagnetic models for spinelloid II and spinelloid V are proposed. The T C of Fe3O4–Fe2SiO4 spinel solid solutions gradually decrease with increasing Si content. Spinel is ferrimagnetic at least to a composition of X Fe3O4=0.20, constraining a ferrimagnetic to antiferromagnetic transition to occur at a composition of X Fe3O4<0.20. A contribution of the studied ferrimagnetic phases for crustal anomalies on the Earth can be excluded because they lose their magnetization at relatively low temperatures. However, their relevance for magnetic anomalies on other planets (Mars?), where these high-pressure Fe-rich minerals could survive their exhumation or were formed by impacts, has to be considered.  相似文献   

14.
Experiments on the join Al2SiO5-“Mn2SiO5” of the system Al2O3-SiO2-MnO-MnO2 in the pressure/temperature range 10–20 kb/900–1050° C with gem quality andalusite, Mn2O3, and high purity SiO2 as starting materials and using /O2-buffer techniques to preserve the Mn3+ oxidation state had following results: At 20 kb/1000°C orange-yellow kyanite mixed crystals are formed. The kyanite solid solubility is limited at about (Al1.88Mn 0.12 3+ )SiO5 and, thus, equals approximately that on the join Al2SiO5-“Fe2SiO5” (Langer and Frentrup, 1973) indicating that there is no Jahn-Teller stabilisation of Mn3+ in the kyanite matrix. 5 mole % substitution causes the kyanite lattice constants a o, b o, c o, and V o to increase by 0.015, 0.009, 0.014 Å, and 1.6 Å3, resp., while α, β, γ, remain unchanged. Between 10 and 18 kb/900°C, Mn3+-substituted, strongly pleochroitic (emeraldgreen-yellow) andalusitess (viridine) was obtained. At 15 kb/900°C, the viridine compositional range is about (Al1.86Mn 0.14 3+ )SiO5-(Al1.56Mn 0,44 3+ )SiO5. Thus, Al→Mn3+ substitutional degrees are appreciably higher in andalusite than in kyanite, proving a strong Jahn-Teller effect of Mn3+ in the andalusite structure, which stabilises this structure type at the expense of kyanite and sillimanite and, thus, enlarges its PT-stability range extremely. 17 mole % substitution cause the andalusite constants a o, b o, c o, and V o to increase by 0.118, 0.029, 0.047 Å and 9.4 Å3, resp. At “Mn2SiO5”-contents smaller than about 7 mole %, viridine coexists with Mn-poor kyanite. At “Mn2SiO5”-concentrations higher than the maximum kyanite or viridine miscibility, braunite (tetragonal, ideal formula Mn2+Mn3+[O8/Si04]), pyrolusite and SiO2 were found to coexist with the Mn3+-saturated ky ss or and ss, respectively. In both cases, braunites were Al-substituted (about 1 Al for 1 Mn3+). Pure synthetic braunites had the lattice constants a o 9.425, c o, 18.700 Å, V o 1661.1 Å3 (ideal compn.) and a o 9.374, c o 18.593 Å3, V o 1633.6 Å3 (1 Al for 1 Mn3+). Stable coexistence of the Mn2+-bearing phase braunite with the Mn4+-bearing phase pyrolusite was proved by runs in the limiting system MnO-MnO2-SiO2.  相似文献   

15.
The stability and structure of aqueous complexes formed by trivalent antimony (SbIII) with carboxylic acids (acetic, adipic, malonic, lactic, oxalic, tartaric, and citric acid), phenols (catechol), and amino acids (glycine) having O- and N-functional groups (carboxyl, alcoholic hydroxyl, phenolic hydroxyl and amine) typical of natural organic matter, were determined at 20 and 60 °C from solubility and X-ray absorption fine structure (XAFS) spectroscopy measurements. In organic-free aqueous solutions and in the presence of acetic, adipic, malonic acids and glycine, both spectroscopic and solubility data are consistent with the dominant formation of SbIII hydroxide species, , at strongly acid, acid-to-neutral and basic pH, respectively, demonstrating negligible complexing with mono-functional organic ligands (acetic) or those having non adjacent carboxylic groups (adipic, malonic). In contrast, in the presence of poly-functional carboxylic and hydroxy-carboxylic acids and catechol, SbIII forms stable 1:1 and 1:2 complexes with the studied organic ligands over a wide pH range typical of natural waters (3 < pH < 9). XAFS spectroscopy measurements show that in these species the central SbIII atom has a distorted pseudo-trigonal pyramidal geometry composed of the lone pair of 5s2 electrons of Sb and four oxygen atoms from two adjacent functional groups of the ligand (OC-OH and/or COH), forming a five-membered bidendate chelate cycle. Stability constants for these species, generated from Sb2O3 (rhomb.) solubility experiments, were used to model Sb complexing with natural humic acids possessing the same functional groups as those investigated in this study. Our predictions show that in an aqueous solution of pH between 2 and 10, containing 1 μg/L of Sb and 5 mg/L of dissolved organic carbon (DOC), up to 35% of total dissolved Sb binds to aqueous organic matter via carboxylic and hydroxy-carboxylic groups. This amount of complexed Sb for typical natural DOC concentrations is in agreement with that estimated from dialysis experiments performed with commercial humic acid in our work and those available in the literature for a range of standardized IHSS humic acids. Our results imply that a significant part of Sb is likely to be bound with humic acids via hydroxy-carboxylic moieties, in the form of bidendate complexes. However, following the strong chemical affinity of SbIII for reduced sulfur, some undefined fraction of SbIII might also be bound to the minor thiol-bearing moieties of humic acids; further studies are required to check this hypothesis.  相似文献   

16.
The Earth’s core contains light elements and their identification is essential for our understanding of the thermal structure and convection in the core that drives the geodynamo and heat flow from the core to the mantle. Solubilities of Si and O in liquid iron coexisting with (Mg,Fe)SiO3-perovskite, a major constituent of the lower mantle, were investigated at temperatures between 2,320 and 3,040 K at 27 GPa. It was observed that Si dissolved in the liquid iron up to 1.70 wt% at 3,040 K and O dissolved in the liquid iron up to 7.5 wt% at 2,800 K. It was also clearly seen that liquid iron reacts with (Mg,Fe)SiO3-perovskite to form magnesiowüstite and it contains Si and O at 27 GPa and at 2,640 and 3,040 K. The amounts of Si and O in the liquid iron are 1.70 and 2.25 wt% at 3,040 K, respectively. The solubilities of Si and O in liquid iron coexisting with (Mg,Fe)SiO3-perovskite have strong positive temperature dependency. Hence, they can be plausible candidates for the light elements in the core.  相似文献   

17.
金宝山和白马寨铜镍硫化物矿床均主要赋存在峨眉山大火山岩省中,但其矿化特征存在许多不同。本文着重对比了金宝山铂钯矿床和白马寨铜镍矿床的铂族元素(PGE)地球化学特征,发现前者表现为高ΣPGE及低的(Cu Ni)、Pd/Ir(3.84~26.49)、Cu/Pd(46.91~1309.58)值和Au/Pd值,相反,后者表现为低ΣPGE、高(Cu Ni)、Pd/Ir(4.72~297.2)、Cu/Pd(10875.13~974788.55)值和较高的Au/Pd值。金宝山和白马寨PGE原始地幔标准化配分模式均主要表现为左倾型,但二者表现为镜像关系。金宝山较白马寨的PGE间相关性好,可能说明白马寨母岩浆经历了较为复杂的地质过程,其铂族元素体系因此受到较大的扰动。结合前人有关杨柳坪铜镍铂族元素矿床的铂族元素数据,认为峨眉地幔柱形成铜镍铂族元素矿床大致可以分成3个阶段:1金宝山阶段:即为S的低度饱和阶段,为峨嵋地幔柱上升初期,吸收少量壳源物质,由于PGE在硫化物中很高的分配系数,导致少量硫化物熔体从硅酸盐中萃取大量PGE和少量Cu-Ni熔离出来,与铬铁矿、橄榄石和辉石等,于高温下结晶分异堆积而成金宝山岩体,形成独立铂钯矿床。...  相似文献   

18.
The temperature dependence of the absorption spectra of ilvaite, Ca(Fe2+,Fe3+)Fe2+Si2O8(OH), shows strongly one dimensional transport behaviour with no singularity at the Pnam-P21/a phase transition point near 335 K. Polarized single crystal transmission measurements were carried out between 300 K and 450 K in a frequency range between 600 and 23 000 cm−1. No Drude —absorption at low energies was found at any temperature. A macroscopic, thermodynamic model based on Landau-Ginzburg theory is given which accounts for the observed macroscopic properties of the structural phase transition and its coupling with the Fe2+-Fe3+ ordering. This ordering scheme is discussed on an atomistic level and compared with the behaviour of magnetite and trans-(CH) x .  相似文献   

19.
The AlOx1-3 (Ox = oxalate) species were identified in 0.6 M aqueous NaCl by 13C nuclear magnetic resonance (NMR). Rate constants and activation parameters for intramolecular cis/trans isomerization of the Werner-type AlOx2 complex (k(298 K) = 5 s−1, ΔH# = 67 ± 5 kJ mol−1, ΔS# = −6 ± 6 J mol−1 K−1, the rate determining step could be the breaking of the Al-O(C=O) bond) and a very slow intermolecular ligand exchange reaction of AlOx33− complex and the free ligand (k30(298 K) = 6.6 · 10−5 s−1, ΔH# = 164 ± 17 kJ mol−1, ΔS# = 225 ± 51 J mol−1 K−1, D/Id mechanism) were determined by dynamic 1D and 2D 13C NMR measurements. Mixed complexes, AlFOx, AlFOx22-, AlF2Ox, and AlF2Ox23-, with overall stability (logβ) of 11.53 ± 0.03, 15.67 ± 0.03, 15.74 ± 0.02, and 19.10 ± 0.04 were measured by potentiometry using pH- and fluoride-selective electrodes and confirmed by 13C and19F NMR. The role of these complexes in gibbsite dissolution was modeled. The mixed Al(III)-Ox2--F complexes have to be considered as the chemical speciation of Al(III) in natural waters is discussed.  相似文献   

20.
Three reactions limiting the stability field of the di-trioctahedral chlorite cookeite in the presence of quartz, in the system Li2O−Al2O3−SiO2−H2O (LASH) have been reversed in the range 290–480°C, 0.8–14 kbar, using natural material close to the end member composition. Combining our results with known and estimated thermodynamic properties of the other minerals belonging to the LASH system, the enthalpy (-8512200 J/mol) and the entropy (504.8 J/mol*K) of cookeite are calculated by a feasible solution space approach. The knowledge of these values allowed us to draw the first P−T phase diagram involving both the hydrated Li-aluminosilicates cookeite and bikitaite, which is applicable to a large variety of natural rock systems. The low thermal extent of the stability field of cookeite+quartz (260–480°C) makes cookeite a valuable indicator of low temperature conditions within a wide range of pressure (1–14 kbar).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号